CN105953749B - 一种光学三维形貌测量方法 - Google Patents

一种光学三维形貌测量方法 Download PDF

Info

Publication number
CN105953749B
CN105953749B CN201610451777.9A CN201610451777A CN105953749B CN 105953749 B CN105953749 B CN 105953749B CN 201610451777 A CN201610451777 A CN 201610451777A CN 105953749 B CN105953749 B CN 105953749B
Authority
CN
China
Prior art keywords
optical
coordinate
bar graph
camera
testee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610451777.9A
Other languages
English (en)
Other versions
CN105953749A (zh
Inventor
赵宏
张春伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201610451777.9A priority Critical patent/CN105953749B/zh
Publication of CN105953749A publication Critical patent/CN105953749A/zh
Application granted granted Critical
Publication of CN105953749B publication Critical patent/CN105953749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种光学三维形貌测量方法,先按照实际测量要求,布置好由投影***、相机组成的测量***;然后根据测量需要设计条纹图并由投影***投影到被测物体表面,被物体反射的条纹图由相机采样;再从采样条纹图解调出包裹相位,解包裹后得到条纹图的真实相位值;然后由远心镜头的放大率、相机像元大小及采样条纹图的图像坐标求解得到被测物体X、Y轴坐标;最后标定得到投影***的相关参数,结合条纹相位,根据三角关系求得被测物体Z轴的坐标;本发明标定过程简单,既提高了三维坐标的求解速度又能达到更高的测量精度;一次标定即可保证之后所有测量的使用,效率很高。

Description

一种光学三维形貌测量方法
技术领域
本发明属于三维测量技术领域,具体涉及一种光学三维形貌测量方法。
背景技术
三维测量在快速成型、质量检测中有着广泛的需求。同时,它在逆向工程、医疗等领域也有着广泛应用。传统的三维测量方法主要是接触式测量,如三坐标测量机。随着光学技术的进步,光学三维测量技术得到了长足的发展,被越来越广泛地应用到三维测量中。典型的光学三维测量方法有点激光扫描测量、线激光扫描测量、结构光投影测量及干涉测量等。其中,基于正弦条纹投影的结构光投影三维测量方法,由于操作便捷、测量精度较高、测量速度快、适应性好等优点,是一种非常优越的三维测量手段。
正弦条纹投影三维测量轮廓术需要投影正弦条纹到被测物体表面,反射的条纹图像被相机采样得到,求解采样条纹相位后,结合标定得到的测量***参数,即可由相位恢复被测物体的三维形貌。现有的正弦条纹投影三维测量轮廓术具有以下特点:投影的正弦条纹图的相位在整个图像平面内沿某一方向呈线性变化;在由单相机-单投影仪构成的测量***中,相位到被测物体三维形貌的转化总会用到由投影光线与相机采样光线之间构成的三角关系,很多情况下需要一个参考面,三维求解过程复杂。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种光学三维形貌测量方法,使得三维形貌求解过程简化,X、Y坐标的求解速度及精度得到提高,标定过程简单,最终得到更高的测量精度,而且能够在一次***标定后即可保证之后所有测量的使用,提高测量效率。
为了达到上述目的,本发明采取的技术方案为:
一种光学三维形貌测量方法,包括以下步骤:
步骤1:按照实际测量要求,布置好由投影***、相机组成的测量***;
步骤2:根据测量需要设计投影圆条纹图并由投影***投影到被测物体表面;
步骤3:被物体反射的条纹图由相机采样;
步骤4:从采样条纹图解调出包裹相位,解包裹后得到条纹图的真实相位值;
步骤5:由远心镜头的放大倍率、相机像元大小及采样条纹图的图像坐标求解得到被测物体X、Y轴坐标;
步骤6:标定得到投影***的相关参数,结合条纹相位,根据由投影光线和投影光轴构成的三角关系得到被测物体Z轴的坐标。
所述的步骤1中的投影***是数字投影仪,或是点光源与光栅、光掩膜版组成的投影***,其投影图像在量程内要能够覆盖被测对象但不能过多地超过被测对象,而且投影光轴与相机光轴需要保持平行。
所述的步骤1中的相机配有远心镜头,远心镜头的参数根据实际测量需求选用。
所述的步骤2中的投影圆条纹图,其灰度值分布需要满足:
f(xp,yp)=a+bcos(2π·r(xp,yp)/R) (1)
其中,(xp,yp)表示投影条纹图像素坐标,a表示条纹背景项,b表示条纹幅值,R为以像素距离表示的条纹周期,且
其中,(xp0,yp0)表示投影阵列与投影***光轴的交点,初步认为该点是投影阵列的几何中心。
所述的步骤4中的相位解调采用经典相位解调方法,相位解包裹采用经典相位解包裹方法。
所述的步骤5中被测物体X、Y轴坐标采用如下公式求得:
其中:(xc,yc)为采样图像坐标,β为远心镜头放大倍率,s为相机像元尺寸。
所述的步骤6中被测物体Z坐标的求解公式为:
其中,R为以像素距离表示的圆条纹周期,p为投影***参数,Φ(xc,yc)为采样图像点(xc,yc)的相位值,d(xc,yc)为采样图像上点(xc,yc)与零相位点间的空间距离,通过如下公式计算:
其中,s为相机像元尺寸,(xc0,yc0)为采样条纹图零相位点的像素坐标,β为远心镜头放大倍率。
与传统的正弦条纹投影三维测量轮廓术相比,本发明具有以下有益效果:不需要对相机进行标定;被测物体X、Y坐标求解较传统方法有非常大的简化,既极大提高了X、Y坐标的求解速度也能保证求解精度;被测物体Z坐标的求解中涉及的标定参量少,标定过程简单,测量误差来源少,能够达到更高的测量精度;当投影仪的焦距确定后,一次标定即可保证之后所有测量的使用,效率极高。
附图说明
图1为本发明方法采用的一种测量***结构示意图。
图2为本发明方法原理图。
图3为本发明中所使用的圆条纹图。
图4为模拟图3条纹图投影到待测球形表面采样得到的条纹图。
图5为图4条纹图的解调相位图。
图6为图4条纹图的解包裹相位图。
图7为采用本发明方法恢复得到的被测物体三维形貌。
图8为图7处理后的三维形貌图。
具体实施方式
下面结合附图和实施例对本发明作详细描述。
一种光学三维形貌测量方法,包括以下步骤:
步骤1:按照实际测量要求,布置好由投影***、配有远心镜头的相机组成的测量***,参照图1,测量***中投影***光轴与相机光轴通过光路设计等效共线,在实际使用中,投影***光轴与相机光轴不必共线,测量原理如图2所示,其中,ON为投影***光轴,点B为投影***光轴与投影像元阵列间的交点,从光源O发射的光经由A处的投影像元投影照射到被测物体上的点M,MN为垂直于投影光轴的线段,点N为一虚拟点,在实际中不必求得,图2中还标示了三维重建中所使用的Z坐标,设M点在采样图像上的坐标值为(xc,yc),线段MN的长度为d(xc,yc),在图示的定义下,点M的Z坐标为
由于ΔOAB∽ΔOMN,
因而,
实际中的值由标定得到,在本实施例中设定:
步骤2:根据测量需要设计投影圆条纹图并由投影***投影到被测物体表面,所用到的投影圆条纹图参照图3,与传统的正弦条纹图不同的是,它的相位并非在整个图像平面内沿特定方向线性变化,而是以图像中心为中心向外线性辐射,因而看上去像是一组明暗相间的圆环,图示条纹的周期为10像素,利用投影***将该条纹投影到被测物体表面;
步骤3:被物体反射的条纹图由配有远心镜头的相机采样,参照图4,图4为模拟采样得到的条纹图;
步骤4:由采样条纹相位图利用四步相移法解调得到图4所示条纹图的包裹相位,如图5所示,采用多频解包裹技术对图5所示的包裹相位解包裹,解包裹相位如图6所示,设其值为Φ(xc,yc);
步骤5:由远心镜头的放大率、相机像元大小及采样条纹图的图像坐标求解得到被测物体X、Y轴坐标,设远心镜头放大倍率为β=0.1,相机像元尺寸s=0.005mm,那么采样点M对应的横向坐标可以很容易地求得:
步骤6:标定得到投影***的相关参数,设定投影仪像元尺寸为0.005mm,那么有
结合条纹相位,根据三角关系得到被测物体Z轴的坐标,
最终求解得到的模拟被测物体三维形貌如图7所示。为了更清楚地看到被测物体的三维形貌,用模拟被测物体的最大高度1990减去图7中的数据,此时绘制得到的被测物体三维形貌为图8所示,可见,本发明能够非常便捷地实现对被测对象三维轮廓的测量。
以上所述仅为本发明的一个实施例,并不用以限制本发明,凡在本发明基础上所做的任何修改、等同替换及拓展等,均应包含在本发明的保护范围内。

Claims (5)

1.一种光学三维形貌测量方法,其特征在于,包括以下步骤:
步骤1:按照实际测量要求,布置好由投影***、相机组成的测量***;
步骤2:根据测量需要设计投影圆条纹图并由投影***投影到被测物体表面;
步骤3:被物体反射的条纹图由相机采样;
步骤4:从采样条纹图解调出包裹相位,解包裹后得到条纹图的真实相位值;
步骤5:由远心镜头的放大倍率、相机像元大小及采样条纹图的图像坐标求解得到被测物体X、Y轴坐标;
步骤6:标定得到投影***的相关参数,结合条纹相位,根据由投影光线和投影光轴构成的三角关系求得被测物体Z轴的坐标;
所述的步骤6中被测物体Z坐标的求解公式为
其中,R为以像素距离表示的圆条纹周期,p为投影***参数,Φ(xc,yc)为采样图像点(xc,yc)的相位值,d(xc,yc)为采样图像上点(xc,yc)与零相位点间的空间距离,通过如下公式计算:
其中,s为相机像元尺寸,(xc0,yc0)为采样条纹图零相位点的像素坐标,β为远心镜头放大倍率。
2.根据权利要求1所述的一种光学三维形貌测量方法,其特征在于:所述的步骤1中的投影***是数字投影仪,或是点光源与光栅、光掩膜版组成的投影***,其投影图像在量程内要能够覆盖被测对象但不能过多地超过被测对象,而且投影光轴与相机光轴需要保持平行。
3.根据权利要求1所述的一种光学三维形貌测量方法,其特征在于:所述的步骤1中的相机配有远心镜头,远心镜头的参数根据实际测量需求选用。
4.根据权利要求1所述的一种光学三维形貌测量方法,其特征在于:所述的步骤2中的投影圆条纹图,其灰度值分布需要满足:
f(xp,yp)=a+bcos(2π·r(xp,yp)/R) (1)
其中,(xp,yp)表示投影圆条纹图像素坐标,a表示条纹背景项,b表示条纹幅值,R为以像素距离表示的圆条纹周期,且
其中,(xp0,yp0)表示投影阵列与投影***光轴的交点,初步认为该点是投影阵列的几何中心。
5.根据权利要求1所述的一种光学三维形貌测量方法,其特征在于:所述的步骤5中被测物体X、Y轴坐标采用如下公式求得:
其中:(xc,yc)为采样图像坐标,s为相机像元尺寸,β为远心镜头放大倍率。
CN201610451777.9A 2016-06-21 2016-06-21 一种光学三维形貌测量方法 Active CN105953749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610451777.9A CN105953749B (zh) 2016-06-21 2016-06-21 一种光学三维形貌测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610451777.9A CN105953749B (zh) 2016-06-21 2016-06-21 一种光学三维形貌测量方法

Publications (2)

Publication Number Publication Date
CN105953749A CN105953749A (zh) 2016-09-21
CN105953749B true CN105953749B (zh) 2018-12-18

Family

ID=56907029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610451777.9A Active CN105953749B (zh) 2016-06-21 2016-06-21 一种光学三维形貌测量方法

Country Status (1)

Country Link
CN (1) CN105953749B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458955A (zh) * 2018-12-21 2019-03-12 西安交通大学 基于平面度约束的离轴圆条纹投影测量零相位点求解方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066816B1 (fr) * 2017-05-24 2020-09-04 Centre Nat Rech Scient Dispositif optique de mesure de la courbure d'une surface reflechissante
CN107941168B (zh) * 2018-01-17 2019-11-05 杨佳苗 基于散斑位置标定的反射式条纹面形测量方法与装置
CN109541802B (zh) * 2019-01-21 2021-03-16 上海理工大学 一种双光路双远心光学***
CN110006364B (zh) * 2019-03-18 2020-12-29 南京师范大学 基于圆条纹径向空间载波相移的三维实时显微测量方法
CN111121663B (zh) * 2019-06-20 2022-09-06 杭州光粒科技有限公司 物体三维形貌测量方法、***和计算机可读存储介质
CN113188477A (zh) * 2021-04-28 2021-07-30 伏燕军 基于三通道正弦条纹投影的彩色物体快速三维测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921732A1 (fr) * 2007-09-28 2009-04-03 Noomeo Soc Par Actions Simplif Dispositif de construction d'une image de synthese d'une sur face tridimensionnelle d'un objet physique
CN103729251A (zh) * 2013-11-06 2014-04-16 中国科学院上海光学精密机械研究所 并行计算光学条纹图相位提取方法
CN104197837A (zh) * 2014-09-19 2014-12-10 福建师范大学 一种复杂表面物体体积的非接触式光学测量方法及装置
CN104729429A (zh) * 2015-03-05 2015-06-24 深圳大学 一种远心成像的三维形貌测量***标定方法
US9250186B2 (en) * 2013-06-20 2016-02-02 The University Of North Carolina At Charlotte Profilometry systems and methods based on absorption and optical frequency conversion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921732A1 (fr) * 2007-09-28 2009-04-03 Noomeo Soc Par Actions Simplif Dispositif de construction d'une image de synthese d'une sur face tridimensionnelle d'un objet physique
US9250186B2 (en) * 2013-06-20 2016-02-02 The University Of North Carolina At Charlotte Profilometry systems and methods based on absorption and optical frequency conversion
CN103729251A (zh) * 2013-11-06 2014-04-16 中国科学院上海光学精密机械研究所 并行计算光学条纹图相位提取方法
CN104197837A (zh) * 2014-09-19 2014-12-10 福建师范大学 一种复杂表面物体体积的非接触式光学测量方法及装置
CN104729429A (zh) * 2015-03-05 2015-06-24 深圳大学 一种远心成像的三维形貌测量***标定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109458955A (zh) * 2018-12-21 2019-03-12 西安交通大学 基于平面度约束的离轴圆条纹投影测量零相位点求解方法

Also Published As

Publication number Publication date
CN105953749A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105953749B (zh) 一种光学三维形貌测量方法
CN106595528B (zh) 一种基于数字散斑的远心显微双目立体视觉测量方法
Holroyd et al. A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance
Lilienblum et al. A structured light approach for 3-D surface reconstruction with a stereo line-scan system
Eiríksson et al. Precision and accuracy parameters in structured light 3-D scanning
ES2377462T3 (es) Sistema de escaneado y método para escanear
CN106871815B (zh) 一种Kinect与条纹反射法结合的类镜面三维面形测量方法
US8923603B2 (en) Non-contact measurement apparatus and method
CN104655051B (zh) 一种高速结构光三维面形垂直测量方法
CN103292740B (zh) 一种三维扫描仪测量方法及其装置
Jia et al. Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement
CN108759721A (zh) 一种基于光学条纹投影和反射的三维形貌测量方法及装置
US20140152771A1 (en) Method and apparatus of profile measurement
CN109631798A (zh) 一种基于π相移方法的三维面形垂直测量方法
Tutsch et al. Optical three-dimensional metrology with structured illumination
Liu et al. 3D surface reconstruction of small height object based on thin structured light scanning
Schick et al. 3D measuring in the field of endoscopy
Zhou et al. Three-dimensional shape measurement using color random binary encoding pattern projection
Jeong et al. Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging
Ko¨ rner et al. One-grating projection for absolute three-dimensional profiling
Matthias et al. A 3D measuring endoscope for hand-guided operation
Chen et al. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection
JP5667891B2 (ja) 形状計測方法
Yu et al. Quasi-pixelwise motion compensation for 4-step phase-shifting profilometry based on a phase error estimation
Ekberg et al. 3D precision measurements of meter sized surfaces using low cost illumination and camera techniques

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant