CN105925947A - 一种纳米多层透明导电薄膜 - Google Patents

一种纳米多层透明导电薄膜 Download PDF

Info

Publication number
CN105925947A
CN105925947A CN201610326065.4A CN201610326065A CN105925947A CN 105925947 A CN105925947 A CN 105925947A CN 201610326065 A CN201610326065 A CN 201610326065A CN 105925947 A CN105925947 A CN 105925947A
Authority
CN
China
Prior art keywords
layer
cuo
film
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610326065.4A
Other languages
English (en)
Other versions
CN105925947B (zh
Inventor
路万兵
于威
蒋树刚
杨彦斌
王春生
刘海旭
傅广生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Priority to CN201610326065.4A priority Critical patent/CN105925947B/zh
Publication of CN105925947A publication Critical patent/CN105925947A/zh
Application granted granted Critical
Publication of CN105925947B publication Critical patent/CN105925947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明提供了一种纳米多层透明导电薄膜。该纳米多层透明导电薄膜是在基底上沉积有至少一个双层,该双层包括一弱氧化铜(CuOx)层和在CuOx层上的与其接触的、连续的超薄银层。CuOx层中氧与铜原子百分比x为0<x≤20%;CuOx层厚度为0.5 nm~3 nm,银层厚度为2 nm~10 nm。与传统透明导电薄膜相比,该纳米多层结构透明导电薄膜具有高的光透过率、低的电阻率和表面粗糙度,用作太阳能电池、触摸屏等光电器件的透明电极可改善其性能,而且本发明中纳米多层透明导电薄膜制备时所需温度低,在室温下即可利用真空镀膜技术实现其高质量制备,便于利用卷绕式薄膜制备技术实现大面积低成本生产。

