CN105931458B - 一种路面交通流量检测设备可信度评估的方法 - Google Patents

一种路面交通流量检测设备可信度评估的方法 Download PDF

Info

Publication number
CN105931458B
CN105931458B CN201610296639.8A CN201610296639A CN105931458B CN 105931458 B CN105931458 B CN 105931458B CN 201610296639 A CN201610296639 A CN 201610296639A CN 105931458 B CN105931458 B CN 105931458B
Authority
CN
China
Prior art keywords
traffic flow
data
magnitude
detection device
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610296639.8A
Other languages
English (en)
Other versions
CN105931458A (zh
Inventor
张登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU ZCITS TECHNOLOGY Co Ltd
Original Assignee
HANGZHOU ZCITS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU ZCITS TECHNOLOGY Co Ltd filed Critical HANGZHOU ZCITS TECHNOLOGY Co Ltd
Priority to CN201610296639.8A priority Critical patent/CN105931458B/zh
Publication of CN105931458A publication Critical patent/CN105931458A/zh
Application granted granted Critical
Publication of CN105931458B publication Critical patent/CN105931458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/065Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一套各类采集设备的可信度评估体系,对于各类现有的各类交通流量采集设备(线圈、微波、地磁、视频等)建立一套相互校验的机制,通过在原采集点位同路段上增加视频流量采集的设备,来做采集数据的验证,以及长期的数据比对,从而相互验证设备是否正常工作。最终得到一个适用于城市流量检测***采集流量数据的汇总公式,得到相对准确、稳定的道路交通实时流量数据。

Description

一种路面交通流量检测设备可信度评估的方法
技术领域
本发明涉及智能交通控制领域,具体涉及一种路面交通流量检测设备可信度评估的方法。
背景技术
交通流量是交通信息中一个重要的参数,交通流量采集及预测是控制车流出入,是交通控制的基本依据,是确保道路安全畅通的重要手段,对城市交通控制与管理有着重要的作用和意义。
现有的交通流量的获取是靠各种交通流量检测设备来完成的。现有的交通流量检测主要有微波检测、感应线圈检测、地磁检测和视频检测等多种方法。微波检测的造价较高,感应线圈检测或地磁检测因施工维护,需要中断交通、施工量大、对路面有损坏。目前,在较发达的城市,约建设交通流量采集点位1000多点位,其中约400多路点位为微波检测器,约600多路的地感线圈以及地磁检测器。
微波检测,是利用数字雷达波检测技术实时检测交通流量、平均车速、车型及车道占用率等交通数据。感应线圈检测或地磁检测,是在路面以下埋设感应线圈或地磁感应装置,通过检测磁场的变化判断是否有车通过;视频检测,是通过视频对目标路段进行实时观测。
现有的专利号为ZL201010289784.6的中国发明专利,公开了一种“可选择使用高清视频、微波检测获得交通流量的检测***”,结合上述多种检测方式,在正常状态下,只开启所述高清视频采集模块,当所述交通流量数据异常时,自动开启微波数据采集模块,解决了使用单一检测器时存在不足的问题, 在能见度很低的恶劣环境下也可获得准确的车流量即时数据信息。
然而,对于现有的检测设备检测得到的数据,其准确性和有效性并没有保障。因为维护检测成本较大、频率较低,而不同检测设备本身存在的误差,导致检测得到的数据也并不完全可信。举例来说,微波检测器安装调试完成之后,每年只有1次人工排查机会来检查安装位置是否移动、是否有遮挡、采集数据是否准确等,由于排查人工工作量非常大,又是集中进行,而在非排查时期,设备是否能够准确采集数据(因为路面震动导致安装位置变动,树木、其他设施遮挡等问题存在,会影响采集准确性)设备管理部门是无法得知的。另一方面,感应线圈检测的地感线圈由于施工维护工作量大,目前正常在线的设备仅占总数的20%-30%。
各类交通检测设备在不同的天气情况、车流情况、安装位置情况等不同条件下,客观存在不可避免的误差。那么在不同的环境因素下,何种采集手段的可信度更高?目前没有出现进行此类评估的方法,致使业务单位盲目的迷信某种采集手段所采集数据的准确性,或者仅仅凭着经验判断数据的可靠性,从而可能影响城市交通控制与管理的效率。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述问题,提供了一种通过建立一套相互校验的机制,对采集的数据进行相互校验和修正,从而得到相对准确、稳定的道路交通实时流量数据的路面交通流量检测设备可信度评估的方法。
为解决上述问题,本发明的一种技术方案是:
一种路面交通流量检测设备可信度评估的方法,包括如下步骤:
S1,交通流量数据采集:将同一路段的各个交通流量检测设备分别与视频检测器配对,并按监测点的不同进行分组;检测在特定条件X下,通过各个交通流量检测设备采集到的原始数据以及通过视频检测器进行人工计数的真值;采用抽样率η对原始数据和真值进行抽样分析,得到抽样数据;所述的特定条件X包括早高峰,或晚高峰,或晴天,或雨天条件;
S2,置信度计算;通过所述的抽样数据,计算各个交通流量检测设备在所述的特定条件X下的均方误差,通过均方误差得到各个交通流量检测设备的置信度;
S3,异常数据检测;对于同属一组的各个交通流量检测设备在某一时刻下检测到的交通流量数据、人工计数的真值、以及该组历史流量数据进行中值排序,并进行异常数据判断,如数据异常,则使用排序所得的中值替换人工计数的真值;
S4,数据融合;通过数据融合将各个交通流量检测设备检测到的交通流量数据与人工计数的真值进行综合处理。
作为进一步地优选,所述的各个交通流量检测设备包括地感线圈检测器 S、微波检测器W、地磁检测器G以及视频检测器V。
作为进一步地优选,所述的步骤S1交通流量数据采集,包括如下步骤:
S101,各个交通流量检测设备包括的地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V的数量集合分别表示为{Sa}、{Wa}、{Ga}和 {Va},每个交通流量检测设备都和视频检测器配对统计,a表示对应的第几组;
S102,设置交通流量采集设备采集数据的时间段的集合为tn,地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V在tn内统计的流量用fS(tn)、fW(tn)、fG(tn)和fV(tn)表示,人工计数统计得到的交通流量用f(tn)表示;
S103,所述的地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V的集合{Sa}、{Wa}、{Ga}和{Va}中的第a组在tn采集时间段内采集到的流量分别表示为fS(tn)=fS(n,a)、fW(tn)=fW(n,a)、fG(tn)=fG(n,a)和fV(tn)=fV(n,a);对应的第a组视频检测器V在tn采集时间段内,由人工计数得到的采集流量表示为f(tn)=f(n,a);
S104,选择特定条件X进行流量采集,检测在特定条件X下,所述的地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V的集合{Sa}、 {Wa}、{Ga}和{Va}通过各个交通流量检测设备采集到的原始数据 以及通过视频检测器进行人工计数的真值采用抽样率η对原始数据和真值进行抽样分析,得到各个交通流量检测设备的抽样数据
作为进一步地优选,所述的步骤S2置信度计算中,设对于N个时间段内在特定条件X下分别抽样的数据有(η*N*a)个,通过下列公式分别计算各个交通流量检测设备的均方误差,
其中,i为S,或W,或G,或V;分别用以表示地感线圈检测器的均方误差微波检测器的均方误差地磁检测器的均方误差以及视频检测器的均方误差
由各个交通流量检测设备计算的结果得到[0,1]之间的均方误差表示为:
其中,i为S,或W,或G,或V;分别用以表示地感线圈检测器的[0,1] 均方误差微波检测器的[0,1]均方误差地磁检测器的[0,1]均方误差以及视频检测器的[0,1]均方误差
再计算各个交通流量检测设备的置信度,
其中,i为S,或W,或G,或V;分别用以表示地感线圈检测器的置信度微波检测器的置信度地磁检测器的置信度以及视频检测器的置信度
作为进一步地优选,所述的步骤S3异常数据检测中,对于第a组交通流量检测设备i和人工计数统计在某一时刻检测到的交通流量分别为fi(n,a)和 f(n,a),该时刻检测时段的历史流量值是fH(n,a);对fi(n,a),f(n,a)和fH(n,a)进行中值排序,得到中值流量数fM(n,a);设θ为流量阈值,通常按照该路段的历史最低流量得出;
若|fM(n,a)-fi(n,a)|<θ,则数据无异常;
若|fM(n,a)-fi(n,a)|≥θ,则数据有异常,则用中值fM(n,a)替换视频人工计数统计在该时刻检测到的交通流量f(n,a),即第a组交通流量检测设备i和视频人工计数统计在该时刻检测到的交通流量分别为fi(n,a)和fM(n,a),该时段的历史交通流量为fH(n,a)。
作为进一步地优选,在步骤S4数据融合中,采用指数函数来融合数据,
设函数
其中,表示在特定条件X下采集的流量。用梯度下降法求得函数最小值,计算方法如下:
S401,对函数求它的各个参数(x,y,m,k)的偏导数;
S402,利用更新法则来更新或者迭代各个参数,其中,λ为步长;由此获得一个新的参数来进行下一次梯度下降;
S403,当梯度下降到各个参数是收敛状态或者迭代到一定次数时,函数 f(φ)取最小值时为最优解,此时求得x,y,m,k的值。在一定准则下加以自动分析、研究以完成所需的决策的数据融合处理能导出更多有效信息,通过数据融合将多个传感器检测到的交通流量与人工计数得到真实数据进行科学、合理的综合处理,可以提高状态监测和故障诊断智能化程度。
作为进一步地优选,所述的η取10%。
相比较于现有技术,本发明建立一套各类采集设备的可信度评估体系,对于各类现有的各类交通流量采集设备建立一套相互校验的机制,通过在原采集点位同路段上增加视频流量采集的设备,来做采集数据的验证,以及长期的数据比对,从而相互验证设备是否正常工作,最终得到一个适用于城市流量检测***采集流量数据的汇总公式,得到相对准确、稳定的道路交通实时流量数据。
附图说明
图1是本发明的流程框图。
图2是本发明各个交通流量检测设备计算的结果得到均方误差条形图。
图3是本发明各个交通流量检测设备的置信度条形图。
具体实施方式
下面结合附图和实施例进一步详细说明本发明,但本发明的保护范围并不限于此。
参照图1-3,本发明一种路面交通流量检测设备可信度评估的方法,包括如下步骤:
S1,交通流量数据采集:将同一路段的各个交通流量检测设备分别与视频检测器配对,并按监测点的不同进行分组;检测在特定条件X下,通过各个交通流量检测设备采集到的原始数据以及通过视频检测器进行人工计数的真值;采用抽样率η对原始数据和真值进行抽样分析,得到抽样数据;
S2,置信度计算;通过所述的抽样数据,计算各个交通流量检测设备在所述的特定条件X下的均方误差,通过均方误差得到各个交通流量检测设备的置信度;
S3,异常数据检测;对于同属一组的各个交通流量检测设备在某一时刻下检测到的交通流量数据、人工计数的真值、以及该组历史流量数据进行中值排序,并进行异常数据判断,如数据异常,则使用排序所得的中值替换人工计数的真值;
S4,数据融合;通过数据融合将各个交通流量检测设备检测到的交通流量数据与人工计数的真值进行综合处理。
本申请文献中的均方误差是衡量“平均误差”的一种较方便的方法,可以评价数据的变化程度。本申请文献中所述的梯度下降法是一个最优化算法,梯度下降法的计算过程就是沿梯度下降的方向求解极小值;而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值收敛到一定数值。
以下将以几种交通流量检测设备包括地感线圈检测器、微波检测器、地磁检测器和视频检测器为例,阐述本发明的实施方式。
实施例一:
S1,交通流量数据采集交通流量数据采集:
S101.P城市的交通流量采集设备有地感线圈检测器S,微波检测器W,地磁检测器G和视频检测器V,这些交通流量采集设备的数量集合分别是{Sa}、 {Wa}、{Ga}和{Va}。每个检测器都和视频检测器配对统计,a表示对应的第几组,其中依靠视频检测器V的人工计数作为各个交通流量检测器校对的真值。
S102.人工设置交通流量采集设备的采集的时间为tn(采集时间可以是5 分钟,10分钟,30分钟,1小时,n为指定时间段内流量采集时段的数量),以采集时间1小时为例,则在一天24小时内有24个的采集时段,即tn={t1, t2,t3…t24},不同交通流量采集设备在tn内统计的流量用fS(tn)、fW(tn)、fG(tn)和fV(tn)表示,由视频检测器人工计数统计得到的交通流量用f(tn)表示。
S103.P城市地感线圈检测器{Sa}在tn={t1,t2,t3…t24}的采集时间段内采集到的流量是fS(tn)=fS(n,a);P城市微波检测器{Wa}在tn={t1,t2,t3…t24}的采集时间段内采集到的流量是fW(tn)=fW(n,a);P城市地磁检测器{Ga}在tn={t1,t2,t3…t24}的采集时间段内采集到的流量是fG(tn)=fG(n,a);P城市视频检测器{Va}在tn={t1,t2,t3…t24}的采集时间段内采集到的流量是fV(tn)=fV(n,a);在P城市对应这些检测器位置处的视频检测器{Va}在tn={t1,t2,t3…t24}的采集时间段内由人工计数得到的采集流量是f(tn)=f(n,a)。
S104.选择特定条件X(早高峰,晚高峰,晴天,雨天等)进行流量采集,这里以早高峰T(7点-9点)和晚高峰T(17点-19点)为特定条件进行采集。P城市地感线圈检测器{Sa}在早高峰采集到的流量的原始数据为和晚高峰采集到的流量的原始数据为 在P城市对应地感线圈检测器位置处的视频检测器{Va}在早高峰由人工计数得到的采集流量的原始数据为 和晚高峰由人工计数得到的采集流量的原始数据为通常采用抽样率η(η一般取 10%)对原始数据进行抽样分析,得到地感线圈抽样数据 视频检测器人工统计的抽样数据
P城市微波检测器{Wa}在早高峰采集到的流量的原始数据为 和晚高峰采集到的流量的原始数据为 通常采用抽样率η(η一般取10%)对原始数据进行抽样分析,得到微波抽样数据
P城市地磁检测器{Ga}在早高峰采集到的流量的原始数据为 和晚高峰采集到的流量的原始数据为 通常采用抽样率η(η一般取10%)对原始数据进行抽样分析,得到地磁抽样数据
P城市视频检测器{Va}在早高峰采集到的流量的原始数据为 和晚高峰采集到的流量的原始数据为 通常采用抽样率η(η一般取10%)对原始数据进行抽样分析,得到视频抽样数据
S2置信度计算
S201.选择特定条件X(早高峰,晚高峰,晴天,雨天等)进行流量采集,这里以早高峰T(7点-9点)和晚高峰T(17点-19点)为特定条件进行采集。由S02的步骤4得出,对于早高峰和晚高峰分别抽样的数据有(η*3a) 个。由于视频检测器采用人工方式计数,这样的采集方式准确率高,所以经计算得出:
a.地感线圈在早高峰时期的均方误差是地感线圈在晚高峰时期的均方误差是
b.微波在早高峰时期的均方误差是微波在晚高峰时期的均方误差是
c.地磁在早高峰时期的均方误差是地磁在晚高峰时期的均方误差是
d.视频在早高峰时期的均方误差是地磁在晚高峰时期的均方误差是
由各个交通流量检测设备计算的结果得到[0,1]之间的均方误差表示为:
a.地感线圈在早高峰时期的[0,1]均方误差是:
地感线圈在早高峰时期的[0,1]均方误差是:
b.微波在早高峰时期的[0,1]均方误差是:
微波在晚高峰时期的[0,1]均方误差是:
c.地磁在早高峰时期的[0,1]均方误差是:
地磁在晚高峰时期的[0,1]均方误差是:
d.视频在早高峰时期的[0,1]均方误差是:
视频在晚高峰时期的[0,1]均方误差是:
由各个交通流量检测设备计算的结果得到均方误差图为:
S202.几种交通流量检测设备的置信度c计算方式为c=1-MSE,即地感线圈流量监测设备在指定条件早高峰T(7点-9点)和晚高峰T(17点-19 点)下的置信度分别为微波流量监测设备在指定条件早高峰T(7点-9点)和晚高峰T(17点-19点)下的置信度分别为地磁流量监测设备在指定条件早高峰T(7点-9点)和晚高峰T(17点-19点)下的置信度分别为视频流量监测设备在指定条件早高峰T(7点-9点)和晚高峰T(17点-19点)下的置信度分别为几种交通流量检测设备的置信度如图所示:
S3异常数据检测
S301.对于一组交通流量检测设备,第a组地感线圈检测器和视频人工计数统计在tn时刻检测到的交通流量分别为fS(n,a)和f(n,a),该tn检测时段的历史流量值是fH(n,a)。对fS(n,a),f(n,a)和fH(n,a)进行中值排序,得到中值流量数fM(n,a)。若|fM(n,a)-fS(n,a)|<θ(θ为流量阈值,通常按照该路段的历史最低流量得出),则数据无异常;若|fM(n,a)-fS(n,a)|≥θ,则数据有异常,则用中值fM(n,a)替换视频人工计数统计在tn时刻检测到的交通流量 f(n,a),即第a组地感线圈检测器和视频人工计数统计在tn时刻检测到的交通流量分别为fS(n,a)和fM(n,a),该时段的历史交通流量为fH(n,a)。
作为一种实施方式,比如第3组地感线圈检测器和视频人工计数统计在t7时刻检测到的交通流量分别为fS(7,3)和f(7,3),该t7检测时段的历史流量值是fH(7,3)。对 fS(7,3) ,f(7,3)和fH(7,3)进行中值排序,得到中值流量数fM(7,3)。若|fM(7,3)-fS(7,3)|<θ(θ为流量阈值,通常按照该路段的历史最低流量得出),则数据无异常;若|fM(7,3)-fS(7,3)|≥θ,则数据有异常,则用中值fM(7,3) 替换视频人工计数统计在t7时刻检测到的交通流量f(7,3),即第3组地感线圈检测器和视频人工计数统计在t7时刻检测到的交通流量分别为fS(7,3)和fM(7,3),该时段的历史交通流量为fH(7,3)。
S302.对于第a组微波检测器和视频人工计数统计在tn时刻检测到的交通流量分别为fW(n,a)和f(n,a),该tn检测时段的历史流量值是fH(n,a)。对fW(n,a),f(n,a)和fH(n,a)进行中值排序,得到中值流量数fM(n,a)。若 |fM(n,a)-fW(n,a)|<θ(θ为流量阈值,通常按照该路段的历史最低流量得出),则数据无异常;若|fM(n,a)-fW(n,a)|≥θ,则数据有异常,则用中值fM(n,a)替换视频人工计数统计在tn时刻检测到的交通流量f(n,a),即第a组微波检测器和视频人工计数统计在tn时刻检测到的交通流量分别为fW(n,a)和fM(n,a),该时段的历史交通流量为fH(n,a)。
S303.对于第a组地磁检测器和视频人工计数统计在tn时刻检测到的交通流量分别为fG(n,a)和f(n,a),该tn检测时段的历史流量值是fH(n,a)。对fG(n,a),f(n,a)和fH(n,a)进行中值排序,得到中值流量数fM(n,a)。若 |fM(n,a)-fG(n,a)|<θ(θ为流量阈值,通常按照该路段的历史最低流量得出),则数据无异常;若|fM(n,a)-fG(n,a)|≥θ,则数据有异常,则用中值fM(n,a)替换视频人工计数统计在tn时刻检测到的交通流量f(n,a),即第a组地磁检测器和视频人工计数统计在tn时刻检测到的交通流量分别为fG(n,a)和fM(n,a),该时段的历史交通流量为fH(n,a)。
S304.对于第a组视频检测器和视频人工计数统计在tn时刻检测到的交通流量分别为fV(n,a)和f(n,a),该tn检测时段的历史流量值是fH(n,a)。对fV(n,a),f(n,a)和fH(n,a)进行中值排序,得到中值流量数fM(n,a)。若 |fM(n,a)-fV(n,a)|<θ(θ为流量阈值,通常按照该路段的历史最低流量得出),则数据无异常;若|fM(n,a)-fV(n,a)|≥θ,则数据有异常,则用中值fM(n,a)替换视频人工计数统计在tn时刻检测到的交通流量f(n,a),即第a组视频检测器和视频人工计数统计在tn时刻检测到的交通流量分别为fV(n,a)和fM(n,a),该时段的历史交通流量为fH(n,a)。
S4数据融合
对于早高峰下的交通流量采集数据可以用指数函数来融合数据,设有函数
用梯度下降法求得函数最小值,方法如下:
S401.对函数求它的各个参数(x,y,m,k)的偏导数;
S402.利用更新法则来更新或者迭代各个参数,获得一个新的参数来进行下一次梯度下降;
S403.当梯度下降到各个参数是收敛状态或者迭代到一定次数时,函数取最小值时为最优解,此时求得x,y,m,k的值。
上述说明中,凡未加特别说明的,均采用现有技术中的技术手段。

Claims (7)

1.一种路面交通流量检测设备可信度评估的方法,其特征在于,包括如下步骤:
S1,交通流量数据采集:将同一路段的各个交通流量检测设备分别与视频检测器配对,并按监测点的不同进行分组;检测在特定条件X下,通过各个交通流量检测设备采集到的原始数据以及通过视频检测器进行人工计数的真值;采用抽样率η对原始数据和真值进行抽样分析,得到抽样数据;所述的特定条件X包括早高峰,或晚高峰,或晴天,或雨天条件;
S2,置信度计算;通过所述的抽样数据,计算各个交通流量检测设备在所述的特定条件X下的均方误差,通过均方误差得到各个交通流量检测设备的置信度;
S3,异常数据检测;对于同属一组的各个交通流量检测设备在某一时刻下检测到的交通流量数据、人工计数的真值、以及该组历史流量数据进行中值排序,并进行异常数据判断,如数据异常,即中值流量数与设备检测流量数之差的绝对值大于或等于流量阈值,则使用排序所得的中值替换人工计数的真值;
S4,数据融合;通过数据融合将各个交通流量检测设备检测到的交通流量数据与人工计数的真值进行处理。
2.根据权利要求1所述的一种路面交通流量检测设备可信度评估的方法,其特征在于,所述的各个交通流量检测设备包括地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V。
3.根据权利要求2所述的一种路面交通流量检测设备可信度评估的方法,其特征在于,所述的步骤S1交通流量数据采集,包括如下步骤:
S101,各个交通流量检测设备包括的地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V的数量集合分别表示为{Sa}、{Wa}、{Ga}和{Va},每个交通流量检测设备都和视频检测器配对统计,a表示对应的第几组;
S102,设置交通流量采集设备采集数据的时间段的集合为tn,地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V在tn内统计的流量用fS(tn)、fW(tn)、fG(tn)和fV(tn)表示,人工计数统计得到的交通流量用f(tn)表示;
S103,所述的地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V的集合{Sa}、{Wa}、{Ga}和{Va}中的第a组在tn采集时间段内采集到的流量分别表示为fS(tn)=fS(n,a)、fW(tn)=fW(n,a)、fG(tn)=fG(n,a)和fV(tn)=fV(n,a);对应的第a组视频检测器V在tn采集时间段内,由人工计数得到的采集流量表示为f(tn)=f(n,a);
S104,检测在特定条件X下,所述的地感线圈检测器S、微波检测器W、地磁检测器G以及视频检测器V的集合{Sa}、{Wa}、{Ga}和{Va}通过各个交通流量检测设备采集到的原始数据以及通过视频检测器进行人工计数的真值采用抽样率η对原始数据和真值进行抽样分析,得到各个交通流量检测设备的抽样数据
4.根据权利要求3所述的一种路面交通流量检测设备可信度评估的方法,其特征在于,所述的步骤S2置信度计算中,设对于N个时间段内在特定条件X下分别抽样的数据有(η*N*a)个,通过下列公式分别计算各个交通流量检测设备的均方误差,
其中,i为S,或W,或G,或V;分别用以表示地感线圈检测器的均方误差微波检测器的均方误差地磁检测器的均方误差以及视频检测器的均方误差
由各个交通流量检测设备计算的结果得到[0,1]之间的均方误差表示为:
其中,i为S,或W,或G,或V;分别用以表示地感线圈检测器的[0,1]均方误差微波检测器的[0,1]均方误差地磁检测器的[0,1]均方误差以及视频检测器的[0,1]均方误差
再计算各个交通流量检测设备的置信度,
其中,i为S,或W,或G,或V;分别用以表示地感线圈检测器的置信度微波检测器的置信度地磁检测器的置信度以及视频检测器的置信度
5.根据权利要求4所述的一种路面交通流量检测设备可信度评估的方法,其特征在于,所述的步骤S3异常数据检测中,对于第a组交通流量检测设备i和人工计数统计在某一时刻检测到的交通流量分别为fi(n,a)和f(n,a),该时刻检测时段的历史流量值是fH(n,a);对fi(n,a),f(n,a)和fH(n,a)进行中值排序,得到中值流量数fM(n,a);设θ为流量阈值,按照该路段的历史最低流量得出;
若|fM(n,a)-fi(n,a)|<θ,则数据无异常;
若|fM(n,a)-fi(n,a)|≥θ,则数据有异常,则用中值fM(n,a)替换视频人工计数统计在该时刻检测到的交通流量f(n,a),即第a组交通流量检测设备i和视频人工计数统计在该时刻检测到的交通流量分别为fi(n,a)和fM(n,a),该时刻检测时段的历史交通流量为fH(n,a)。
6.根据权利要求5所述的一种路面交通流量检测设备可信度评估的方法,其特征在于,在步骤S4数据融合中,采用指数函数来融合数据,设函数
其中,表示在特定条件X下采集的流量,用梯度下降法求得函数最小值,计算方法如下:
a.对函数求它的各个参数(x,y,m,k)的偏导数;
b.利用更新法则来更新或者迭代各个参数,其中,λ为步长;由此获得一个新的参数来进行下一次梯度下降;
c.当梯度下降到各个参数是收敛状态或者迭代到一定次数时,函数f(φ)取最小值时为最优解,此时求得x,y,m,k的值。
7.根据权利要求3或4所述的一种路面交通流量检测设备可信度评估的方法,其特征在于,所述的η取10%。
CN201610296639.8A 2016-05-05 2016-05-05 一种路面交通流量检测设备可信度评估的方法 Active CN105931458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610296639.8A CN105931458B (zh) 2016-05-05 2016-05-05 一种路面交通流量检测设备可信度评估的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610296639.8A CN105931458B (zh) 2016-05-05 2016-05-05 一种路面交通流量检测设备可信度评估的方法

Publications (2)

Publication Number Publication Date
CN105931458A CN105931458A (zh) 2016-09-07
CN105931458B true CN105931458B (zh) 2019-02-12

Family

ID=56834976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610296639.8A Active CN105931458B (zh) 2016-05-05 2016-05-05 一种路面交通流量检测设备可信度评估的方法

Country Status (1)

Country Link
CN (1) CN105931458B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909822B (zh) * 2017-11-29 2019-11-22 银江股份有限公司 基于流量和饱和度分析的scats线圈检测器自动诊断方法
CN108335493A (zh) * 2018-03-26 2018-07-27 江苏省交通技师学院 一种交通流量监测***
CN110570649B (zh) * 2018-06-05 2020-08-14 阿里巴巴(中国)有限公司 机动车流量检测方法、设备工作状态检测方法及相应装置
CN109191913B (zh) * 2018-11-01 2020-07-14 深圳市戴升智能科技有限公司 行人检测方法、装置、计算机设备及存储介质
CN109545347A (zh) * 2018-11-13 2019-03-29 广州金域医学检验中心有限公司 检测***的稳态能力评估方法及装置
CN109902206A (zh) * 2018-12-21 2019-06-18 杭州志远科技有限公司 一种公路养护数据可视化管理***
CN110031917B (zh) * 2019-04-03 2021-06-18 殷健 一种雨情监测方法
CN110728841B (zh) * 2019-10-23 2022-05-06 江苏广宇协同科技发展研究院有限公司 一种基于车路协同的交通流量采集方法、装置及***
CN112667616B (zh) * 2020-12-31 2022-07-22 杭州趣链科技有限公司 基于区块链的交通数据评价方法、***及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800197A (zh) * 2012-02-27 2012-11-28 东南大学 一种城市道路路段动态交通流基础数据的预处理方法
CN103093625A (zh) * 2013-01-09 2013-05-08 杭州师范大学 一种基于可信度验证的城市道路交通状态实时估计方法
CN104408309A (zh) * 2014-11-25 2015-03-11 青岛海信网络科技股份有限公司 一种交通检测设备的评估方法及装置
CN105023436A (zh) * 2015-08-20 2015-11-04 南京安通杰科技实业有限公司 交通信息评估方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512980B2 (en) * 2001-11-30 2009-03-31 Lancope, Inc. Packet sampling flow-based detection of network intrusions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800197A (zh) * 2012-02-27 2012-11-28 东南大学 一种城市道路路段动态交通流基础数据的预处理方法
CN103093625A (zh) * 2013-01-09 2013-05-08 杭州师范大学 一种基于可信度验证的城市道路交通状态实时估计方法
CN104408309A (zh) * 2014-11-25 2015-03-11 青岛海信网络科技股份有限公司 一种交通检测设备的评估方法及装置
CN105023436A (zh) * 2015-08-20 2015-11-04 南京安通杰科技实业有限公司 交通信息评估方法

Also Published As

Publication number Publication date
CN105931458A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
CN105931458B (zh) 一种路面交通流量检测设备可信度评估的方法
CN107515621B (zh) 基于输电线路电磁感知的巡线无人机飞行轨迹控制方法
CN109544932A (zh) 一种基于出租车gps数据与卡口数据融合的城市路网流量估计方法
CN106960580B (zh) 一种基于地磁传感器的车位检测方法
CN105206057B (zh) 基于浮动车居民出行热点区域的检测方法及***
CN102881171B (zh) 车辆检测方法及其车辆检测***以及车辆路径规划***
CN106443360B (zh) 基于关联矩阵的配电网行波故障定位方法
CN106021710B (zh) 基于大气电离层参数的震前卫星轨道异常识别方法
CN110176139A (zh) 一种基于dbscan+的道路拥堵识别可视化方法
CN101571997A (zh) 多源交通信息融合处理方法及其装置
CN106067244A (zh) 一种用于周界探测***的传感器阈值自适应调节方法及***
CN103985250A (zh) 轻量级的全息道路交通状态视觉检测装置
KR102118802B1 (ko) 무인 항공기를 이용한 하천 건천화 모니터링 방법 및 시스템
CN109633763B (zh) 基于磁力仪与gps的精密地磁测绘***及其地磁测绘方法
CN109191845A (zh) 一种公交车辆到站时间预测方法
CN116434475A (zh) 一种基于降雨强度与地表位移变化率的滑坡预警方法
CN105277910B (zh) 远程评估电能质量在线监测装置可靠性的方法及***
CN115331425A (zh) 一种交通预警方法、装置和***
CN109146327B (zh) 一种地面观测站气温要素的数据质量评估方法和***
CN106651061B (zh) 一种基于dsrc数据与点检测器数据的实时融合方法
CN105222885B (zh) 一种光纤振动检测方法及装置
CN114370853A (zh) 高速铁路差异性沉降的监测***、监测方法及监测终端
CN112100721B (zh) 基于移动群智感知和深度学习的桥梁结构模态识别方法
CN113791394A (zh) 一种道路监视雷达正北标定方法
CN106781487B (zh) 道路固定检测器布设类型选取方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant