CN105915282B - 基于太阳光直接泵浦空间光载波发生器的通信*** - Google Patents

基于太阳光直接泵浦空间光载波发生器的通信*** Download PDF

Info

Publication number
CN105915282B
CN105915282B CN201610187805.0A CN201610187805A CN105915282B CN 105915282 B CN105915282 B CN 105915282B CN 201610187805 A CN201610187805 A CN 201610187805A CN 105915282 B CN105915282 B CN 105915282B
Authority
CN
China
Prior art keywords
sunlight
pumping
light
module
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610187805.0A
Other languages
English (en)
Other versions
CN105915282A (zh
Inventor
张伟
刘阳
周必磊
刘梅林
宋涛
刘利军
陈荷
李鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Satellite Engineering
Original Assignee
Shanghai Institute of Satellite Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Satellite Engineering filed Critical Shanghai Institute of Satellite Engineering
Priority to CN201610187805.0A priority Critical patent/CN105915282B/zh
Publication of CN105915282A publication Critical patent/CN105915282A/zh
Application granted granted Critical
Publication of CN105915282B publication Critical patent/CN105915282B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/299Signal waveform processing, e.g. reshaping or retiming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供了一种基于太阳光直接泵浦空间光载波发生器的通信***,包括:太阳光聚合分割模块、泵浦工作模块、调制通信模块;所述太阳光聚合分割模块用于聚集太阳光能量,并把太阳光能量按照不同的频段进行分割后传输至泵浦工作模块;所述泵浦工作模块用于将分割的太阳光转换成多路光载波;所述调制通信模块用于将通信信息调制到所述泵浦工作模块生成的载波中,并对光束进行整形后输出。本发明中的***利用太阳光能量作为多路光载波唯一的能量来源,满足现有卫星光通信的功率和光束指标要求,同时降低现有基于电泵浦光通信技术中的热控问题和低能效问题。