Description

一种纳米多层透明导电薄膜
技术领域
本发明涉及功能薄膜材料及薄膜光电子器件领域,具体地说是一种纳米多层透明导电薄膜。
背景技术
透明导电薄膜兼具光学透明性与导电性,可广泛应用于太阳能电池、发光二极管及触摸屏等领域,一直是近年来的研究热点。目前应用比较广泛的透明导电薄膜主要有铟锡氧化物(ITO)、掺铝氧化锌(AZO)等透明导电氧化物(TCO)薄膜,但其也存在一些明显的缺点,例如力学柔韧性通常较差,高质量的薄膜需要在200℃以上的衬底温度下制备,功函数不易调整等。为了解决这些问题,并满足日新月异的光电器件的发展需求,开发新型透明电极技术势在必行。
介质/金属/介质多层结构透明导电薄膜是一种新型透明导电薄膜,其利用很薄的金属膜来获得良好的导电性,而金属薄膜两侧的介质层,可用来抑制在可见光区来自金属薄膜的反射,从而获得选择性光透过效应。尽管介质/金属/介质多层结构薄膜在上世纪80年代已被用作低发射率薄膜,但作为透明导电膜在当时很少有报道。1998年,文献(“Dependence of film composition and thicknesses on optical and electrical properties of ITO–metal–ITO multilayers”,Thin solid Films, 1998,326:67-71)提出用ITO/Ag/ITO多层膜取代单一的ITO薄膜,试图获得更好的导电性能和更低的成本。之后陆续又有其他一些研究组报道了相关的研究工作。在所使用的金属膜中,由于银具有最好的导电性和在可见光范围内光学损失最小,因此应用最为广泛。基于薄银膜的多层结构透明导电薄膜的性能主要依赖于银层的表面形貌和厚度,然而由于银膜在常见基材上的生长遵从三维岛状生长模式,要获得很薄且表面平滑的银膜是很困难的。粗糙的表面形貌将损害薄膜的导电性,并由于散射和局域表面等离激元共振吸收的原因导致额外的光学损失,当这些岛不能形成渗流路径时甚至导致薄膜不导电。尽管增加薄膜厚度能够解决薄膜的连续性问题,但是薄膜的光学透过率不可避免的会大大降低,这使得单纯利用介质/银/介质多层结构很难获得同时具有良好导电性和高透过率的薄膜。为了降低薄膜的表面粗糙度,目前广泛采用的方法是在镀制银膜之前先沉积一至几纳米的Ge等材料作为籽晶层,通过增加Ge籽晶层,可使得薄(10 nm左右) 银膜的表面粗糙度降低超过一个数量级。然而,作为籽晶层的Ge等材料通常在可见光范围内具有较高的吸收系数,而且超薄的籽晶层自身通常也是不连续的岛状结构,对光有较强的散射作用,这些因素会使得这种双层膜的光透过率明显降低,阻碍了透明导电薄膜光电性能的进一步改善。
发明内容
本发明的目的就是提供一种纳米多层透明导电薄膜,以解决现有的基于银层的多层结构透明导电薄膜难以同时兼顾良好导电性和高透光率的问题。
本发明是这样实现的:本发明所提供的纳米多层透明导电薄膜,包括基底和基底上的至少一个双层,该双层包括一弱氧化铜(CuOx)层和在CuOx层上的与其接触的、连续的超薄银层。
本发明利用CuOx/Ag双层结构可获得高质量透明导电薄膜,原因如下:1、与金属Ag相比,金属Cu具有明显更高的表面能,因此在SiO2、PET等基材上生长Ag和Cu膜时,尽管都是以三维岛状模式生长,但Cu的成核密度会更大,Cu岛的尺寸也会更小。此外,Ag-Cu键具有比Ag-Ag键更高的键能,这使得在Cu膜上生长Ag膜时,Ag原子更倾向键合于Cu的表面,而不是与它们相邻的Ag原子键合,因此,在平滑Cu膜层上沉积的Ag膜会比直接在SiO2、PET等基材上沉积的Ag膜更加平滑,可以获得逾渗厚度阈值更低的连续Ag膜,即:Cu膜适合作为后续Ag膜生长的籽晶层。2、通过在Cu膜生长初期对少量铜的氧化,可以有效抑制在薄膜生长表面纳米尺寸Cu团簇的迁移,进一步增加成核密度,从而显著改善所沉积Cu层对基材的润湿性,使得薄膜更倾向于以二维层状模式生长,同时不影响其作为籽晶层改善对后续银层的润湿效果,因此与纯Cu相比CuOx薄膜更有利于获得超平滑的表面,这将更加便于获得逾渗厚度阈值更低、表面更加平滑的连续Ag膜。3、在Cu薄膜的生长初期,过量氧原子引入会使得籽晶层中Cu-O键大量增加,这会降低CuOx籽晶层对后续生长Ag膜的润湿性,同时随着CuOx层中氧含量的增加其电导率也会降低,因此x存在一较佳的比例范围。4、与Ge、Cr、Ni等籽晶层材料相比,Cu具有更好的导电性,在可见光区具有更低的光吸收系数。5、由于Cu和Ag的介电常数不同,具有不同的等离激元共振频率,通过联合使用Cu和Ag膜可以获得比单纯Ag膜更宽的高光谱透过率范围。因此,本发明利用CuOx/Ag双层结构可获得原子级平滑(粗糙度低于1 nm)和电学上连续的厚度小于10 nm,尤其是小于7nm的透明导电薄膜;而且,CuOx/Ag双层结构与单层银膜相比它拥有更高的电导率和光透过率。
在CuOx/Ag双层结构中,CuOx层主要起籽晶层作用,兼具一定的增加薄膜导电性和拓展透明导电膜光谱透过率范围的功能。CuOx层中氧元素与铜元素原子百分比x大于0且小于20%,优选x的取值为2%~6%。CuOx层的厚度小于3 nm,优选CuOx层的厚度为0.5 nm ~2 nm。CuOx层太薄将难以起到作为籽晶层促进后续银膜在低厚度下连续成膜和降低银膜表面粗糙度的作用,CuOx层太厚又会增加自身对光的吸收,从而导致整体多层结构透明导电薄膜的光透过率明显降低。
在CuOx层上所沉积的Ag层的厚度为2 nm ~10 nm,优选Ag层的厚度为3 nm ~7 nm。如果所沉积的Ag层太薄,则即使在有CuOx籽晶层存在的条件下也难以形成连续银膜,其导电性明显变差;如果所沉积的Ag层太厚会增加对光的吸收,从而导致透明导电薄膜的光透过率明显降低。
用作多层透明导电薄膜的基底可以是电介质、半导体或金属基材,包括玻璃、石英、蓝宝石、硅片、不锈钢等;也可以是有机聚合物基材,包括聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚乙烯(PE)、聚苯乙烯(PP)、聚苯乙烯(PS)、聚酰亚胺等各种树脂膜以及具有有机无机混合结构的倍半硅氧烷为基本骨架的耐热透明膜以及层叠二层以上上述树脂层而构成的树脂膜中的一种;还可以是沉积有功能层的基材,包括镀有太阳能电池功能层的不锈钢衬底、镀有有机发光二极管功能层的有机聚合物衬底等。
多层透明导电薄膜一般还应至少包括一个下列附加层:在Ag层表面的具有减反射、功函数匹配、保护或任何这些属性组合的一顶层,在CuOx层和基底之间的具有增强附着力、保护、抗反射或任何这些属性组合的一底层。
例如:Ag层上可以覆盖适当折射率和厚度的介质顶层,用作减反射层以便降低其下的Ag层的反射率,进而获得具有更高光透过率的透明导电薄膜;用作该介质顶层的材料可以是半导体或介电材料,包括铟锡氧化物(ITO)、掺铝氧化锌(AZO)、掺镓氧化锌(GZO)、氧化锡(SnO2)、氧化钛(TiO2)、氧化钨(WO3)、氧化钼(MoO3)等。在折射率合适的条件下优选透明导电氧化物材料,以便使多层结构透明导电薄膜具有更好的纵向(基底法线方向)导电性。在CuOx层与基底之间沉积一层合适折射率和厚度的介质底层,可以进一步减少反射进而增加整个多层结构薄膜的光透过率,提高薄膜的光电性能。作为减反射层的介质顶层和介质底层的厚度一般为20 nm ~ 60nm,具体厚度与所选介质层材料的折射率以及具体应用时要求高光透过率的波长范围有关,通常存在一最佳的介质层厚度。
此外,本发明中的多层透明导电薄膜结构还可以进一步增加其它功能层,具体选择什么材料取决于目标应用领域;如:增加石墨烯、超薄金属薄膜、PEDOT:PSS或碳氧化硅高阻隔薄膜等到多层结构透明导电薄膜上面,以赋予其其它的功能性质,如高或低的功函数,提高抗水氧渗透性、化学稳定性和热稳定性等。例如,在需要高功函数的顶层时,可以在上述多层透明导电薄膜上沉积一层薄的镍层或金层;而在需要低功函数的顶层时,可以沉积薄的Ti或Al等膜层;也可以在Ag层上直接沉积WO3层或MoO3层,其可以同时作为防反射层和高功函数匹配层。
上述多层透明导电薄膜结构中的CuOx层、Ag层、底层和顶层等各膜层的制备,均可以利用本行业通用的真空镀膜技术来实现,包括磁控溅射、电子束蒸发、热蒸发、脉冲激光沉积等真空镀膜技术,其中,从便于薄膜结构控制和大规模工业生产角度考虑,优选磁控溅射和电子束蒸发镀膜技术。
与以前的工艺相比,本发明在Ag层制备前,先采用真空镀膜技术沉积一层超薄的CuOx层,利用其作为籽晶层,可以在更小的厚度实现连续银膜层制备,银膜层更小的厚度使其具有更高的透明度,银膜层的连续性可以保证薄膜具有好的导电性。而且基于本发明所制备的银膜与利用以前报道的工艺制备的同样厚度的银膜相比,其表面更加光滑、表面粗糙度更低,从而可有效降低由于粗糙表面的光散射引起的光透过率损失,而且光滑的表面也便于其它功能层薄膜在其上的高质量沉积。此外,本发明中CuOx/Ag双层结构薄膜由于更倾向于层状生长,与单纯的银膜相比,其结构更加致密,因此具有更高的稳定性,例如抗氧化性。
本发明中CuOx层和Ag层均可以利用真空镀膜技术在室温条件下制备,而且由于本发明中起导电作用的主要是Ag层,AZO或ITO等介质层仅主要起减反射作用,不需要是结晶很好的晶态结构,因此不需要像目前制备AZO或ITO等高质量透明导电氧化物材料所需的200℃以上的高衬底温度条件,在室温条件下制备成非晶态结构薄膜即可满足需要。利用本发明中各膜层可以在低温下沉积这一特点,可以很容易地利用卷绕式真空镀膜技术在不耐高温的廉价柔性透明基材(如聚合物基材)上制备多层结构透明导电薄膜,从而可大幅降低生产成本,并提高生产效率。与TCO薄膜相比,本发明提供的纳米多层透明导电薄膜柔韧性更好,可更加方便地应用于柔性太阳能电池、柔性显示和柔性发光二极管照明等柔性光电子器件领域。
附图说明
图1是本发明所提供的纳米多层透明导电薄膜最简单的结构示意图。
图2是在图1所示基础上增加了顶层和底层功能层后所得的纳米多层透明导电薄膜的结构示意图。
图3是本发明实施例1所制得的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)样品和对比例1所制得的PET/ITO(40nm)/Ag(5nm)样品的三维表面原子力显微镜图。
图4是本发明实施例1所制得的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)/ITO(40nm)样品和对比例1所制得的PET/ITO(40nm)/Ag(5nm) /ITO(40nm)样品的紫外-可见透射光谱。
图5是本发明实施例1所制得的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)样品和PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)/ITO(40nm)样品的紫外-可见透射光谱。
图6是本发明实施例3中在镀有有机发光二极管功能层的基材上沉积纳米多层透明导电薄膜的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
如图1所示,本发明所提供的纳米多层透明导电薄膜,包括基底1、位于基底1上的CuOx层2及位于CuOx层2上且与CuOx层2相接触的、连续的Ag层3。CuOx层2的厚度一般小于3nm,优选的,CuOx层2的厚度为0.5 nm ~2 nm。Ag层3的厚度一般为2 nm~10 nm,优选的,Ag层3的厚度为3 nm ~7 nm。CuOx层2中,氧、铜原子百分比x满足:0<x≤20%,优选的,x满足:2%≤x≤6%。
如图2所示,本发明所提供的纳米多层透明导电薄膜,还可以在基底1与CuOx层2之间设置用于减反射、保护或增强附着力等的底层4。底层4可以为半导体或介电材料,包括ITO层、AZO层、GZO层、SnO2层、TiO2层、WO3层、MoO3层等。本发明所提供的纳米多层透明导电薄膜,还可以在Ag层3上设置用于减反射、功函数匹配或保护等的顶层5。顶层5可以为ITO层、AZO层、GZO层、SnO2层、TiO2层、WO3层、MoO3层、Ni层、Au层、Ti层、Al层等中的一层或多层的组合。
基底1可以是介质、半导体或金属基材,包括玻璃、石英、蓝宝石、硅片、不锈钢等;也可以是有机聚合物基材,包括聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚乙烯(PE)、聚苯乙烯(PP)、聚苯乙烯(PS)、聚酰亚胺等各种树脂膜以及具有有机无机混合结构的倍半硅氧烷为基本骨架的耐热透明膜以及层叠二层以上上述树脂层而构成的树脂膜中的一种;还可以是沉积有功能层的基材,包括镀有太阳能电池功能层的不锈钢衬底、镀有有机发光二极管功能层的有机聚合物衬底等。
实施例1
本实施例1的纳米多层透明导电薄膜具体制备步骤如下:
步骤1:采用100μm厚的聚对苯二甲酸乙二醇酯(PET)膜作为柔性透明基材,用丙酮、乙醇、去离子水对PET基材进行超声清洗,再用干燥N2 吹干,并在烤箱中加热到60°C 烘烤10分钟。
步骤2:将通过步骤1清洗好的PET基材,放置于射频磁控溅射设备真空室的基片台上,射频磁控溅射设备中预先装有ITO靶材,ITO靶材由In2O3和3wt%的Sn组成。用机械泵和分子泵把磁控溅射设备腔体的真空度抽到5.0×10-4 Pa以下后,通入30 sccm的氩气和氧气混合气,其中氧气所占百分比为0.5%,压强调节为0.7 Pa,溅射用射频电源频率为13.56MHz,溅射功率设为30 W,通过控制薄膜沉积时间得到40 nm的ITO层,薄膜沉积完成后取出样品。
步骤3:将步骤2镀制的样品放入电子束蒸发镀膜设备中,同时将高纯的金属Ag颗粒(纯度99.99%)和金属Cu颗粒(纯度99.99%)分别放入电子束蒸发镀膜设备的不同坩埚中。用机械泵和分子泵把电子束蒸发镀膜设备腔体的真空度抽到3.0×10-4 Pa以下,通入4 sccm 的氧气,压强调节为5.0×10-3 Pa,保持基底连续旋转以保证所沉积薄膜的均匀性,利用电子束蒸发技术蒸镀金属Cu,获得1 nm厚的CuOx薄膜。然后关闭氧气,待电子束蒸发镀膜设备的腔体的真空度抽到3.0×10-4 Pa以下后,开始利用电子束蒸发技术蒸镀金属Ag,获得5 nm等价厚度的Ag薄膜,薄膜沉积完成后取出样品,得到PET/ITO(40nm)/CuOx(1nm)/Ag(5nm) 多层透明导电薄膜样品。上述CuOx和Ag薄膜厚度通过石英晶体振荡器实时监测精确控制,并已经过台阶仪测量修正。
步骤4:将步骤3镀制的样品放入射频磁控溅射镀膜设备中,重复步骤2,在其上再沉积40 nm厚的ITO层,得到本实施例1的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm) /ITO(40nm)多层透明导电薄膜样品。
对比例1
本对比例1的多层透明导电薄膜具体制备步骤如下:
步骤1:采用100μm厚的聚对苯二甲酸乙二醇酯(PET)膜作为柔性透明基材,用丙酮、乙醇、去离子水对PET基材进行超声清洗,再用干燥N2 吹干,并在烤箱中加热到60°C 烘烤10分钟。
步骤2:将通过步骤1清洗好的PET基材,放置于射频磁控溅射设备真空室的基片台上,射频磁控溅射设备中预先装有ITO靶材,ITO靶材由In2O3和3wt%的Sn组成。用机械泵和分子泵把磁控溅射设备腔体的真空度抽到5.0×10-4 Pa以下后,通入30 sccm的氩气和氧气混合气,其中氧气所占百分比为0.5%,压强调节为0.7 Pa,溅射用射频电源频率为13.56MHz,溅射功率设为30 W,通过控制薄膜沉积时间得到40 nm的ITO层,薄膜沉积完成后取出样品。
步骤3:将步骤2镀制的样品放入电子束蒸发镀膜设备中,同时将高纯的金属Ag颗粒(纯度99.99%)放入电子束蒸发镀膜设备的坩埚中。用机械泵和分子泵把电子束蒸发镀膜设备腔体的真空度抽到3.0×10-4 Pa以下,利用电子束蒸发技术蒸镀金属Ag,获得5 nm等价厚度的Ag薄膜,薄膜沉积完成后取出样品,得到PET/ITO(40nm)/Ag(5nm)多层透明导电薄膜样品。上述Ag薄膜厚度通过石英晶体振荡器实时监测精确控制,并已经过台阶仪测量修正。
步骤4:将步骤3镀制的样品放入射频磁控溅射镀膜设备中,重复步骤2,在其上再沉积40 nm厚的ITO层,得到本对比例1的PET/ITO(40nm)/Ag(5nm)/ITO(40nm)多层透明导电薄膜样品。
对实施例1所制得的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)样品(在步骤3之后所得的样品)和对比例1所制得的PET/ITO(40nm)/Ag(5nm)样品(在步骤3之后所得的样品)分别进行三维表面原子力显微镜(AFM)测试,所得结果见图3,图3中(a)对应实施例1中的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)样品,图3中(b)对应对比例1中的PET/ITO(40nm)/Ag(5nm)样品;图3中两幅图的扫描面积均为1μm×1μm,最大z轴范围值为30 nm。从图中可以看出,1 nm厚的CuOx 籽晶层的引入使得银膜的表面变得非常平滑,其表面均方根粗糙度(RMS)仅为0.48 nm,而没有CuOx 籽晶层的银膜,其表面则相对比较粗糙,其RMS为4.73 nm。这表明CuOx 籽晶层的引入确实对后续银膜的生长起到了很好的润湿作用,利用其可以获得原子级超平滑的银膜。另外,对薄膜电学性质测试结果显示有CuOx 籽晶层的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)样品其方块电阻为6.7Ω/囗,而没有CuOx 籽晶层的PET/ITO(40nm)/Ag(5nm)样品其方块电阻则为87Ω/囗,这表明在有1 nm 厚的CuOx 籽晶层的条件下,在5 nm的等价厚度条件下即可形成连续的银膜,明显低于通常没有籽晶层时形成连续银膜所需的10 nm左右的最低薄膜厚度值(逾渗厚度阈值)。
对实施例1所制得的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)/ITO(40nm)样品(在步骤4之后所得的样品)和对比例1所制得的PET/ITO(40nm)/Ag(5nm) /ITO(40nm)样品(在步骤4之后所得的样品)进行紫外-可见透射光谱测试,所得结果见图4,图4中的数据已经扣除了PET基材的吸收影响。从图4中可以看出,有1 nm 厚的CuOx籽晶层的样品具有明显更高的可见光透过率,而且其具有高透过率的波长范围更宽。计算样品在可见光(400~800 nm)光谱范围的平均透过率,结果显示有CuOx 籽晶层的ITO(40nm)/CuOx(1nm)/Ag(5nm)/ ITO(40nm)样品其可见光平均透过率为89.02%,而没有CuOx 籽晶层的ITO(40nm)/Ag(5nm)/ITO(40nm)样品其可见光平均透过率仅为74.35%。这主要是由于没有CuOx 籽晶层的5 nm银膜不能形成连续的银膜,而是以颗粒状的银岛形式存在,导致表面比较粗糙,这一点可以通过图3(b)看出,这些颗粒状的银岛对可见光存在局域表面等离激元共振吸收,而且其粗糙的表面也会对光具有较强的散射作用,因此造成其相对较低的可见光透过率。此外,从图4中还可以看出,有1 nm 厚的CuOx 籽晶层的样品具有高透过率的波长范围更宽,这表明CuOx 还具有一定的拓展Ag膜透过率的波长范围的作用。
对实施例1所制得的PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)样品(在步骤3之后所得的样品)和PET/ITO(40nm)/CuOx(1nm)/Ag(5nm)/ITO(40nm)样品(在步骤4之后所得的样品)进行紫外-可见透射光谱测试,所得结果见图5,图5中的数据已经扣除了PET基材的吸收影响。从图5中可以看出,在银膜表面沉积有40 nm ITO顶层的样品与没有沉积该介质顶层的样品相比,其在所观察的光谱范围内均具有明显更高的光透过率。ITO(40nm)/CuOx(1nm)/Ag(5nm)/ITO(40nm)样品在可见光(400~800 nm)光谱范围的平均透过率为89.02%,没有40nm ITO顶层的样品其可见光平均透过率为75.63%。这一结果可归因于40nm 厚的ITO介质顶层可以明显地抑制Ag膜表面反射,增加光透过率的作用。
实施例2
本实施例的多层透明导电薄膜具体制备步骤如下:
步骤1:采用100μm厚的PET膜作为基材,用丙酮、乙醇、去离子水对PET基材进行超声清洗,再用干燥N2 吹干,并在烤箱中加热到60°C 烘烤10分钟。然后将PET基材放入多靶射频磁控溅射薄膜沉积设备的腔体中,该多靶射频磁控溅射薄膜沉积设备内预先装有ITO(由In2O3和3wt%的Sn组成)、高纯的Cu和Ag等靶材,纳米多层透明导电薄膜的各层均利用射频磁控溅射技术制备,溅射用射频电源频率为13.56 MHz。
步骤2:用机械泵和分子泵把磁控溅射设备腔体的真空度抽到5.0×10-4 Pa,然后通入30 sccm的氩气和氧气混合气(氧气所占百分比为0.5%),压强调节为0.7 Pa,溅射功率为30 W,通过控制镀膜时间在基材上沉积40 nm的ITO层。
步骤3:关闭步骤2中的氩气和氧气混合气,不破坏沉积室真空,继续在该腔室中沉积CuOx籽晶层,用机械泵和分子泵把磁控溅射设备腔体的真空度抽到5.0×10-4 Pa,通入30 sccm的氩气和氧气混合气(为分析CuOx层中氧含量x对纳米多层透明导电膜特性的影响,通过改变氧气所占比例制备了一系列纳米多层透明导电膜,具体条件见表1),压强调节为0.6 Pa,溅射功率为40 W,得到1 nm 的CuOx籽晶层。
步骤4:关闭步骤2中的氩气和氧气,不破坏沉积室真空,继续在该腔室中沉积Ag薄膜,用机械泵和分子泵把磁控溅射设备腔体的真空度抽到5.0×10-4 Pa,通入30 sccm 的氩气,压强调节为0.7 Pa,溅射功率为30 W,得到5 nm 的Ag层。
步骤5: 不破坏沉积室真空,重复步骤2,在其上再沉积40 nm厚 的ITO层,得到本实施例2 的ITO(40nm)/CuOx(1nm)/ Ag(5nm)/ ITO(40nm)多层透明导电薄膜。
上述步骤中各膜层均在室温(25°C)下进行沉积,但由于溅射工艺存在,可能会出现轻微的温度上升(<10°C)。
考虑到CuOx层太薄将难以起到作为籽晶层促进后续银膜在低厚度下连续成膜和降低银膜表面粗糙度的作用,太厚又会增加自身对光的吸收,从而导致整体多层结构透明导电薄膜的光透过率明显降低,通过实验发现CuOx厚度为0.5 nm ~3 nm条件下所得到的纳米多层透明导电膜的光透过率和导电性能均比较好,CuOx层的进一步优选厚度为0.5 nm ~2 nm。实施例2中为了比较薄膜中氧原子百分比含量x对薄膜性能的影响,选取了CuOx层为1nm的优选条件,并且在这一系列变化氧原子百分比含量x的纳米多层透明导电膜制备时保持CuOx层厚度固定不变。
表1 利用不同氧含量x的CuOx层所制备纳米多层透明导电薄膜的光电性能
表1给出了在CuOx籽晶层不同氧含量x条件下所制备的纳米多层透明导电薄膜的光电性能。从表中可以看出,通过改变CuOx层沉积过程中O2/(Ar+O2)流量比可以容易地实现对CuOx薄膜中氧原子百分比含量x的调整,表中CuOx薄膜中的氧原子百分比含量通过X射线光电子能谱测量获得。分析表中数据可以发现,随着CuOx薄膜中氧原子百分比含量x的增加,样品的可见光平均透过率呈现出了先增加后减小的趋势,样品的表面电阻则呈现出了先减小后增加的趋势,即在不改变其它实验条件的情况下,存在一最佳的氧原子百分比含量x,使得所制备的纳米多层透明导电薄膜具有最佳的光电性能。这是由于在Cu膜生长初期对少量铜的氧化,可以有效抑制在薄膜生长表面纳米尺寸Cu团簇的迁移,进一步增加成核密度,从而显著改善所沉积Cu层对基材的润湿性,获得表面更加平滑的CuOx层,同时不影响其作为籽晶层改善后续银层的润湿效果,这将使得后续银膜沉积时,更加容易得到逾渗厚度阈值更低、表面更加平滑的连续Ag膜。但是在Cu薄膜的生长初期,过量氧原子引入会使得籽晶层中Cu-O键大量增加,这会降低CuOx籽晶层对后续生长Ag膜的润湿性,同时随CuOx层中氧含量的增加其电导率也会降低,因此x存在一最佳的比例范围。从表1的数据可以看出,当CuOx薄膜中氧原子百分比含量x大于0且小于20%时,所得到的纳米多层透明导电膜的可见光平均透过率和表面方块电阻性能均比较优良,尤其是x在2%~6%范围内时,纳米多层透明导电膜的光电性能更加优秀,在CuOx薄膜中氧原子百分比含量x为4%时更是获得了可见光平均透过率为90.9%、表面电阻低至5.1Ω/囗的高质量纳米多层透明导电膜。
另外,需要指出的是,上述实施例1和2中所制备的纳米多层透明导电膜样品均具有良好的柔韧性,其在低至5 mm的弯曲半径下弯曲100次后,表面电阻的变化均小于5%,而可见光平均透过率在实验测量误差范围内没有明显变化。而且实施例1和2中所制备的ITO/CuOx/Ag/ ITO纳米多层透明导电膜,在暴露于大气放置5个月后,其表面电阻和可见光平均透过率在实验测量误差范围内均没有明显变化,这表明所制备的纳米多层透明导电膜具有良好的抗氧化特性。
实施例3
用作多层透明导电薄膜的基底也可以是沉积有功能层的基材,如图6所示,图6中所示的多层透明导电薄膜的基底1为镀有有机发光二极管功能层的PET/ITO/BPhen:Cs2CO3/TPBi/ TPBi:ir(ppy)3/TCTA/MoO3基材,且在基底1上依次制备有ITO层、CuOx层、Ag层和ITO层。

Claims (10)

1.一种纳米多层透明导电薄膜,其特征是,包括基底、位于所述基底上的CuOx层及位于所述CuOx层上且与所述CuOx层相接触的Ag层;其中,0<x≤20%。
2.根据权利要求1所述的纳米多层透明导电薄膜,其特征是,所述CuOx层的厚度小于3 nm,所述Ag层的厚度小于10 nm。
3.根据权利要求2所述的纳米多层透明导电薄膜,其特征是,所述CuOx层的厚度为0.5 nm ~2 nm,所述Ag层的厚度为3 nm ~7 nm。
4.根据权利要求1所述的纳米多层透明导电薄膜,其特征是,CuOx中,2%≤x≤6%。
5.根据权利要求1所述的纳米多层透明导电薄膜,其特征是,还包括设置在所述基底与所述CuOx层之间的用于减反射、保护或增强附着力的底层。
6.根据权利要求5所述的纳米多层透明导电薄膜,其特征是,所述底层为半导体或介电材料层,具体为ITO层、AZO层、GZO层、SnO2层、TiO2层、WO3层或MoO3层。
7.根据权利要求1所述的纳米多层透明导电薄膜,其特征是,还包括设置在所述Ag层上的用于减反射、功函数匹配或保护的顶层。
8.根据权利要求7所述的纳米多层透明导电薄膜,其特征是,所述顶层为半导体或介电材料层,或在所述半导体或介电材料层上沉积Ni层、Au层、Ti层或Al层来共同作为顶层;所述半导体或介电材料层具体为ITO层、AZO层、GZO层、SnO2层、TiO2层、WO3层或MoO3层。
9.根据权利要求1所述的纳米多层透明导电薄膜,其特征是,所述基底为电介质、半导体、金属基材、有机聚合物基材或沉积有功能层的基材;所述电介质、半导体或金属基材具体为玻璃、石英、蓝宝石、硅片或不锈钢。
10.根据权利要求9所述的纳米多层透明导电薄膜,其特征是,所述有机聚合物基材为PET、PEN、PC、PVC、PE、PP、PS、聚酰亚胺树脂膜、具有有机无机混合结构的倍半硅氧烷为基本骨架的耐热透明膜以及层叠二层以上上述树脂层而构成的树脂膜中的一种;
所述沉积有功能层的基材为镀有太阳能电池功能层的不锈钢衬底或镀有有机发光二极管功能层的有机聚合物衬底。
CN201610326065.4A 2016-05-17 2016-05-17 一种纳米多层透明导电薄膜 Active CN105925947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610326065.4A CN105925947B (zh) 2016-05-17 2016-05-17 一种纳米多层透明导电薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610326065.4A CN105925947B (zh) 2016-05-17 2016-05-17 一种纳米多层透明导电薄膜

Publications (2)

Publication Number Publication Date
CN105925947A true CN105925947A (zh) 2016-09-07
CN105925947B CN105925947B (zh) 2018-03-20

Family

ID=56840692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610326065.4A Active CN105925947B (zh) 2016-05-17 2016-05-17 一种纳米多层透明导电薄膜

Country Status (1)

Country Link
CN (1) CN105925947B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653160A (zh) * 2017-01-23 2017-05-10 陕西煤业化工技术研究院有限责任公司 一种柔性复合透明导电薄膜及其制备方法
CN106876608A (zh) * 2017-03-31 2017-06-20 中国科学院重庆绿色智能技术研究院 一种用于oled光提取的超薄金属透明电极及其制作方法
CN107144899A (zh) * 2017-06-29 2017-09-08 中国建筑材料科学研究总院 具有电磁屏蔽性能的硫系光学元件及其制备方法
CN107248422A (zh) * 2017-05-23 2017-10-13 华中科技大学 一种基于聚酰亚胺基底的柔性透明导电电极及其制备方法
CN107393979A (zh) * 2017-06-09 2017-11-24 中国科学院宁波材料技术与工程研究所 一种基于超薄金属膜的透明电极及其制备方法和应用
CN108666865A (zh) * 2018-05-09 2018-10-16 华中科技大学 一种金属-半导体复合结构、SPPs激发方式及制备方法
CN109280890A (zh) * 2018-09-11 2019-01-29 合肥工业大学 一种增强纳米银薄膜光电性能的方法
CN109935379A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 导电薄膜及其制备方法
CN110643957A (zh) * 2019-09-25 2020-01-03 河南省功能金刚石研究院有限公司 一种掺硼金刚石复合电极材料及其制备方法、掺硼金刚石复合电极
CN112394568A (zh) * 2020-12-15 2021-02-23 厦门天马微电子有限公司 显示面板及显示装置
CN112635691A (zh) * 2020-12-31 2021-04-09 Tcl华星光电技术有限公司 阵列基板及阵列基板的制作方法
JP7110516B1 (ja) * 2021-03-04 2022-08-01 株式会社東芝 透明電極およびその作製方法、ならびに透明電極を用いた電子デバイス
WO2022185485A1 (ja) * 2021-03-04 2022-09-09 株式会社 東芝 透明電極およびその作製方法、ならびに透明電極を用いた電子デバイス
CN116926487A (zh) * 2023-07-21 2023-10-24 中国科学院长春光学精密机械与物理研究所 基于Ti种子层的超光滑多层膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252489A2 (de) * 1986-07-11 1988-01-13 Nukem GmbH Transparentes, leitfähiges Schichtsystem
US20120171510A1 (en) * 2010-12-31 2012-07-05 Tong Hsing Electronic Industries, Ltd. Ceramic plate with reflective film and method of manufacturing the same
CN103173733A (zh) * 2013-03-08 2013-06-26 北京航空航天大学 一种高导电性能Ag掺杂Cu2O基p型透明导电薄膜及其制备方法
CN104246913A (zh) * 2012-04-18 2014-12-24 Lg化学株式会社 导电结构及其制备方法
WO2015005455A1 (ja) * 2013-07-11 2015-01-15 三菱マテリアル株式会社 半透明Ag合金膜、および、半透明Ag合金膜形成用スパッタリングターゲット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252489A2 (de) * 1986-07-11 1988-01-13 Nukem GmbH Transparentes, leitfähiges Schichtsystem
US20120171510A1 (en) * 2010-12-31 2012-07-05 Tong Hsing Electronic Industries, Ltd. Ceramic plate with reflective film and method of manufacturing the same
CN104246913A (zh) * 2012-04-18 2014-12-24 Lg化学株式会社 导电结构及其制备方法
CN103173733A (zh) * 2013-03-08 2013-06-26 北京航空航天大学 一种高导电性能Ag掺杂Cu2O基p型透明导电薄膜及其制备方法
WO2015005455A1 (ja) * 2013-07-11 2015-01-15 三菱マテリアル株式会社 半透明Ag合金膜、および、半透明Ag合金膜形成用スパッタリングターゲット

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653160A (zh) * 2017-01-23 2017-05-10 陕西煤业化工技术研究院有限责任公司 一种柔性复合透明导电薄膜及其制备方法
CN106876608A (zh) * 2017-03-31 2017-06-20 中国科学院重庆绿色智能技术研究院 一种用于oled光提取的超薄金属透明电极及其制作方法
CN106876608B (zh) * 2017-03-31 2020-01-14 中国科学院重庆绿色智能技术研究院 一种基于oled光提取的超薄金属透明电极的oled制造方法
CN107248422A (zh) * 2017-05-23 2017-10-13 华中科技大学 一种基于聚酰亚胺基底的柔性透明导电电极及其制备方法
CN107248422B (zh) * 2017-05-23 2019-05-21 华中科技大学 一种基于聚酰亚胺基底的柔性透明导电电极及其制备方法
CN107393979A (zh) * 2017-06-09 2017-11-24 中国科学院宁波材料技术与工程研究所 一种基于超薄金属膜的透明电极及其制备方法和应用
CN107393979B (zh) * 2017-06-09 2019-07-16 中国科学院宁波材料技术与工程研究所 一种基于超薄金属膜的透明电极及其制备方法和应用
CN107144899A (zh) * 2017-06-29 2017-09-08 中国建筑材料科学研究总院 具有电磁屏蔽性能的硫系光学元件及其制备方法
CN109935379B (zh) * 2017-12-15 2020-06-23 Tcl科技集团股份有限公司 导电薄膜及其制备方法
CN109935379A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 导电薄膜及其制备方法
CN108666865A (zh) * 2018-05-09 2018-10-16 华中科技大学 一种金属-半导体复合结构、SPPs激发方式及制备方法
CN108666865B (zh) * 2018-05-09 2020-10-02 华中科技大学 一种金属-半导体复合结构、SPPs激发方式及制备方法
CN109280890A (zh) * 2018-09-11 2019-01-29 合肥工业大学 一种增强纳米银薄膜光电性能的方法
CN109280890B (zh) * 2018-09-11 2023-10-27 合肥工业大学 一种增强纳米银薄膜光电性能的方法
CN110643957B (zh) * 2019-09-25 2022-04-22 河南省功能金刚石研究院有限公司 一种掺硼金刚石复合电极材料及其制备方法、掺硼金刚石复合电极
CN110643957A (zh) * 2019-09-25 2020-01-03 河南省功能金刚石研究院有限公司 一种掺硼金刚石复合电极材料及其制备方法、掺硼金刚石复合电极
CN112394568B (zh) * 2020-12-15 2022-09-13 厦门天马微电子有限公司 显示面板及显示装置
CN112394568A (zh) * 2020-12-15 2021-02-23 厦门天马微电子有限公司 显示面板及显示装置
CN112635691A (zh) * 2020-12-31 2021-04-09 Tcl华星光电技术有限公司 阵列基板及阵列基板的制作方法
CN112635691B (zh) * 2020-12-31 2022-07-12 Tcl华星光电技术有限公司 阵列基板及阵列基板的制作方法
WO2022185485A1 (ja) * 2021-03-04 2022-09-09 株式会社 東芝 透明電極およびその作製方法、ならびに透明電極を用いた電子デバイス
WO2022185559A1 (ja) * 2021-03-04 2022-09-09 株式会社 東芝 透明電極およびその作製方法、ならびに透明電極を用いた電子デバイス
CN115315815A (zh) * 2021-03-04 2022-11-08 株式会社东芝 透明电极及其制作方法、以及使用透明电极的电子器件
JP7110516B1 (ja) * 2021-03-04 2022-08-01 株式会社東芝 透明電極およびその作製方法、ならびに透明電極を用いた電子デバイス
CN116926487A (zh) * 2023-07-21 2023-10-24 中国科学院长春光学精密机械与物理研究所 基于Ti种子层的超光滑多层膜及其制备方法
CN116926487B (zh) * 2023-07-21 2024-05-14 中国科学院长春光学精密机械与物理研究所 基于Ti种子层的超光滑多层膜及其制备方法

Also Published As

Publication number Publication date
CN105925947B (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
CN105925947A (zh) 一种纳米多层透明导电薄膜
CN107393979B (zh) 一种基于超薄金属膜的透明电极及其制备方法和应用
CN107254664B (zh) 一种超薄银基薄膜、多层复合透明导电薄膜及其制备方法与应用
Wu et al. Highly transparent low resistance ATO/AgNWs/ATO flexible transparent conductive thin films
Wu Highly flexible touch screen panel fabricated with silver-inserted transparent ITO triple-layer structures
KR102341963B1 (ko) 광전자 및 광자 공학 응용을 위한 도핑된 귀금속 초박막
Li et al. AZO/Ag/AZO transparent flexible electrodes on mica substrates for high temperature application
KR101680928B1 (ko) 투명 전도성 산화물, 금속 및 산화물의 조합에 기초한 투명 전극
CN102779944B (zh) 一种透明导电薄膜
Choi et al. Nano-sized Ag-inserted amorphous ZnSnO3 multilayer electrodes for cost-efficient inverted organic solar cells
Yun et al. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide
Ekmekcioglu et al. High transparent, low surface resistance ZTO/Ag/ZTO multilayer thin film electrodes on glass and polymer substrates
Wang et al. Influence of Al/Cu thickness ratio and deposition sequence on photoelectric property of ZnO/Al/Cu/ZnO multilayer film on PET substrate prepared by RF magnetron sputtering
US20150279498A1 (en) Transparent conductive thin film electrodes, electronic devices and methods of producing the same
Yu et al. Enhanced conductivity and stability of Cu-embedded zinc tin oxide flexible transparent conductive thin films
Lee et al. The optical analyses of the multilayer transparent electrode and the formation of ITO/Mesh-Ag/ITO multilayers for enhancing an optical transmittance
Bou et al. Numerical optimization of multilayer electrodes without indium for use in organic solar cells
Jo et al. Highly transparent and conductive oxide-metal-oxide electrodes optimized at the percolation thickness of AgOx for transparent silicon thin-film solar cells
Li et al. High-performance flexible transparent conductive thin films on PET substrates with a CuM/AZO structure
Lin et al. Effects of the structural properties of metal oxide/Ag/metal oxide multilayer transparent electrodes on their optoelectronic performances
Liu et al. Broad-spectrum ultrathin-metal-based oxide/metal/oxide transparent conductive films for optoelectronic devices
Hwang et al. Thermal treatment for enhancing performance of NiO/Ag/NiO transparent conducting electrode fabricated via magnetron radio-frequency sputtering
Turkoglu et al. Development of ZTO/Ag/ZTO transparent electrodes for thin film solar cells
KR20150061608A (ko) 전도성 구조체 전구체, 전도성 구조체 및 이의 제조방법
CN105981181B (zh) 太阳能电池和其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant