CN105954769B - A kind of time delay and Doppler frequency shift combined estimation method - Google Patents

A kind of time delay and Doppler frequency shift combined estimation method Download PDF

Info

Publication number
CN105954769B
CN105954769B CN201610255669.4A CN201610255669A CN105954769B CN 105954769 B CN105954769 B CN 105954769B CN 201610255669 A CN201610255669 A CN 201610255669A CN 105954769 B CN105954769 B CN 105954769B
Authority
CN
China
Prior art keywords
mrow
sigmoid
msup
msubsup
tau
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610255669.4A
Other languages
Chinese (zh)
Other versions
CN105954769A (en
Inventor
邱天爽
于�玲
栾声扬
张金凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610255669.4A priority Critical patent/CN105954769B/en
Publication of CN105954769A publication Critical patent/CN105954769A/en
Application granted granted Critical
Publication of CN105954769B publication Critical patent/CN105954769B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/2813Means providing a modification of the radiation pattern for cancelling noise, clutter or interfering signals, e.g. side lobe suppression, side lobe blanking, null-steering arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention belongs to Radio signal parameters estimation technique field, there is provided a kind of time delay and the method for Doppler frequency shift Combined estimator.It is characterized in that collection obtains two paths of signals first, one is measured signal, another is reference signal, the Sigmoid circulation cross-correlation between the Sigmoid circulation auto-correlations of reference signal and measured signal and reference signal is asked for respectively, then Sigmoid circulation ambiguity functions are asked for, finally the position corresponding to the fuzzy function maxima of Sigmoid circulations according to where Sigmoid circulates ambiguity function measured signal cycle frequency determines time delay and the estimate of Doppler frequency shift.It is demonstrated experimentally that the present invention can have compared with flash and in the presence of effective estimation with obtaining time delay and Doppler frequency shift in the case of the interference signal of measured signal same carrier in noise.

Description

A kind of time delay and Doppler frequency shift combined estimation method
Technical field
The invention belongs to Radio signal parameters estimation technique field, it is related to time delay and Doppler frequency shift Combined estimator Method, more particularly to a kind of time delay and the method for Doppler frequency shift Combined estimator that circulation ambiguity function is converted using Sigmoid.
Background technology
In Satellite tool kit or radar fix, it will usually by caused by the relative motion between target and receiver Delay Variation is equivalent to Doppler frequency shift, and this relates to time delay and the Combined estimator problem of Doppler frequency shift.Due to being two Parameter estimates that method of estimation is more vulnerable to the influence of noise or interference simultaneously, particularly in signal simultaneously by impulsive noise shadow In the case of ringing with co-channel interference, many classical methods can all fail, such as:Ambiguity function and circulation based on second-order statistic Ambiguity function can be in normal work under Gaussian noise, but can not resist pulsive noise;Point based on fractional lower-order statistics Number low order ambiguity function can resist pulsive noise, but can not resist the influence of co-channel interference;And can be to impulsive noise and same The fractional lower-order circulation ambiguity function and broad sense fractional lower-order circulation ambiguity function that frequency interference is resisted simultaneously also have it intrinsic to lack Point:The exponent number of its fractional lower-order needs the priori of noise, and the otherwise improper selection of exponent number can influence the estimation effect of method, In addition, fractional lower-order statistics when pulse feature is stronger, to impulse noise mitigation scarce capacity, peak value unobvious, may cause Estimate mistake.Therefore the present invention proposes that a kind of Sigmoid conversion circulation is related, on the basis of Sigmoid circulations are related, application Sigmoid conversion circulation ambiguity functions carry out the connection of time delay and Doppler frequency shift under impulsive noise and co-channel interference concurrent conditions Close estimation.
The content of the invention
In view of the shortcomings of the prior art, the present invention provides a kind of time delay of toughness and the Combined estimator side of Doppler frequency shift Method, this method are suppressed to the pulse feature in noise using Sigmoid conversion, same CF signal are carried out using cycle frequency Distinguish the Combined estimator for remove co-channel interference, proposing that time delay and Doppler frequency shift are carried out using Sigmoid circulation ambiguity functions Method.
The technical scheme is that:
A kind of time delay and the method for Doppler frequency shift Combined estimator, are mainly included the following steps that:
The first step, two-way collection signal is obtained respectively, wherein being reference signal all the way, another way signal is comprising to be estimated The measured signal of time delay and Doppler frequency shift;
Second step, calculate Sigmoid ambiguity functions
2.1 calculate the Sigmoid circulation auto-correlations of reference signal using Sigmoid circulation auto-correlation formula;
The 2.2 Sigmoid circulations calculated using Sigmoid circulation cross-correlation formula between reference signal and measured signal are mutual It is related.
2.3 is mutual using the Sigmoid circulation auto-correlations of reference signal and the Sigmoid of reference signal and measured signal circulations Correlation, calculate and obtain Sigmoid circulation ambiguity functions.
3rd step, parameter Estimation, ambiguity function is circulated by Sigmoid in 2.3 results and calculates its absolute value, search makes it Absolute value takes the time delay value and values of Doppler frequency shift corresponding to maximum, is required estimate.
This method can correctly be estimated under the conditions of impulsive noise and co-channel interference are simultaneous, and anti-impulsive noise energy Power is stronger, meets actual demand.
Brief description of the drawings
Fig. 1 is the algorithm flow chart of the present invention;
Fig. 2 is that Sigmoid circulates graphics of the ambiguity function by taking bpsk signal as an example in the present invention;
Fig. 3 is that Sigmoid circulates time shaft section of the ambiguity function when frequency is equal to true frequency displacement in the present invention;
Fig. 4 is that Sigmoid circulates the frequency shaft section that ambiguity function is equal to true Real-time Delay in time delay in the present invention.
Embodiment
To make the purpose of the embodiment of the present invention, technical scheme and its advantage clearer, with reference to the embodiment of the present invention In accompanying drawing, the technical scheme in the embodiment of the present invention is clearly completely described, total algorithm flow chart such as Fig. 1 institutes Show, Sigmoid graphics of the circulation ambiguity function by taking bpsk signal as an example in the present invention is as shown in Fig. 2 Sigmoid in the present invention It is as shown in Figure 3 to circulate time shaft section of the ambiguity function when frequency is equal to true frequency displacement;Sigmoid circulations are fuzzy in the present invention The frequency shaft section that function is equal to true Real-time Delay in time delay is as shown in Figure 4.
The first step, gather two paths of signals;
Reference signal is gathered by formula (1);By to be measured letter of formula (2) collection comprising time delay to be estimated and Doppler frequency shift Number;
X (t)=s (t)+w1(t)+si(t) (1)
Wherein, x (t) is the reference signal received, and s (t) is cyclo-stationary signal interested;si(t) it is and s (t) The interference signal of same carrier;Y (t) is measured signal;D is time delay to be estimated;fdFor Doppler frequency shift to be estimated;w1 And w (t)2(t) it is additive noise, if additive noise is obedience location parameter a=0, the Alpha Stable distritations of symmetric parameter β=0 Noise;Wherein additive noise term and distracter are the model under pole adverse circumstances (impulsive noise and co-channel interference are simultaneously deposited), if making an uproar Sound is Gaussian Profile or noiseless item, does not influence estimating step and estimated result.
Second step, calculate Sigmoid circulation ambiguity functions
2.1 calculate Sigmoid circulations of the reference signal x (t) on time interval [- T/2, T/2] from phase according to formula (3) Close
Wherein, ε represents cycle frequency, and according to s (t) cycle frequency selection, τ represents time delay, and Sigmoid [x (t)] is represented Sigmoid conversion is carried out to x (t), Sigmoid conversion is as shown in formula (4);
Sigmoid circulations auto-correlation when gathered data is finite length can be estimated to obtain by formula (5).
2.2 Sigmoid calculated according to formula (6) between reference signal and measured signal circulate cross-correlationSigmoid circulations cross-correlation when gathered data is finite length is calculated by formula (7);
2.3 circulate auto-correlation by the Sigmoid obtained by step 2.1With obtained by step 2.2 Sigmoid circulates cross-correlationBy formula (8), calculate and obtain Sigmoid circulation ambiguity functions;
3rd step, parameter Estimation
Ambiguity function is circulated using the Sigmoid obtained by step 2.3, asks Sigmoid to circulate ambiguity function absolute value, The one group of time delay value u and Doppler for Sigmoid circulation ambiguity function absolute values is taken maximum are found in u and f span Frequency displacement f, as measured signal estimateAs shown in formula (9).

Claims (1)

1. a kind of time delay and the method for Doppler frequency shift Combined estimator, it is characterised in that comprise the following steps:
The first step, reference signal is gathered by formula (1);Treated by formula (2) collection comprising time delay to be estimated and Doppler frequency shift Survey signal;
X (t)=s (t)+w1(t)+si(t) (1)
<mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>D</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>d</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>+</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, x (t) is the reference signal received, and s (t) is cyclo-stationary signal interested;si(t) it is and the identical loads of s (t) The interference signal of frequency;Y (t) is measured signal;D is time delay to be estimated;fdFor Doppler frequency shift to be estimated;w1And w (t)2 (t) it is additive noise, if additive noise is obedience location parameter a=0, the Alpha Stable distritation noises of symmetric parameter β=0;
Second step, calculate Sigmoid circulation ambiguity functions
2.1 calculate Sigmoids of the reference signal x (t) on time interval [- T/2, T/2] according to formula (3) circulates auto-correlation
<mrow> <msubsup> <mi>R</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> </mrow> <mi>&amp;epsiv;</mi> </msubsup> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&amp;Delta;</mi> </mover> <munder> <mi>lim</mi> <mrow> <mi>T</mi> <mo>&amp;RightArrow;</mo> <mi>&amp;infin;</mi> </mrow> </munder> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </munderover> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> <mo>&amp;lsqb;</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msup> <mi>Sigmoid</mi> <mo>*</mo> </msup> <mo>&amp;lsqb;</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mi>&amp;epsiv;</mi> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Wherein, ε represents cycle frequency, and according to s (t) cycle frequency selection, τ represents time delay, and Sigmoid [x (t)] is represented to x (t) Sigmoid conversion is carried out, Sigmoid conversion is as shown in formula (4);
<mrow> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> <mo>&amp;lsqb;</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mn>2</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Sigmoid circulation auto-correlations when gathered data is finite length are obtained by formula (5) estimation;
<mrow> <msubsup> <mover> <mi>R</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> </mrow> <mi>&amp;epsiv;</mi> </msubsup> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </munderover> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> <mo>&amp;lsqb;</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msup> <mi>Sigmoid</mi> <mo>*</mo> </msup> <mo>&amp;lsqb;</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mi>&amp;epsiv;</mi> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
2.2 Sigmoid calculated according to formula (6) between reference signal and measured signal circulate cross-correlationAdopt Sigmoid circulations cross-correlation when integrating data as finite length is calculated by formula (7);
<mrow> <msubsup> <mi>R</mi> <mrow> <mi>y</mi> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> </mrow> <mi>&amp;epsiv;</mi> </msubsup> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&amp;Delta;</mi> </mover> <munder> <mi>lim</mi> <mrow> <mi>T</mi> <mo>&amp;RightArrow;</mo> <mi>&amp;infin;</mi> </mrow> </munder> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </munderover> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> <mo>&amp;lsqb;</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msup> <mi>Sigmoid</mi> <mo>*</mo> </msup> <mo>&amp;lsqb;</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mi>&amp;epsiv;</mi> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mover> <mi>R</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> </mrow> <mi>&amp;epsiv;</mi> </msubsup> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <munderover> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>T</mi> <mo>/</mo> <mn>2</mn> </mrow> </munderover> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> <mo>&amp;lsqb;</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&amp;tau;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msup> <mi>Sigmoid</mi> <mo>*</mo> </msup> <mo>&amp;lsqb;</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;tau;</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mi>&amp;epsiv;</mi> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
2.3 Sigmoid obtained by step 2.1 circulate auto-correlationThe Sigmoid circulations obtained with step 2.2 Cross-correlationBy formula (8), calculate and obtain Sigmoid circulation ambiguity functions;
<mrow> <msubsup> <mi>C</mi> <mrow> <mi>y</mi> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> </mrow> <mi>&amp;epsiv;</mi> </msubsup> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>f</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&amp;Delta;</mi> </mover> <mo>&amp;Integral;</mo> <msubsup> <mi>R</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> </mrow> <mi>&amp;epsiv;</mi> </msubsup> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>+</mo> <mi>u</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>R</mi> <mrow> <mi>y</mi> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> </mrow> <mrow> <mi>&amp;epsiv;</mi> <mo>-</mo> <mi>f</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>*</mo> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>j</mi> <mi>&amp;pi;</mi> <mi>f</mi> <mi>&amp;tau;</mi> </mrow> </msup> <mi>d</mi> <mi>&amp;tau;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>8</mi> <mo>)</mo> </mrow> </mrow>
Wherein, u and f represent time delay and Doppler frequency shift respectively;
3rd step, parameter Estimation
The Sigmoid obtained by step 2.3 circulates ambiguity function, asks Sigmoid to circulate ambiguity function absolute value, in taking for u and f The one group of time delay value u and Doppler frequency shift f for Sigmoid circulation ambiguity function absolute values is taken maximum are found in the range of value, is obtained To the estimate of the measured signal as shown in formula (9)
<mrow> <mo>(</mo> <mover> <mi>D</mi> <mo>^</mo> </mover> <mo>,</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mo>)</mo> <mo>=</mo> <mi>argmax</mi> <mo>|</mo> <msubsup> <mi>C</mi> <mrow> <mi>y</mi> <mi>x</mi> <mo>,</mo> <mi>S</mi> <mi>i</mi> <mi>g</mi> <mi>m</mi> <mi>o</mi> <mi>i</mi> <mi>d</mi> </mrow> <mi>&amp;epsiv;</mi> </msubsup> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>f</mi> <mo>)</mo> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mo>(</mo> <mn>9</mn> <mo>)</mo> <mo>.</mo> </mrow>
CN201610255669.4A 2016-04-21 2016-04-21 A kind of time delay and Doppler frequency shift combined estimation method Expired - Fee Related CN105954769B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610255669.4A CN105954769B (en) 2016-04-21 2016-04-21 A kind of time delay and Doppler frequency shift combined estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610255669.4A CN105954769B (en) 2016-04-21 2016-04-21 A kind of time delay and Doppler frequency shift combined estimation method

Publications (2)

Publication Number Publication Date
CN105954769A CN105954769A (en) 2016-09-21
CN105954769B true CN105954769B (en) 2018-01-16

Family

ID=56916723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610255669.4A Expired - Fee Related CN105954769B (en) 2016-04-21 2016-04-21 A kind of time delay and Doppler frequency shift combined estimation method

Country Status (1)

Country Link
CN (1) CN105954769B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950532B (en) * 2017-04-21 2019-07-23 西安电子科技大学 Based on cross ambiguity function compared with wave-form similarity united delay time estimation method
CN108957416B (en) * 2018-04-17 2022-03-08 大连大学 Linear frequency modulation signal parameter estimation method under impulse noise environment
CN109709581B (en) * 2019-02-27 2020-06-12 中国电子科技集团公司第五十四研究所 Method for rapidly detecting and acquiring cyclic characteristic parameters of satellite navigation signals with strong interference
CN112213751B (en) * 2020-10-15 2023-11-03 滁州学院 Pulse time delay estimation method in received random time-hopping pulse pseudo satellite signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318645A (en) * 1994-05-23 1995-12-08 Mitsubishi Electric Corp Target information decision unit
CN104181528A (en) * 2014-08-06 2014-12-03 西安电子科技大学 Compression perception multilayer ISAR imaging method based on BP optimization
CN104410388A (en) * 2014-10-20 2015-03-11 上海电机学院 Self-adaptive time delay estimation method based on nonlinear transformation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318645A (en) * 1994-05-23 1995-12-08 Mitsubishi Electric Corp Target information decision unit
CN104181528A (en) * 2014-08-06 2014-12-03 西安电子科技大学 Compression perception multilayer ISAR imaging method based on BP optimization
CN104410388A (en) * 2014-10-20 2015-03-11 上海电机学院 Self-adaptive time delay estimation method based on nonlinear transformation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于非线性变换的自适应时间延迟估计;刘文红 等;《上海电机学院学报》;20141231;第17卷(第5期);第254-258,268页 *
脉冲噪声环境下的SCOT加权时间延迟估计新方法;孙永梅 等;《通信学报》;20051231;第26卷(第12期);第13-18页 *

Also Published As

Publication number Publication date
CN105954769A (en) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105954769B (en) A kind of time delay and Doppler frequency shift combined estimation method
CN106597408B (en) High-order PPS signal parameter estimation method based on time-frequency analysis and instantaneous frequency curve fitting
CN103746722B (en) Method for estimating jump cycle and take-off time of frequency hopping signal
CN105785324B (en) Linear frequency-modulated parameter estimating method based on MGCSTFT
CN104038249B (en) Cycle long code direct sequence signal pseudo-random code estimation method
CN101662305B (en) Pseudo-random code estimation method of direct sequence spread spectrum system
CN103338177B (en) A kind of frame synchornization method resisting mono-tone interference
CN109802912A (en) Synchronization method, apparatus, device and storage medium for broadband wireless communication system
CN102035765A (en) MMSE (Minimum Mean Squared Error) channel estimation method based on maximum time delay real time estimation
CN107180259A (en) A kind of STAP training sample selection methods based on System Discrimination
CN111159888B (en) Covariance matrix sparse iteration time delay estimation method based on cross-correlation function
CN102353952A (en) Line spectrum detection method by coherent accumulation of frequency domains
CN103197297A (en) Radar moving target detection method based on cognitive framework
CN104618278B (en) A kind of pseudo-code rate-estimation method of the multi-user TDDM BOC signal related based on spectrum
CN106100762B (en) A kind of weak signal of communication detection method of cyclo-stationary spectrum analysis
CN109104215B (en) Frequency hopping signal code element rate blind estimation method based on wavelet transformation
CN105656511B (en) Differential correlation acquisition method suitable for environment with frequency offset and low signal-to-noise ratio
CN103560984B (en) Channel self-adapting method of estimation based on multi-model weighting soft handover
CN110048741A (en) A kind of method for parameter estimation of the Frequency Hopping Signal based on Short-Time Fractional Fourier Transform
CN101741773B (en) Method and device for channel estimation of terminal in time division synchronous code division multiple access system
CN106027117B (en) A kind of time delay and Doppler frequency shift combined estimation method
CN105812300B (en) Eliminate the long code DSSS blind symbol estimation method of information code jump
CN108111189A (en) Spread spectrum code sequence identification and synchronous method based on Hebb rule optimizations
KR20130049978A (en) Apparatus and method for enhancing channel
CN105959035B (en) A kind of direct sequence signal intercepts and captures detection method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180116