CN105939109A - 具有双模式pwm/cot控制的切换功率变换器 - Google Patents

具有双模式pwm/cot控制的切换功率变换器 Download PDF

Info

Publication number
CN105939109A
CN105939109A CN201610216267.3A CN201610216267A CN105939109A CN 105939109 A CN105939109 A CN 105939109A CN 201610216267 A CN201610216267 A CN 201610216267A CN 105939109 A CN105939109 A CN 105939109A
Authority
CN
China
Prior art keywords
power inverter
voltage
constant
switching
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610216267.3A
Other languages
English (en)
Inventor
A·凯利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDT Europe GmbH
Original Assignee
Zentrum Mikroelektronik Dresden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zentrum Mikroelektronik Dresden GmbH filed Critical Zentrum Mikroelektronik Dresden GmbH
Publication of CN105939109A publication Critical patent/CN105939109A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

具有双模式PWM/COT控制的切换功率变换器。功率变换器包括:切换的功率级,其从输入电压生成输出电压;以及控制器,其生成用于根据电压误差信号对切换的功率级进行切换的脉冲控制信号。电压误差信号是基准电压与输出电压之间的差值。控制器包括数字脉宽调制控制路径和数字恒定导通时间控制路径,控制器在轻负载模式和高负载模式之间切换,在轻负载模式下数字恒定导通时间被激活,在高负载模式下数字PWM控制路径被激活。相比于恒定导通时间控制路径(特别是被配置成将电压误差与阈值进行比较以触发预设的恒定导通时间的脉冲的连续时间比较器)是消耗额外的空间和功率的单独的模拟电路的现有技术,根据本发明,恒定导通时间控制路径被数字地设计。

Description

具有双模式PWM/COT控制的切换功率变换器
技术领域
本发明涉及一种具有双模式脉宽调制(PWM)/恒定导通时间(COT)的功率变换器及相关方法。
背景技术
切换的DC-DC变换器包括可切换的功率级,其中,根据切换信号和输入电压生成输出电压。在将输出电压调节为基准电压的控制器中生成切换信号。图1中示出了降压转换器。切换的功率级11包括由高侧开关12和低侧开关13组成的双开关、电感器14以及电容器15。在充电阶段,通过切换信号使高侧开关12导通并且使低侧开关13截止,以对电容器15进行充电。在放电阶段,使高侧开关12截止并且使低侧开关13导通,以使平均电感电流与负载电流相匹配。
在DC-DC变换器应用中,切换模式功率变换器(SMPC)可以在可应用于操作空间的不同区域的不同功率模式下运行。例如,降压变换器可以在中负载到高负载时在连续导通模式(CCM)下运行并且在轻负载时在不连续导通模式(DCM)下运行,以使整个负载电流范围的效率最大化。
可以采用数字控制技术来传达CCM的优点,诸如,针对改善的瞬态响应的非线性控制,然而,由于包括脉冲频率模式(PFM)操作的多个因素,导致在DCM操作中可能期望恒定导通时间(COT)控制。
然而,设计多种不同的调制和控制策略在计算上是昂贵的,对于能量效率和成本原因期望相比在硅面积方面成本更高并且消耗更多电流。
Gildersleeve,M.、H.P.Forghani-Zadeh等(2002)在关于ASIC的IEEE亚太会议上的“A comprehensive power analysis and a highly efficient,mode-hopping DC-DCconverter”,示出了“跳模被证明是在负载的宽范围上实现高效率的一种很好的技术,但是也具有高的复杂度”。这是由于需要实现多种不同的控制电路以及在它们之间进行切换的装置。
因此,期望开发能够很容易地在控制和调制的多个模式下利用的DC-DC SMPC。特别地,期望控制和调制***适用于a)非线性前缘/后缘调制PWM控制以及b)也适用于COT控制;不需要大范围复制电路。
发明内容
通过根据独立装置权利要求的功率变换器以及根据独立方法权利要求的相关方法实现了针对上述问题的解决方案。从属权利要求涉及本发明的进一步方面。
本发明涉及功率变换器,所述功率变换器包括:切换的功率级,其被配置成从输入电压生成输出电压;以及控制器,其被配置成生成用于根据电压误差信号对切换的功率级进行切换的脉冲控制信号。电压误差信号是基准电压与输出电压之间的差值。
控制器包括数字脉宽调制控制路径和数字恒定导通时间控制路径,并且其中,控制器被配置成在轻负载模式与高负载模式之间切换,在轻负载模式下数字恒定导通时间被激活,在高负载模式下数字PWM控制路径被激活。相比于恒定导通时间控制路径(特别是被配置成将电压误差与阈值进行比较以便触发预设的恒定导通时间的脉冲的连续时间比较器)是消耗额外的空间和功率的单独的模拟电路的现有技术,根据本发明,恒定导通时间控制路径被数字地设计。
因此,功率变换器可以包括模数转换器(ADC),该模数转换器(ADC)被配置成通过采用以与数字PWM控制路径中生成的PWM信号的标称切换速率相比显著更高的速率过采样(oversampling)来对电压误差信号进行采样。ADC将数字化的电压误差控制信号提供给数字恒定导通时间控制路径以及数字PWM控制路径。这允许非常精细的时间精度。因此,通用电路可以被用于设计采用模式切换以在整个负载电流范围内提供高效率的控制器。
恒定导通时间控制路径可以被配置成当数字化电压误差超过阈值时触发脉冲控制信号的脉冲。特别是,恒定导通时间控制路径可以被设计为比较器,该比较器基于数字化的电压误差的符号来触发脉冲控制信号的脉冲。因此,恒定导通时间控制可以由此触发新的标称PWM周期或者预设的恒定导通时间的脉冲。
本发明的一方面涉及数字PWM控制路径。该数字PWM控制路径可以被配置成,当在PWM周期内基于占空比的阈值(例如,占空比差值(difference)或者占空比的导数(derivative))超过阈值时,触发数字PWM控制路径中生成的PWM信号的新的标称PWM周期的重启。因此,PWM脉冲相比于传统的PWM操作来说在时间上被前移。这是在高负载模式下的非线性PWM控制动作。因此,数字PWM控制路径对PWM脉冲的后缘和前缘进行调制。
本发明的一个方面涉及模式切换。由于在全部负载电流范围的模式切换,本发明提供了具有较低复杂度和成本但是具有高效率的灵活的控制器。
模式切换可以采用比较器来检测何时超过预定阈值。阈值可以是电流(例如,超过纹波电流值的一半的平均电感电流)或者电压(例如,超过预定最大值的控制误差);并且可以适当地采用迟滞(hysteresis)。其它模式切换方法对于本领域技术人员来说将是熟悉的并且也可以被很容易地采用。
另外,占空比可以被用作到效率估计块的输入,该效率估计块可以基于稳定状态占空比的最大值确定用于模式切换的适合点,已知稳定状态的占空比的最大值对应于最大损耗值。可以根据PID控制器的部件对用于估计的稳定状态占空比进行平均、过滤或确定。
此外,自适应滤波器可以被用作估计器来确定用于模式变化的最优点。模式变化不限于所描述的PWM和COT模式,而是也可包括在多相结构中增加相位或者减少相位。多相结构可以在单个负载点(POL)变换器和控制器中,或者可以包括利用公共输出电压并联操作的多个POL和控制器。
***可以包括公共总线,以便为控制器提供设置信息和/或提供指示包括模式控制器的状态的控制器或控制***中的各种信号的值或状态的遥测数据。
***可以包括诸如外部电阻器的部件以便配置控制器和/或可以在配置过程中测量施加到控制器IC管脚的电压。
本发明进一步涉及用于功率变换器的控制方法,所述功率变换器包括:切换的功率级,其被配置成根据脉冲控制信号从输入电压生成输出电压,所述脉冲控制信号根据电压误差信号控制切换的功率级的切换。电压误差信号是基准电压与输出电压之间的差值。该方法包括在轻负载模式与高负载模式之间切换,在轻负载模式下数字恒定导通时间被激活,在高负载模式下数字PWM控制路径被激活。
该方法还包括以与数字PWM控制路径中生成的PWM信号的标称切换速率相比显著更高的速率对电压误差进行过采样,并且被配置成向数字恒定导通控制路径和数字PWM控制路径提供数字化的电压误差控制信号。
附图说明
下面将参考附图,其中
图1示出了现有技术的切换降压变换器;
图2示出了连接到模拟前端的双模式PWM/COT控制器的框图;
图3示出了用于非线性PWM模式的负载电流、电压误差、占空比和PWM信号的图;以及
图4示出了用于恒定导通时间操作的控制误差、控制误差的符号和脉冲控制信号的图。
具体实施方式
图2示出了连接到模拟前端22的双模式PWM/COT控制器21的框图。双模式PWM/COT控制器包括数字恒定导通时间控制路径23、数字PWM控制路径24、PWM发生器25和模式切换器26。模拟前端包括用使控制误差(即,电压误差)数字化的ADC。PWM发生器25基于在数字恒定导通时间控制路径23或数字PWM控制路径24中生成的导通时间信息和脉冲位置信息生成PWM信号,以便对如图1所示的切换的功率级11进行切换。模式切换器26确定从轻负载模式切换到高负载模式的最佳点,在轻负载模式下数字化恒定导通时间控制路径23被激活,在高负载模式下数字化PWM控制路径24被激活。
数字控制路径24以恒定的标称频率在非线性PWM操作中运行,使得从脉宽调制模块(PWM)发出由数字PWM控制路径确定的占空比变化的脉冲。负载电流阶跃的发生使得控制器发出增加占空比值。一旦超过阈值,可以确定的是,数字PWM控制路径不会等到在对应于标称速率的预定时间发出下一PWM前缘,而是如图3所示,立刻发出新的前缘。相对于前缘以正常的方式对后缘进行调制。可以根据占空比值、其导数或它们的组合或者以其它合适的方式来确定阈值。重启屏蔽可以被应用于以防止在特定的时段内再次发生重启,使得重启不会发生的过于集中。数字PWM控制路径包括非线性增益模块28、滑动平均滤波器29以及补偿器210。
控制器将模式切换到COT操作,COT操作在功率级处于DCM时被适当地采用,但是也可以在CCM下采用。图4示出了当输出电压下降到基准电压以下并且因此控制误差变为正时发出脉冲。习惯上采用连续的时间比较器,以在该时刻以非常高的时间精度开启PWM脉冲。在数字PWM变换器中,该比较器使用额外的空间和功率。另选地,数字PWM可以在下一预定的PWM前缘时刻发出COT脉冲宽度,但是这导致了限制PWM输出脉冲的周期并且增加了输出电压纹波。
然而,图2中所示的控制器中的COT控制通过以非常精确的时间精度对根据图4的PWM脉冲的前缘进行调制来实现。由于模拟前端22中的ADC以显著高于标称切换速率的速率对输出电压进行过采样,所以准连续时间操作是可能的。
如图2所示的数字恒定导通时间控制路径23仅仅是根据控制误差的符号触发PWM的重启功能的比较器27。
因此,由于在负载电流范围内进行模式切换,所以本发明提供了一种具有更低复杂度和成本、高效率的灵活的控制器。
模式切换器26采用比较器来检测何时已经超过预定阈值。该阈值可以是电流(例如,超过纹波电流值的一半的平均电感电流)、或者电压(例如,超过预定最大值的控制误差);并且可以适当地采用迟滞。其它模式切换方法对于本领域技术人员来说将是所熟知的并且也可以很容易地被采用。

Claims (15)

1.一种功率变换器,所述功率变换器包括:
切换的功率级(11),其被配置成从输入电压生成输出电压;以及
控制器(16,21),其被配置成生成用于根据电压误差信号对所述切换的功率级进行切换的脉冲控制信号,所述电压误差信号是基准电压与所述输出电压之间的差值;
其中,所述控制器(16,21)包括数字脉宽调制控制路径(24)和数字恒定导通时间控制路径(23),并且其中,所述控制器(16,21)被配置成在轻负载模式与高负载模式之间切换,在所述轻负载模式下所述数字恒定导通时间控制路径被激活,在所述高负载模式下所述数字脉宽调制控制路径被激活。
2.根据权利要求1所述的功率变换器,所述功率变换器还包括模数变换器,该模数变换器被配置成通过以与在所述数字脉宽调制控制路径中生成的脉宽调制信号的标称切换速率相比显著更高的速率进行过采样来对所述电压误差信号进行采样,并且被配置成将数字化的电压误差控制信号提供给所述数字恒定导通时间控制路径和所述数字脉宽调制控制路径。
3.根据权利要求1或者2所述的功率变换器,其中,所述数字脉宽调制控制路径被配置成当基于脉宽调制周期内的占空比的阈值超过一阈值时触发脉宽调制信号的新的标称脉宽调制周期的重启。
4.根据权利要求3所述的功率变换器,其中,所述阈值基于所述占空比的差值或者导数。
5.根据权利要求3所述的功率变换器,其中,所述数字脉宽调制控制路径被配置成防止在特定的时段内再次发生新的标称脉宽调制的重启。
6.根据权利要求2至5中任一项所述的功率变换器,其中,所述恒定导通时间控制路径被配置成当所述数字化的电压误差超过阈值时触发脉冲控制信号的脉冲。
7.根据权利要求6所述的功率变换器,其中,所述恒定导通时间控制路径是比较器,并且被配置成将所述数字化的电压误差与阈值进行比较,并且被配置成根据所述数字化的控制误差的符号触发新的标称脉宽调制周期。
8.根据权利要求6所述的功率变换器,其中,所述恒定导通时间控制路径是比较器,并且被配置成将所述数字化的电压误差与阈值进行比较,并且被配置成根据所述数字化的控制误差的符号触发预设的恒定导通时间的脉冲。
9.根据权利要求1至8中任一项所述的功率变换器,其中,所述控制器包括比较器,以检测何时超过预定的阈值,以便在所述轻负载模式与所述高负载模式之间进行切换。
10.根据权利要求9所述的功率变换器,其中,所述预定的阈值是基于电流、超过纹波电流值的一半的平均电感电流、电压中的一个。
11.根据权利要求10所述的功率变换器,其中,所述预定的阈值采用迟滞。
12.根据权利要求1至8中任一项所述的功率变换器,其中,所述控制器包括自适应滤波器,所述自适应滤波器被配置成确定用于在所述轻负载模式与所述高负载模式之间进行切换的最佳点。
13.根据权利要求1至11中任一项所述的功率变换器,其中,所述控制器包括效率估计器,所述效率估计器被配置成基于稳定状态占空比的最大值来确定用于在所述轻负载模式与所述高负载模式之间进行切换的最佳点。
14.根据权利要求1至13中任一项所述的功率变换器,其中,所述控制器被进一步配置成通过增加或者减少相位来在多相结构中的多个相位之间进行切换。
15.一种用于功率变换器的控制方法,所述功率变换器包括:切换的功率级,其被配置成根据脉冲控制信号从输入电压产生输出电压,所述脉冲控制信号根据电压误差信号控制所述切换的功率级的切换,所述电压误差信号是基准电压与所述输出电压之间的差值,所述方法包括:
在轻负载模式与高负载模式之间进行切换,在所述轻负载模式下数字恒定导通时间控制路径被激活,在所述高负载模式下数字脉宽调制控制路径被激活。
CN201610216267.3A 2015-03-04 2016-03-03 具有双模式pwm/cot控制的切换功率变换器 Pending CN105939109A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15157562.8A EP3065281A1 (en) 2015-03-04 2015-03-04 Switched power converter with dual mode PWM / COT control
EP15157562.8 2015-03-04

Publications (1)

Publication Number Publication Date
CN105939109A true CN105939109A (zh) 2016-09-14

Family

ID=52596845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610216267.3A Pending CN105939109A (zh) 2015-03-04 2016-03-03 具有双模式pwm/cot控制的切换功率变换器

Country Status (5)

Country Link
US (1) US20160261183A1 (zh)
EP (1) EP3065281A1 (zh)
KR (1) KR20160108205A (zh)
CN (1) CN105939109A (zh)
TW (1) TW201640794A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391126A (zh) * 2017-08-09 2019-02-26 恩智浦美国有限公司 用于功率转换器的切换控制器电路
CN111427407A (zh) * 2020-03-30 2020-07-17 西安交通大学 带有模拟辅助环路的超快响应数字ldo结构及其控制方法
CN113098267A (zh) * 2021-05-13 2021-07-09 成都芯源***有限公司 一种开关变换器、开关集成电路及其控制电路

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI517543B (zh) * 2012-11-14 2016-01-11 中心微電子德累斯頓股份公司 具功率轉換器之晶片上系統
TWI523385B (zh) * 2013-05-24 2016-02-21 中心微電子德累斯頓股份公司 多模式控制功率轉換器
KR20160012189A (ko) * 2013-05-24 2016-02-02 첸트룸 미크로엘렉트로닉 드레스덴 악치엔게젤샤프트 경부하로부터 고부하로의 트랜지션 후의 pwm 교정
US11251703B2 (en) * 2019-01-14 2022-02-15 Texas Instruments Incorporated Methods and apparatus to facilitate multiple modes of converter operation
US11705834B2 (en) * 2019-12-27 2023-07-18 Texas Instruments Incorporated Sensorless angle estimation for trapezoidal control
US11139738B2 (en) * 2020-01-06 2021-10-05 Shenzhen GOODIX Technology Co., Ltd. Current load based mode control for converter circuit
CN113517813B (zh) * 2021-05-14 2023-09-29 成都华微电子科技股份有限公司 固定频率双模同步降压控制器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200810359A (en) * 2006-08-04 2008-02-16 Richtek Technology Corp Control circuit and method for a constant on-time PWM switching converter
TWI396957B (zh) * 2008-05-30 2013-05-21 Asustek Comp Inc 變頻多相位電壓調節器及其控制方法
US9118307B2 (en) * 2010-11-09 2015-08-25 Zentrum Mikroelektronik Dresden Ag Method for generating PWM signals and a pulse width modulation power converter
TWI523385B (zh) * 2013-05-24 2016-02-21 中心微電子德累斯頓股份公司 多模式控制功率轉換器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391126A (zh) * 2017-08-09 2019-02-26 恩智浦美国有限公司 用于功率转换器的切换控制器电路
CN109391126B (zh) * 2017-08-09 2023-11-03 恩智浦美国有限公司 用于功率转换器的切换控制器电路
CN111427407A (zh) * 2020-03-30 2020-07-17 西安交通大学 带有模拟辅助环路的超快响应数字ldo结构及其控制方法
CN111427407B (zh) * 2020-03-30 2021-09-07 西安交通大学 带有模拟辅助环路的超快响应数字ldo结构及其控制方法
CN113098267A (zh) * 2021-05-13 2021-07-09 成都芯源***有限公司 一种开关变换器、开关集成电路及其控制电路

Also Published As

Publication number Publication date
TW201640794A (zh) 2016-11-16
EP3065281A1 (en) 2016-09-07
US20160261183A1 (en) 2016-09-08
KR20160108205A (ko) 2016-09-19

Similar Documents

Publication Publication Date Title
CN105939109A (zh) 具有双模式pwm/cot控制的切换功率变换器
CN103401400B (zh) 开关电源转换器***及其控制电路和控制方法
TWI473394B (zh) 切換式電源供應器及其驅動電路與控制方法
CN105075090B (zh) 具有降压-升压过渡切换控制的降压-升压转换器
US8476887B2 (en) DC to DC converter with pseudo constant switching frequency
KR101735440B1 (ko) Smps에서 pwm과 pfm 사이를 천이하는 시스템, 방법 및 장치
EP2779398B1 (en) A control method of high efficient buck-boost switching regulator
US20100141222A1 (en) Load transient sensing circuit for a power converter
US20140159689A1 (en) Constant time control method, control circuit and switch regulator using the same
US9882475B2 (en) PWM calculation after light load to high load transition
WO2017015670A1 (en) Hysteretic control for transformer based power converters
US8148966B2 (en) Power supply control circuits including enhanced ramp pulse modulation
CN110892629A (zh) 开关变换器及其控制方法和控制电路
US9287773B2 (en) Switch power supply controller and control method
CN104079167A (zh) 控制电路、开关电源和控制方法
US9698693B2 (en) Control circuit, control method and switch-type converter
CN109004812A (zh) 开关变换器及其控制电路和控制方法
CN106569432B (zh) 用于电源转换器的控制模式之间的转换的控制电路和方法
JP2014003812A (ja) 電源装置、並びに、これを用いた車載機器及び車両
JP5721403B2 (ja) 昇降圧回路及び昇降圧回路制御方法
CN108429440B (zh) 一种小纹波跳周期控制方法及控制电路
CN105490534A (zh) 一种电流模控制dcdc升压变化器及其脉冲频率调制方法
TWI482403B (zh) 可運作於脈波寬度調變模式或脈波省略模式下的電壓轉換器及其切換方法
KR102036753B1 (ko) 전류 리플을 최소화하기 위한 ac-dc 컨버터 장치
KR101857947B1 (ko) 인터리브드 방식의 dc-dc 컨버터 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160914

WD01 Invention patent application deemed withdrawn after publication