Description

基于太阳光直接泵浦空间光载波发生器的通信***
技术领域
本发明涉及光通信领域,具体地,涉及一种基于太阳光直接泵浦空间光载波发生器的通信***。
背景技术
空间激光通信***是指以激光光波作为载波,大气作为传输介质的光通信***。自由空间激光通信结合了光纤通信与微波通信的优点,既具有大通信容量、高速传输的优点,又不需要铺设光纤,因此各技术强国在空间激光通信领域投入大量人力物力,并取得了很大进展。大气传输激光通信***是由两台激光通信机构成的通信***,它们相互向对方发射被调制的激光脉冲信号(声音或数据),接收并解调来自对方的激光脉冲信号,实现双工通信。
我国未来卫星光网络的建设为了降低单星成本,需要更小功耗,更长寿命,更简化热控设计的卫星激光通信终端。为此,开展基于太阳光直接光光泵浦光载波发生器的纳米光通信***的研究。
本发明旨在研制成一种可利用太阳光作为直接能源的纳米光通信***,在该***利用太阳光能量作为唯一的能量来源,满足现有卫星光通信的功率和光束指标要求,同时降低现有基于电泵浦光通信技术中的热控问题和低能效问题。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种基于太阳光直接泵浦空间光载波发生器的通信***。
根据本发明提供的基于太阳光直接泵浦空间光载波发生器的通信***,包括:太阳光聚合分割模块、泵浦工作模块、调制通信模块;
所述太阳光聚合分割模块用于聚集太阳光能量,并把太阳光能量按照不同的频段进行分割后传输至泵浦工作模块;
所述泵浦工作模块用于将分割的太阳光转换成多路光载波;
所述调制通信模块用于将通信信息调制到所述泵浦工作模块生成的载波光束中,并对光束进行整形后输出。
优选地,所述太阳光聚合分割模块包括:太阳光跟踪***、聚光***、光谱分割***、输出耦合***;太阳光依次经过所述聚光***、太阳光跟踪***、光谱分割***、输出耦合***后传输至泵浦工作模块。
优选地,所述聚光***包括:菲涅尔透镜面和3D-CPC聚光腔,太阳光经过菲涅尔透镜面后在3D-CPC聚光腔内汇聚。
优选地,所述光谱分割***包括多个镀不同介质膜的透射反射镜,所述透射反射镜将经过太阳光跟踪***的汇聚光束进行分离,得到多路泵浦光源。
优选地,所述泵浦工作模块包括:光通断开关、太阳光泵浦激光器、温度传感控制***,由太阳光聚合分割模块分割的多路光源分别与相应的泵浦工作物质进行泵浦后通过光通断开关输入太阳光泵浦激光器,所述太阳光泵浦激光器产生持续激光载波后输出;
其中,所述太阳光泵浦激光器设置有温度传感控制***,当工作温度高于工作物质的稳定状态温度上限时,温度传感控制***将关闭信号发送给光通断开关,光通断开关切断光源输入。
优选地,所述调制通信模块包括:信号源、激光信号调制***、光学整形***以及光学天线,所述激光信号调制***根据信号源发送的调制信号调制太阳光泵浦激光器产生的持续激光载波,并将调制好的信号发送至光学整形***整形后通过光学天线向外界发送。
与现有技术相比,本发明具有如下的有益效果:
1、本发明提供的基于太阳光直接泵浦空间光载波发生器的通信***充分利用泵浦物质多样性、输出品质优良并且性能稳定的特点,使得本发明相较于传统的通信***具有多波长,窄线宽,长寿命等技术特点。
2、本发明提供的基于太阳光直接泵浦空间光载波发生器的通信***利用太阳光能量作为唯一的能量来源,满足现有卫星光通信的功率和光束指标要求,同时降低现有基于电泵浦光通信技术中的热控问题和低能效问题。
3、基于太阳光谱分割的多路光载波泵浦技术,分割后的太阳光可以泵浦具有不同吸收光谱的工作物质,进一步提高太阳光能量的利用率,并且减少了泵浦单一工作物质时的能源浪费,避免由于无效泵浦光能量照射工作物质产生多余热能,给***带来热控压力。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为太阳光聚合分割模块结构示意图;
图2为聚光***结构示意图;
图3为光谱分割***结构示意图;
图4为泵浦工作模块结构示意图;
图5为调制通信模块结构示意图;
图中:
1-聚光***;
2-太阳光跟踪***;
3-光谱分割***;
4-输出耦合***
5-菲涅尔透镜面;
6-3D-CPC聚光腔;
7-镀介质膜透射反射镜;
8-光通断开关;
9-太阳光泵浦激光器;
10-温度传感控制***
11-信号源;
12-激光信号调制***;
13-光学整形***;
14-光学天线。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
根据本发明提出的基于太阳光直接泵浦空间光载波发生器的通信***分为三个主要工作模块,太阳光聚合分割模块、泵浦工作模块、调制通信模块。
太阳光聚合分割模块的功能是聚集太阳光能量并把能量按照不同的频段进行分割,将分割后的各路光源输送到下一工作模块。光谱分割是指按照不同泵浦工作物质的吸收频段进行合理划分。太阳光聚合分割模块主要由四部分组成:太阳光跟踪***、聚光***、光谱分割***、输出耦合***。
太阳光聚合分割模块的核心是光谱分割***。所述太阳光聚合分割模块主要功能是将宽频段的阳光光源分割为若干个窄频带光源,生成各个泵浦工作物质需要的窄带泵浦光,并耦合输入到各个泵浦工作物质处后产生光载波,同时把无用频带的光源自然过滤降低***的热能输入。
泵浦工作模块的功能是产生多路光载波,在所述泵浦工作模块中同时存在多个吸收频段不同的光泵浦光载波发生器,在泵浦工作物质处配置热控***和温度传感***,用以控制泵浦工作物质温度。本发明中的泵浦工作物质为了提高吸收效率和减少热耗,采用了纳米渐变掺杂手段对掺杂金属离子进行布控,纳米渐变掺杂的工作物质可以在轴向实现对入射光的均匀吸收。
泵浦工作模块的核心是泵浦工作物质。传统的泵浦工作物质采用均匀掺杂或者有限阶数的阶梯掺杂,这种方式会造成泵浦物质端面吸收热能过高,在泵浦物质内,沿着入射光径向形成温差,造成温度梯度热效应和端面形变热透镜效应,破坏工作物质性能。纳米渐变掺杂的原理是利用非均匀掺杂,使泵浦光能量在工作介质内各部分均匀吸收,进而减少热量分布的不均衡。在不降低总体吸收效率的情况下,既能避免局部温度过高,又可以避免温度阶梯的产生。
调制通信模块的主要功能是将通信信息调制到载波当中,并对光束进行整形和输出。所述调制通信模块中配置有信号源、光载波调制器以及光学输出***。
现有的光谱分离技术,主要应用于分割两个或两个以上的窄带光源或单色光源,利用各个单色光源在介质中的折射率不同,通过棱镜将各个光源在空间上隔离,再收集到相应的处理单元中。
而太阳光属于宽谱光源,用常规处理方式无法得到隔离度高的窄频段光源,并且棱镜的色散效应将汇聚后的阳光再次发散,将使输出泵浦光功率密度降低,进而导致***效率降低。
如图3所示,利用多个镀不同介质膜的透射反射镜组成的太阳光谱分割***,这种设计可充分利用不同介质膜之间的波长选择区间,从汇聚后的阳光中分离出高功率密度,窄频带的泵浦光源,不造成光源的二次发散,且可自然泄露出无用频段光源能量,减少***的热量累积,***有效光能量损耗小。基于太阳光谱分割的多路光载波泵浦技术,分割后的太阳光可以泵浦具有不同吸收光谱的工作物质,进一步提高太阳光能量的利用率。多路光载波泵浦技术的优点在于减少了泵浦单一工作物质时的能源浪费,同时避免由于无效泵浦光能量照射工作物质产生多余热能,给***带来热控压力。泵浦工作物质采用纳米渐变掺杂手段处理,使工作物质具有高吸收效率和均衡热量分布,减小了***的热控压力。均匀掺杂的泵浦工作物质会在入射光方向上形成热能分布不均衡现象,靠近入射端的位置产生热量高,远离入射端位置产生热量低,热量的不均衡会导致工作物质吸收效率降低,同时导致产生的光载波品质下降。
纳米渐变掺杂技术就是指在纳米尺度上,使泵浦工作物质的金属离子掺杂浓度在入射光方向上递增,使泵浦工作物质在入射端的高能量密度处减少吸收,随着工作物质内部入射光能量密度逐渐减小不断增加吸收效率,从而实现整个工作物质的热能均衡。
具体地,如图1所示,太阳光聚合分割模块包括:聚光***、太阳光跟踪***、光谱分割***、输出耦合***。具体地,如图2所示,所述聚光***由菲涅尔透镜面和3D-CPC聚光腔组成,所述光谱分割***主要由一个或多个镀介质膜透射反射镜组成。
如图3所示,泵浦工作模块主要由光通断开关、太阳光泵浦激光器、温度传感控制***组成。如图4所示,调制通信区主要由信号源、激光信号调制***、光学整形***、以及光学天线组成。
更进一步地,本发明中的基于太阳光直接泵浦空间光载波发生器的通信***的工作过程如下:
步骤1:太阳光跟踪***根据太阳位置调整菲涅尔透镜面与3D-CPC聚光腔的朝向,使菲涅尔透镜面始终与太阳光入射方向垂直;
步骤2:入射太阳光经过菲涅尔透镜面的一次聚焦作用和3D-CPC聚光腔的二次聚焦作用,形成具有高功率密度的阳光泵浦光源;
步骤3:高功率密度的阳光泵浦光源依次经过一个或多个镀介质膜透射反射镜,使光谱按照不同泵浦工作物质的需求分离开,便于后续各个泵浦工作物质独立泵浦产生激光载波;其中,太阳光泵浦光源是一个全频段白噪声光源,而光载波泵浦工作物质的吸收频段相对较窄,因此需要对太阳光光源进行频谱分割;
步骤4:分割后的泵浦光源按照图4所示的光路对相应的泵浦工作物质进行泵浦并产生持续激光载波,各个泵浦激光器中含有温度传感器,当工作温度高于工作物质的稳定状态温度上限时,温度传感控制***将关闭信号发送给光通断开关,切断光源输入;
步骤5:泵浦工作模块产生的多路持续激光载波进入调制通信模块进行激光信号调制和发射,信号源产生调制信号,调制信号传输到调制***,进而对光载波进行调制,调制后的光载波经过光学整形后经由光学天线对外界发送。
利用基于镀介质膜反射透射镜的太阳光谱分割技术,将太阳光谱按照不同频段分隔开。为了便于后续的泵浦过程。要求太阳光谱分割具有准确,低损,低功耗的特性。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (5)

1.一种基于太阳光直接泵浦空间光载波发生器的通信***,其特征在于,包括:太阳光聚合分割模块、泵浦工作模块、调制通信模块;
所述太阳光聚合分割模块用于聚集太阳光能量,并把太阳光能量按照不同的频段进行分割后传输至泵浦工作模块;
所述泵浦工作模块用于将分割的太阳光转换成多路光载波;
所述调制通信模块用于将通信信息调制到所述泵浦工作模块生成的载波光束中,并对光束进行整形后输出;
其中,所述泵浦工作模块包括:光通断开关(8)、太阳光泵浦激光器(9),由太阳光聚合分割模块分割的多路光源分别与相应的泵浦工作物质进行泵浦后通过光通断开关(8)输入太阳光泵浦激光器(9),所述太阳光泵浦激光器(9)产生持续激光载波后输出;所述泵浦工作物质为:采用纳米渐变掺杂手段对掺杂金属离子进行布控处理后的泵浦工作物质;纳米渐变掺杂是指在纳米尺度上,使泵浦工作物质的金属离子掺杂浓度在入射光方向上递增,使泵浦工作物质在入射端的高能量密度处减少吸收,随着工作物质内部入射光能量密度逐渐减小不断增加吸收效率,从而实现整个工作物质的热能均衡;
其中,所述太阳光泵浦激光器(9)设置有温度传感控制***(10),当工作温度高于工作物质的稳定状态温度上限时,温度传感控制***(10)将关闭信号发送给光通断开关(8),光通断开关(8)切断光源输入。
2.根据权利要求1所述的基于太阳光直接泵浦空间光载波发生器的通信***,其特征在于,所述太阳光聚合分割模块包括:太阳光跟踪***(2)、聚光***(1)、光谱分割***(3)、输出耦合***(4);太阳光依次经过所述聚光***(1)、太阳光跟踪***(2)、光谱分割***(3)、输出耦合***(4)后传输至泵浦工作模块。
3.根据权利要求2所述的基于太阳光直接泵浦空间光载波发生器的通信***,其特征在于,所述聚光***(1)包括:菲涅尔透镜面(5)和3D-CPC聚光腔(6),太阳光经过菲涅尔透镜面(5)后在3D-CPC聚光腔(6)内汇聚。
4.根据权利要求2所述的基于太阳光直接泵浦空间光载波发生器的通信***,其特征在于,所述光谱分割***(3)包括多个镀不同介质膜的透射反射镜,所述透射反射镜将经过太阳光跟踪***(2)的汇聚光束进行分离,得到多路泵浦光源。
5.根据权利要求1所述的基于太阳光直接泵浦空间光载波发生器的通信***,其特征在于,所述调制通信模块包括:信号源(11)、激光信号调制***(12)、光学整形***(13)以及光学天线(14),所述激光信号调制***(12)根据信号源(11)发送的调制信号调制太阳光泵浦激光器(9)产生的持续激光载波,并将调制好的信号发送至光学整形***(13)整形后通过光学天线(14)向外界发送。
CN201610187805.0A 2016-03-29 2016-03-29 基于太阳光直接泵浦空间光载波发生器的通信*** Active CN105915282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610187805.0A CN105915282B (zh) 2016-03-29 2016-03-29 基于太阳光直接泵浦空间光载波发生器的通信***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610187805.0A CN105915282B (zh) 2016-03-29 2016-03-29 基于太阳光直接泵浦空间光载波发生器的通信***

Publications (2)

Publication Number Publication Date
CN105915282A CN105915282A (zh) 2016-08-31
CN105915282B true CN105915282B (zh) 2019-06-07

Family

ID=56745224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610187805.0A Active CN105915282B (zh) 2016-03-29 2016-03-29 基于太阳光直接泵浦空间光载波发生器的通信***

Country Status (1)

Country Link
CN (1) CN105915282B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533562B (zh) * 2016-11-30 2019-03-29 上海卫星工程研究所 空间多用户多制式卫星激光通信***和方法
CN108879312B (zh) * 2018-06-20 2019-09-17 上海卫星工程研究所 阳光泵浦光纤激光放大***
CN108696328B (zh) * 2018-06-20 2020-03-06 上海卫星工程研究所 基于阳光泵浦的卫星激光粗波分复用通信***
CN110649969B (zh) * 2019-09-24 2021-05-18 成都信息工程大学 一种超低功耗镜反射光通信装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104663266A (zh) * 2015-02-26 2015-06-03 中国科学技术大学先进技术研究院 一种植物工厂的太阳光综合利用***
CN105743578A (zh) * 2016-03-15 2016-07-06 王基民 一种仿自然光照明通信技术
CN206290390U (zh) * 2016-11-11 2017-06-30 青海大学 一种太阳能全光谱发电***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104663266A (zh) * 2015-02-26 2015-06-03 中国科学技术大学先进技术研究院 一种植物工厂的太阳光综合利用***
CN105743578A (zh) * 2016-03-15 2016-07-06 王基民 一种仿自然光照明通信技术
CN206290390U (zh) * 2016-11-11 2017-06-30 青海大学 一种太阳能全光谱发电***

Also Published As

Publication number Publication date
CN105915282A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105915282B (zh) 基于太阳光直接泵浦空间光载波发生器的通信***
CN102882601B (zh) 硅光子集成高速光通信收发模块
CA1245290A (en) Power transmission through a long wavelength optical fibre
CN202872791U (zh) 硅光子集成高速光通信收发模块
Guan et al. Demonstration of a free-space optical communication system using a solar-pumped laser as signal transmitter
CN108879312B (zh) 阳光泵浦光纤激光放大***
CN102713414A (zh) 模拟太阳光照射装置及模拟太阳光照射方法
CN108254944A (zh) 硅基微纳米混合结构光控太赫兹波调制器及其制备方法
Putra et al. Hybrid optical wireless power and data transmission system
CN105470808A (zh) 一种多光路输出的可调谐激光器***
CN112737693B (zh) 一种用于大容量空间通信的基阶径向偏振激光复用设备
CN113625502B (zh) 基于石墨烯复合微纳光纤的高转换效率2μm波长转换器
CN205212162U (zh) 基于波导结构的内调制太赫兹源
CN106840395A (zh) 用于主动高光谱成像的近红外超连续谱照明***
CN103904558B (zh) 一种新型的蓝紫激光光源
CN103439773A (zh) 高功率全固态连续激光合束***
CN103227407A (zh) 基于频差可调的双频微片激光器装置
CN102856785A (zh) 一种端面与侧面复合泵浦的装置及激光器
CN116299873A (zh) 一种提高光栅耦合器耦合效率及工作带宽的方法
Liu The approximate ABCD matrix for a parabolic lens of revolution and its application in calculating the coupling efficiency
CN109038866A (zh) 一种激光无线传能发射接收***
CN105449494B (zh) 基于波导结构的内调制太赫兹源及其内调制方法
CN205899084U (zh) 一种混合集成多波长光发射组件
Qinggui et al. PIN photodiode array for free-space optical communication
CN102082394B (zh) 一种大功率半导体激光偏振耦合装置及其耦合方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant