CN105912826A - 四旋翼无人机控制***的嵌套饱和非线性设计方法 - Google Patents

四旋翼无人机控制***的嵌套饱和非线性设计方法 Download PDF

Info

Publication number
CN105912826A
CN105912826A CN201610494491.9A CN201610494491A CN105912826A CN 105912826 A CN105912826 A CN 105912826A CN 201610494491 A CN201610494491 A CN 201610494491A CN 105912826 A CN105912826 A CN 105912826A
Authority
CN
China
Prior art keywords
theta
lambda
epsiv
centerdot
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610494491.9A
Other languages
English (en)
Other versions
CN105912826B (zh
Inventor
周彬
李鸿儒
杨雪飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Sichuan Harbin Industrial Robot and Intelligent Equipment Technology Research Institute Co.,Ltd.
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201610494491.9A priority Critical patent/CN105912826B/zh
Publication of CN105912826A publication Critical patent/CN105912826A/zh
Application granted granted Critical
Publication of CN105912826B publication Critical patent/CN105912826B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

四旋翼无人机控制***的嵌套饱和非线性设计方法,涉及无人机控制***的嵌套饱和非线性设计方法。为了解决目前具有执行器饱和的四旋翼无人机控制***的控制效果不够理想的问题,本发明首先对四旋翼无人机控制***进行状态变换,将其转化为前馈型非线性控制***;然后分别设计俯仰通道控制***的嵌套饱和非线性控制律τθ和横滚通道控制***的嵌套饱和非线性控制律本发明适用于四旋翼无人机控制***的全局镇定。

Description

四旋翼无人机控制***的嵌套饱和非线性设计方法
技术领域
本发明涉及无人机控制***的嵌套饱和非线性设计方法。
背景技术
二十世纪四、五十年代以来,现代控制理论得到了快速的发展,各国学者提出了各种先进的控制方法,并在工业控制中也得到了广泛的应用。然而这些控制方法大都建立在线性***的理论框架之下,而在实际的控制工程中真正的线性***是不存在的,这使得现代控制理论的应用受到了一定的限制。实际上,任何工程控制***都无一例外地表现出非线性特性,其中一个典型的非线性特性就是执行器饱和非线性。由于物理上的限制和出于安全的需要,几乎所有的控制***都受到了执行器饱和的限制。例如,飞机的水平转向是由竖直的尾翼控制的,其幅值和速率要受到限制;电动机因受到物理条件的限制而只能达到有限的转速或转矩;四旋翼无人机的电机转速不可能无限大,其俯仰角加速度和横滚角加速度都要受到限制。
四旋翼无人机控制***可以用一类具有执行器饱和的前馈型非线性***进行建模。对于四旋翼无人机控制***设计而言,经典控制方法往往先把原***复杂的非线性模型线性化,然后再运用经典线性控制理论对其进行分析和设计,这样难免使得控制效果不够理想,且不能保证***的全局渐近稳定性。相比之下,运用现代非线性控制理论设计的控制算法,其控制性能可以明显优于经典控制算法,且能从理论上保证控制***的稳定性。
发明内容
本发明为了解决目前具有执行器饱和的四旋翼无人机控制***的控制效果不够理想的问题,提出了四旋翼无人机控制***的嵌套饱和非线性设计方法。
四旋翼无人机控制***的嵌套饱和非线性设计方法,包括以下步骤:
步骤一:对四旋翼无人机控制***进行状态变换,将其转化为前馈型非线性控制***;
步骤二:设计俯仰通道控制***的嵌套饱和非线性控制律
τ θ = - ϵ 4 θ r θ σ [ r θ λ θ w 4 ϵ 4 θ + r θ ϵ 3 θ ϵ 4 θ σ [ λ θ w 3 ϵ 3 θ + ϵ 2 θ ϵ 3 θ σ [ λ θ w 2 ϵ 2 θ + ϵ 1 θ ϵ 2 θ σ [ λ θ w 1 ϵ 1 θ ] ] ] ]
保证闭环***的全局渐近稳定性;σ(·)为标准的饱和函数,σ(·)定义为
&sigma; ( x &prime; ) = 1 , x &prime; > 1 x &prime; , - 1 &le; x &prime; &le; 1 - 1 , x &prime; < - 1
x′表示σ(x′)的自变量;w4,w3,w2,w1为四旋翼俯仰通道控制***的状态变量;λθ,ε,ε,ε,ε,rθ为满足下式的参数
&lambda; &theta; &le; u m a x &theta; a &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; &epsiv; 4 &theta; > 0 &epsiv; 3 &theta; = b 2 &epsiv; 4 &theta; &epsiv; 2 &theta; = ( b 2 ) 2 &epsiv; 4 &theta; &epsiv; 1 &theta; = 20 a - 20 sin a - 4 ab 2 + 5 b 2 sin a 16 a &epsiv; 4 &theta; r &theta; = &epsiv; 4 &theta; - &epsiv; 2 &theta; a&lambda; &theta; 2
a和b是限定λθ、ε、ε、ε、ε、rθ而选取的参数,其中a<0.8,umaxθ是给定的正的常数,代表四旋翼无人机俯仰角加速度允许的最大值;参数λθ是待设计的正常数;
步骤三:设计横滚通道控制***的嵌套饱和非线性控制律
&tau; &phi; = - &epsiv; 4 &phi; r &phi; &sigma; &lsqb; r &phi; &lambda; &phi; v 4 &epsiv; 4 &phi; + r &phi; &epsiv; 3 &phi; &epsiv; 4 &phi; &sigma; &lsqb; &lambda; &phi; v 3 &epsiv; 3 &phi; + &epsiv; 2 &phi; &epsiv; 3 &phi; &sigma; &lsqb; &lambda; &phi; v 2 &epsiv; 2 &phi; + &epsiv; 1 &phi; &epsiv; 2 &phi; &sigma; &lsqb; &lambda; &phi; v 1 &epsiv; 1 &phi; &rsqb; &rsqb; &rsqb; &rsqb;
保证闭环***的全局渐近稳定性;其中σ(·)为标准的饱和函数,v4,v3,v2,v1为四旋翼横滚通道控制***的状态变量;λφ,ε,ε,ε,ε,rφ为满足下式的参数
c和d是限定而选取的参数,其中c<0.8, 是给定的正的常数,代表四旋翼无人机横滚角加速度允许的最大值;参数为待设计的正常数。
发明效果
本发明所提出的方法最显著的优点是:针对具有执行器饱和的四旋翼无人机控制***,本发明通过设计嵌套饱和非线性控制方法,使四旋翼无人机***有较好的动态特性,即控制效果比较理想;并且可以保证控制***的全局渐近稳定性。从仿真结果中可以看出,四旋翼无人机控制***的各状态变量可以较快地收敛到设定位置,而且超调量很小。仿真结果还说明了利用本方法所设计的控制方案具有较好的鲁棒性。
附图说明
图1为地理惯性坐标系和机体参考坐标系示意图;
图2为地理坐标系下X和Y方向位移仿真图;
图3为地理坐标系下俯仰角θ和横滚角φ仿真图。
具体实施方式
具体实施方式一:本实施方式的四旋翼无人机控制***的嵌套饱和非线性设计方法,包括以下步骤:
步骤一:对四旋翼无人机控制***进行状态变换,将其转化为前馈型非线性控制***;
步骤二:设计四旋翼无人机俯仰通道控制***的嵌套饱和非线性控制律
&tau; &theta; = - &epsiv; 4 &theta; r &theta; &sigma; &lsqb; r &theta; &lambda; &theta; w 4 &epsiv; 4 &theta; + r &theta; &epsiv; 3 &theta; &epsiv; 4 &theta; &sigma; &lsqb; &lambda; &theta; w 3 &epsiv; 3 &theta; + &epsiv; 2 &theta; &epsiv; 3 &theta; &sigma; &lsqb; &lambda; &theta; w 2 &epsiv; 2 &theta; + &epsiv; 1 &theta; &epsiv; 2 &theta; &sigma; &lsqb; &lambda; &theta; w 1 &epsiv; 1 &theta; &rsqb; &rsqb; &rsqb; &rsqb; - - - ( 1 )
保证闭环***的全局渐近稳定性;这里σ(·)为标准的饱和函数,定义为
&sigma; ( x &prime; ) = 1 , x &prime; > 1 x &prime; , - 1 &le; x &prime; &le; 1 - 1 , x &prime; < - 1 - - - ( 2 )
w4,w3,w2,w1为四旋翼俯仰通道控制***的状态变量;λθ,ε,ε,ε,ε,rθ为满足下式的参数
&lambda; &theta; &le; u m a x &theta; a &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; &epsiv; 4 &theta; > 0 &epsiv; 3 &theta; = b 2 &epsiv; 4 &theta; &epsiv; 2 &theta; = ( b 2 ) 2 &epsiv; 4 &theta; &epsiv; 1 &theta; = 20 a - 20 sin a - 4 ab 2 + 5 b 2 sin a 16 a &epsiv; 4 &theta; r &theta; = &epsiv; 4 &theta; - &epsiv; 2 &theta; a&lambda; &theta; 2
a和b是限定λθ、ε、ε、ε、ε、rθ而选取的参数,其中a<0.8,umaxθ是给定的正的常数,代表四旋翼无人机俯仰角加速度允许的最大值;参数λθ是待设计的正常数;
步骤三:设计横滚通道控制***的嵌套饱和非线性控制律
保证闭环***的全局渐近稳定性;这里σ(·)为标准的饱和函数,v4,v3,v2,v1为四旋翼横滚通道控制***的状态变量;为满足下式的参数
c和d是限定而选取的参数,其中c<0.8, 是给定的正的常数,代表四旋翼无人机横滚角加速度允许的最大值;参数为待设计的正常数。
具体实施方式二:本实施方式步骤一所述的将四旋翼无人机控制***转化为前馈型非线性控制***的具体过程如下:
对于如图1所示的四旋翼无人机***,其模型为
m X &CenterDot;&CenterDot; = u ( c o s ( &phi; ) c o s ( &psi; ) s i n ( &theta; ) + s i n ( &phi; ) s i n ( &psi; ) ) m Y &CenterDot;&CenterDot; = u ( c o s ( &phi; ) s i n ( &theta; ) s i n ( &psi; ) - cos ( &psi; ) s i n ( &phi; ) ) m Z &CenterDot;&CenterDot; = u c o s ( &phi; ) cos ( &theta; ) - m g &phi; &CenterDot;&CenterDot; = &tau; &phi; &theta; &CenterDot;&CenterDot; = &tau; &theta; &psi; &CenterDot;&CenterDot; = &tau; &psi; - - - ( 4 )
其中:
u:四旋翼无人机四个电机的总输入量;
地理坐标系E:O-XYZ,
X表示地理坐标系E下X方向位移;
Y表示地理坐标系E下Y方向位移;
Z表示地理坐标系E下Z方向位移;
机体坐标系B:o-xyz,
x:机体坐标系B下x方向位移;
y:机体坐标系B下y方向位移;
z:机体坐标系B下z方向位移;
m:四旋翼无人机的质量;
g:重力加速度;
横滚角的角加速度;
τθ:俯仰角的角加速度;
τψ:偏航角的角加速度;
θ:俯仰角,定义为机体轴ox与水平面OXY平面上的夹角,ox向上为正;
横滚角,定义为无人机对称平面oxz与包含ox轴的与水平面垂直的铅垂线平面之间的夹角,向右滚转时为正;
ψ:偏航角,定义为机体轴ox在水平面上的投影与机体坐标系轴ox之间的夹角,无人机右偏航时形成的角度为正;
机体坐标系{B}和地理坐标系{E}通过矩阵R相联系:
R = cos ( &theta; ) cos ( &psi; ) cos ( &psi; ) sin ( &theta; ) sin ( &phi; ) - cos ( &phi; ) sin ( &psi; ) cos ( &phi; ) cos ( &psi; ) sin ( &theta; ) + sin ( &phi; ) sin ( &psi; ) cos ( &theta; ) sin ( &psi; ) sin ( &theta; ) sin ( &phi; ) sin ( &psi; ) + cos ( &phi; ) cos ( &psi; ) cos ( &phi; ) sin ( &theta; ) sin ( &psi; ) - cos ( &psi; ) sin ( &phi; ) - sin ( &theta; ) cos ( &theta; ) sin ( &phi; ) cos ( &theta; ) cos ( &phi; )
机体坐标系B和地理坐标系E通过矩阵R相联系:
m x &CenterDot;&CenterDot; y &CenterDot;&CenterDot; z &CenterDot;&CenterDot; = mR T X &CenterDot;&CenterDot; Y &CenterDot;&CenterDot; Z &CenterDot;&CenterDot; = R T m X &CenterDot;&CenterDot; m Y &CenterDot;&CenterDot; m Z &CenterDot;&CenterDot; - - - ( 5 )
将式(4)和R代入到式(5)可以得到
m x &CenterDot;&CenterDot; = m g s i n &theta; - - - ( 6 )
m y &CenterDot;&CenterDot; = - m g s i n ( &phi; ) c o s ( &theta; ) - - - ( 7 )
(一)、考虑俯仰通道控制***为
x &CenterDot;&CenterDot; = g sin &theta; &theta; &CenterDot;&CenterDot; = &tau; &theta; - - - ( 8 )
取状态变量x=x,x=θ,
x &CenterDot; 1 &theta; = x 2 &theta; x &CenterDot; 2 &theta; = gx 3 &theta; + g ( s i n ( x 3 &theta; ) - x 3 &theta; ) x &CenterDot; 3 &theta; = x 4 &theta; x &CenterDot; 4 &theta; = &tau; &theta; - - - ( 9 )
令y=rθx,y=rθx,y=rθx,y=rx,uθ=rθτθ,则公式(9)变换成
y &CenterDot; 1 &theta; = y 2 &theta; y &CenterDot; 2 &theta; = gy 3 &theta; + r &theta; g ( s i n ( y 3 &theta; r &theta; ) - y 3 &theta; r &theta; ) y &CenterDot; 3 &theta; = y 4 &theta; y &CenterDot; 4 &theta; = u &theta; - - - ( 10 )
z 1 &theta; = y 1 &theta; g z 2 &theta; = y 2 &theta; g z 3 &theta; = y 3 &theta; z 4 &theta; = y 4 &theta; - - - ( 11 )
则如公式(9)所示的俯仰通道控制***被变换成如下的前馈型非线性***
z &CenterDot; 1 &theta; = z 2 &theta; z &CenterDot; 2 &theta; = z 3 &theta; + r &theta; ( s i n ( z 3 &theta; r &theta; ) - z 3 &theta; r &theta; ) z &CenterDot; 3 &theta; = z 4 &theta; z &CenterDot; 4 &theta; = u &theta; - - - ( 12 )
(二)、考虑横滚通道控制***为
y &CenterDot;&CenterDot; = - g sin ( &phi; ) cos ( &theta; ) &phi; &CenterDot;&CenterDot; = &tau; &phi; - - - ( 13 )
由于在设计横滚通道控制律时认为俯仰通道的俯仰角θ已经收敛到零,所以公式(13)可以写成
y &CenterDot;&CenterDot; = - g sin &phi; &phi; &CenterDot;&CenterDot; = &tau; &phi; - - - ( 14 )
取状态变量x=y,x=φ,
x &CenterDot; 1 &phi; = x 2 &phi; x &CenterDot; 2 &phi; = - gx 3 &phi; - g ( s i n ( x 3 &phi; ) - x 3 &phi; ) x &CenterDot; 3 &phi; = x 4 &phi; x &CenterDot; 4 &phi; = &tau; &phi; - - - ( 15 )
令y=rφx,y=rφx,y=rφx,y=rφx,uφ=rφτφ,其中rφ是待设计的正的常数,有
y &CenterDot; 1 &phi; = y 2 &phi; y &CenterDot; 2 &phi; = - gy 3 &phi; - r &phi; g ( s i n ( y 3 &phi; r &phi; ) - y 3 &phi; r &phi; ) y &CenterDot; 3 &phi; = y 4 &phi; y &CenterDot; 4 &phi; = u &phi; - - - ( 16 )
z 1 &phi; = - y 1 &phi; g z 2 &phi; = - y 2 &phi; g z 3 &phi; = y 3 &phi; z 4 &phi; = y 4 &phi; - - - ( 17 )
则如公式(14)所示的横滚通道控制***被变换成如下的前馈型非线性***
z &CenterDot; 1 &phi; = z 2 &phi; z &CenterDot; 2 &phi; = z 3 &phi; + r &phi; ( s i n ( z 3 &phi; r &phi; ) - z 3 &phi; r &phi; ) z &CenterDot; 3 &phi; = z 4 &phi; z &CenterDot; 4 &phi; = u &phi; - - - ( 18 )
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式步骤二中设计俯仰通道控制***的嵌套饱和非线性控制律的具体设计过程为:
步骤3.1:定义一般的饱和函数:
σε(·)为一般的饱和函数,按如下方式进行定义
&sigma; &epsiv; ( x &prime; ) = &epsiv; , x &prime; > &epsiv; x &prime; , - &epsiv; &le; x &prime; &le; &epsiv; - &epsiv; , x &prime; < - &epsiv; - - - ( 19 )
ε表示一般的饱和函数的饱和值;如果ε=1则σ1(x′)=σ(x′)为(2)式定义的标准饱和函数;
步骤3.2:将如公式(12)所示的俯仰通道控制***变换成上三角非线性***:
对于如公式(12)所示的俯仰通道控制***,设
A 0 = 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 , b 0 = 0 0 0 1 - - - ( 20 )
以及
A 1 = 0 &lambda; &theta; &lambda; &theta; &lambda; &theta; 0 0 &lambda; &theta; &lambda; &theta; 0 0 0 &lambda; &theta; 0 0 0 0 , b 1 = 1 1 1 1 - - - ( 21 )
其中λθ为待设计的正的常数;对如公式(12)所示的俯仰通道控制***作变换w=Tθzθ
zθ=[z,z,z,z]T,w=[w1,w2,w3,w4]T
T &theta; = b 1 A 1 b 1 A 1 2 b 1 A 1 3 b 1 b 0 A 0 b 0 A 0 2 b 0 A 0 3 b 0 - 1 - - - ( 22 )
根据(20)和(21)能够推出
T &theta; = &lambda; &theta; 3 3 &lambda; &theta; 2 3 &lambda; &theta; 1 0 &lambda; &theta; 2 2 &lambda; &theta; 1 0 0 &lambda; &theta; 1 0 0 0 1 - - - ( 23 )
其逆矩阵为
T &theta; - 1 = 1 &lambda; &theta; 3 - 3 &lambda; &theta; 3 3 &lambda; &theta; 3 - 1 &lambda; &theta; 3 0 1 &lambda; &theta; 2 - 2 &lambda; &theta; 2 1 &lambda; &theta; 2 0 0 1 &lambda; &theta; - 1 &lambda; &theta; 0 0 0 1
f ( z 3 &theta; ) = r &theta; ( s i n ( z 3 &theta; r &theta; ) - z 3 &theta; r &theta; )
则如公式(12)所示的俯仰通道控制***可以变换为
w &CenterDot; 1 = &lambda; &theta; w 2 + &lambda; &theta; w 3 + &lambda; &theta; w 4 + u &theta; + 3 &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 2 = &lambda; &theta; w 3 + &lambda; &theta; w 4 + u &theta; + &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 3 = &lambda; &theta; w 4 + u &theta; w &CenterDot; 4 = u &theta; - - - ( 24 )
步骤3.3:设计俯仰通道控制***的嵌套饱和非线性控制律uθ=-u,其中
u 4 &theta; = &sigma; &epsiv; 4 &theta; ( &lambda; &theta; w 4 + u 3 &theta; ) u 3 &theta; = &sigma; &epsiv; 3 &theta; ( &lambda; &theta; w 3 + u 2 &theta; ) u 2 &theta; = &sigma; &epsiv; 2 &theta; ( &lambda; &theta; w 2 + u 1 &theta; ) u 1 &theta; = &sigma; &epsiv; 1 &theta; ( &lambda; &theta; w 1 ) - - - ( 25 )
分别是饱和值为ε‐ε的一般的饱和函数;u-u是定义的中间参量;由于上式恰好可以写成(1);
步骤3.4:建立保证控制律uθ=-u工作在线性区的条件:
考虑(24)和(25)组成的闭环***的最后一个状态w4满足的方程
w &CenterDot; 4 = - u 4 &theta; = - &sigma; &epsiv; 4 &theta; ( &lambda; &theta; w 4 + u 3 &theta; )
取Lyapunov函数
<ε (26)则存在一个数d1使得ε<d1≤ε;当λθw4>d1时,有
&sigma; &epsiv; 4 &theta; ( &lambda; &theta; w 4 + u 3 &theta; ) > &sigma; &epsiv; 4 &theta; ( d 1 - &epsiv; 3 &theta; ) = d 1 - &epsiv; 3 &theta; > 0
其中0<d1<ε,所以因此
V &CenterDot; 1 ( w 4 ) = w 4 w &CenterDot; 4 < - | w 4 | ( d 1 - &epsiv; 3 &theta; ) - - - ( 27 )
类似地,如果λθw4<-d1,那么
&sigma; &epsiv; 4 &theta; ( &lambda; &theta; w 4 + u 3 &theta; ) < &sigma; &epsiv; 4 &theta; ( - d 1 + &epsiv; 3 &theta; ) = - d 1 + &epsiv; 3 &theta; < 0
由于2ε<-d1<0,也就是因此
V &CenterDot; 1 ( w 4 ) = w 4 w &CenterDot; 4 < - | w 4 | ( d 1 - &epsiv; 3 &theta; ) - - - ( 28 )
综合(27)和(28)可知,如果(26)成立,则
V &CenterDot; 1 ( w 4 ) < - ( d 1 - &epsiv; 3 &theta; ) 2 V 1 ( w 4 ) , &ForAll; w 4 &Element; { w 4 : V 1 ( w 4 ) > d 1 2 2 &lambda; &theta; 2 }
根据Lyapunov稳定性理论,存在有限时间T1>t0,对于最终对有|λθw4|≤d1和|λθw4+u|≤d1≤ε;从而有
u=λθw4+u (29)
以及
θw4|≤ε (30)
将(29)代入***(24)和(25),得到如下***
w &CenterDot; 1 = &lambda; &theta; w 2 + &lambda; &theta; w 3 - u 3 &theta; + 3 &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 2 = &lambda; &theta; w 3 - u 3 &theta; + &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 3 = - u 3 &theta; w &CenterDot; 4 = - &lambda; &theta; w 4 - u 3 &theta; - - - ( 31 )
考虑闭环***的第三个状态w3满足的方程
w &CenterDot; 3 = - u 3 &theta; = - &sigma; &epsiv; 3 &theta; ( &lambda; &theta; w 3 + u 2 &theta; )
取Lyapunov函数
<ε (32)则存在一个数d2使得ε<d2≤ε,当λθw3>d2时,有
&sigma; &epsiv; 3 &theta; ( &lambda; &theta; w 3 + u 2 &theta; ) > &sigma; &epsiv; 3 &theta; ( d 2 - &epsiv; 2 &theta; ) = d 2 - &epsiv; 2 &theta; > 0
其中0<d2<ε,所以因此
V &CenterDot; 2 ( w 3 ) = w 3 w &CenterDot; 3 < - | w 3 | ( d 2 - &epsiv; 2 &theta; ) - - - ( 33 )
类似地,如果λθw3<-d2,那么
&sigma; &epsiv; 3 &theta; ( &lambda; &theta; w 3 + u 2 &theta; ) < &sigma; &epsiv; 3 &theta; ( - d 2 + &epsiv; 2 &theta; ) = - d 2 + &epsiv; 2 &theta; < 0
由于2ε<-d2+ε2θ<0,也就是因此
V &CenterDot; 2 ( w 3 ) = w 3 w &CenterDot; 3 < - | w 3 | ( d 2 - &epsiv; 2 &theta; ) - - - ( 34 )
综合(33)和(34)可知,如果(32)成立,则
V &CenterDot; 2 ( w 3 ) < - ( d 2 - &epsiv; 2 &theta; ) 2 V 2 ( w 3 ) , &ForAll; w 3 &Element; { w 3 : V 2 ( w 3 ) > d 2 2 2 &lambda; &theta; 2 }
根据Lyapunov稳定性理论,存在有限时间T2>t0,对于最终,对于有|λθw3|≤d2和|λθw3+u|≤d2≤ε成立;从而有
u=λθw3+u (35)
以及
θw3|≤ε (36)
将(35)代入***(31)可以得到
w &CenterDot; 1 = &lambda; &theta; w 2 - u 2 &theta; + 3 &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 2 = - u 2 &theta; + &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 3 = - &lambda; &theta; w 3 - u 2 &theta; w &CenterDot; 4 = - &lambda; &theta; w 4 - &lambda; &theta; w 3 - u 2 &theta; - - - ( 37 )
考虑闭环***的第二个状态w2满足的方程
w &CenterDot; 2 = - u 2 &theta; + &lambda; &theta; 2 f ( z 3 &theta; ) = - &sigma; &epsiv; 2 &theta; ( &lambda; &theta; w 2 + u 1 &theta; ) + &lambda; &theta; 2 f ( z 3 &theta; )
由于
z 3 &theta; = w 3 - w 4 &lambda; &theta; | w 3 | &le; &epsiv; 3 &theta; - &epsiv; 2 &theta; &lambda; &theta; | w 4 | &le; &epsiv; 4 &theta; - &epsiv; 3 &theta; &lambda; &theta; - - - ( 38 )
所以有下面求取函数
f ( z 3 &theta; ) = r &theta; &lsqb; z 3 &theta; r &theta; - s i n &lsqb; z 3 &theta; r &theta; &rsqb; &rsqb; , | z 3 &theta; | &Element; &lsqb; 0 , &epsiv; 4 &theta; - &epsiv; 2 &theta; &lambda; &theta; 2 &rsqb;
极大值,由于
| f ( z 3 &theta; ) | = r &theta; | s i n ( z 3 &theta; r &theta; ) - z 3 &theta; r &theta; | = f ( - z 3 &theta; )
所以只要假设z≥0.取其中a为大于0待定常数;那么
m a x { f ( z 3 &theta; ) } = r &theta; ( &epsiv; 4 &theta; - &epsiv; 2 &theta; r &theta; &lambda; &theta; 2 - s i n ( &epsiv; 4 &theta; - &epsiv; 2 &theta; r &theta; &lambda; &theta; 2 ) ) = r &theta; ( a - sin a ) = ( &epsiv; 4 &theta; - &epsiv; 2 &theta; ) ( a - sin a ) &lambda; &theta; 2 a
( &epsiv; 4 &theta; - &epsiv; 2 &theta; ) ( a - sin a ) a = &epsiv; 0 &theta;
取Lyapunov函数
<ε (39)成立,则存在一个数d3使得ε<d3≤ε;当λθw2>d3时,有
&sigma; &epsiv; 2 &theta; ( &lambda; &theta; w 2 + u 1 &theta; ) + &lambda; &theta; 2 f ( z 3 &theta; ) > &sigma; &epsiv; 2 &theta; ( d 3 - &epsiv; 1 &theta; ) - &epsiv; 0 &theta; = d 3 - &epsiv; 1 &theta; - &epsiv; 0 &theta; > 0
其中ε<d3<ε,所以因此
V &CenterDot; 3 ( w 2 ) = w 2 w &CenterDot; 2 < - | w 2 | ( d 3 - &epsiv; 1 &theta; - &epsiv; 0 &theta; ) - - - ( 40 )
类似地,如果λθw2<-d3,那么
&sigma; &epsiv; 2 &theta; ( &lambda; &theta; w 2 + u 1 &theta; ) + &lambda; &theta; 2 f ( z 3 &theta; ) < &sigma; &epsiv; 2 &theta; ( - d 3 + &epsiv; 1 &theta; ) + &epsiv; 0 &theta; = - d 3 + &epsiv; 1 &theta; + &epsiv; 0 &theta; < 0
由于2ε≤-d3<-ε,也就是因此
V &CenterDot; 3 ( w 2 ) = w 2 w &CenterDot; 2 < - | w 2 | ( d 3 - &epsiv; 1 &theta; - &epsiv; 0 &theta; ) - - - ( 41 )
综合(40)和(41)可知,如果(39)成立,则
V &CenterDot; 3 ( w 2 ) < - ( d 3 - &epsiv; 1 &theta; - &epsiv; 0 &theta; ) 2 V 3 ( w 2 ) , &ForAll; w 2 &Element; { w 2 : V 3 ( w 2 ) > d 3 2 2 &lambda; &theta; 2 }
根据Lyapunov稳定性理论,存在有限时间T3>t0,对于最终,对于有|λθw2|≤d3和|λθw2+u|≤d3≤ε成立;从而有
u=λθw1+u
将上式代入***(37)可以得到
w &CenterDot; 1 = - u 1 &theta; + 3 &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 2 = - &lambda; &theta; w 2 - u 1 &theta; + &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 3 = - &lambda; &theta; w 3 - &lambda; &theta; w 2 - u 1 &theta; w &CenterDot; 4 = - &lambda; &theta; w 4 - &lambda; &theta; w 3 - &lambda; &theta; w 2 - u 1 &theta; - - - ( 42 )
考虑闭环***的第一个状态w1满足的方程
w &CenterDot; 1 = - u 1 &theta; + 3 &lambda; &theta; 2 f ( z 3 &theta; ) = - &sigma; &epsiv; 1 &theta; ( &lambda; &theta; w 1 ) + 3 &lambda; &theta; 2 f ( z 3 &theta; )
取Lyapunov函数
3 ( &epsiv; 4 &theta; - &epsiv; 2 &theta; ) ( a - sin a ) a = &alpha;
如果不等式
3 ( &epsiv; 4 &theta; - &epsiv; 2 &theta; ) ( a - sin a ) a < &epsiv; 1 &theta; - - - ( 43 )
成立,则当λθw1时有
V &CenterDot; 4 ( w 1 ) = w 1 w &CenterDot; 1 &le; - | w 1 | ( &epsiv; 1 &theta; - &alpha; ) < 0
当λθw1<-ε时有
V &CenterDot; 4 ( w 1 ) = w 1 w &CenterDot; 1 &le; - | w 1 | ( &epsiv; 1 &theta; - &alpha; ) < 0
根据Lyapunov稳定性理论,存在有限时间T4>t0,对于有|λθw1|≤ε,从而有u=λθw1,将此式代入***(42)可以得到
w &CenterDot; 1 = - &lambda; &theta; w 1 + 3 &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 2 = - &lambda; &theta; w 2 - &lambda; &theta; w 1 + &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 3 = - &lambda; &theta; w 3 - &lambda; &theta; w 2 - &lambda; &theta; w 1 w &CenterDot; 4 = - &lambda; &theta; w 4 - &lambda; &theta; w 3 - &lambda; &theta; w 2 - &lambda; &theta; w 1 - - - ( 44 )
综合上述推导,如果不等式(26)、(32)、(39)、(43)成立,控制律(25)最终工作在线性区,闭环***可以写成(44);将不等式(26)、(32)、(39)、(43)综合写成
2 &epsiv; 3 &theta; < &epsiv; 4 &theta; 2 &epsiv; 2 &theta; < &epsiv; 3 &theta; 2 &epsiv; 1 &theta; + ( &epsiv; 4 &theta; - &epsiv; 2 &theta; ) ( a - sin a ) a < &epsiv; 2 &theta; 3 ( &epsiv; 4 &theta; - &epsiv; 2 &theta; ) ( a - s i n a ) a < &epsiv; 1 &theta; - - - ( 45 )
因此可以取
2 &epsiv; 3 &theta; = b&epsiv; 4 &theta; 2 &epsiv; 2 &theta; = b&epsiv; 3 &theta; 2 &epsiv; 1 &theta; + ( &epsiv; 4 &theta; - &epsiv; 2 &theta; ) ( a - sin a ) a < &epsiv; 2 &theta; 3 ( &epsiv; 4 &theta; - &epsiv; 2 &theta; ) ( a - s i n a ) a < &epsiv; 1 &theta; - - - ( 46 )
其中b<1是正的常数;解不等式(46)可得
&epsiv; 3 &theta; = b 2 &epsiv; 4 &theta; &epsiv; 2 &theta; = b 2 &epsiv; 3 &theta; = ( b 2 ) 2 &epsiv; 4 &theta; &epsiv; 1 &theta; < 1 2 &lsqb; &lsqb; b 2 &rsqb; 2 &epsiv; 4 &theta; - &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; ( a - sin a ) a &epsiv; 4 &theta; &rsqb; 3 &epsiv; 4 &theta; &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; ( a - sin a ) a < &epsiv; 1 &theta; - - - ( 47 )
显然ε存在的充分必要条件是
3 &epsiv; 4 &theta; &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; ( a - sin a ) a < 1 2 &lsqb; ( b 2 ) 2 &epsiv; 4 &theta; - &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; ( a - sin a ) a &epsiv; 4 &theta; &rsqb; - - - ( 48 )
由此解得
b > 28 a - 28 sin a 8 a - 7 sin a - - - ( 49 )
另一方面注意到
u m a x &theta; &GreaterEqual; &epsiv; 4 &theta; r &theta; = &epsiv; 4 &theta; &epsiv; 4 &theta; - &epsiv; 2 &theta; a&lambda; &theta; 2 = a&lambda; &theta; 2 &epsiv; 4 &theta; &epsiv; 4 &theta; - &epsiv; 2 &theta; = a&lambda; &theta; 2 1 - &lsqb; b 2 &rsqb; 2 - - - ( 50 )
其中umaxθ是给定的正的常数,代表四旋翼无人机俯仰角加速度允许的最大值;由上式解得λθ应满足不等式
&lambda; &theta; &le; u m a x &theta; a &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; - - - ( 51 )
进而取
&epsiv; 1 &theta; = 1 2 &lsqb; 1 2 &lsqb; &lsqb; b 2 &rsqb; 2 &epsiv; 4 &theta; - &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; ( a - sin a ) a &epsiv; 4 &theta; &rsqb; + 3 &epsiv; 4 &theta; &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; ( a - sin a ) a &rsqb; = 20 a - 20 sin a - 4 ab 2 + 5 b 2 sin a 16 a &epsiv; 4 &theta; - - - ( 52 )
总结可知,如果下面的一组条件满足
&lambda; &theta; &le; u m a x &theta; a &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; 28 a - 28 sin a 8 a - 7 sin a < b < 1 &epsiv; 4 &theta; > 0 &epsiv; 3 &theta; = b 2 &epsiv; 4 &theta; &epsiv; 2 &theta; = ( b 2 ) 2 &epsiv; 4 &theta; &epsiv; 1 &theta; = 20 a - 20 sin a - 4 ab 2 + 5 b 2 sin a 16 a &epsiv; 4 &theta; - - - ( 53 )
则如公式(25)所示的控制律工作在线性区,闭环***可以写成:
w &CenterDot; = - &lambda; &theta; 0 0 0 - &lambda; &theta; - &lambda; &theta; 0 0 - &lambda; &theta; - &lambda; &theta; - &lambda; &theta; 0 - &lambda; &theta; - &lambda; &theta; - &lambda; &theta; - &lambda; &theta; w 1 w 2 w 3 w 4 + f 1 f 2 0 0 - - - ( 54 )
其中
f 1 = 3 &lambda; &theta; 2 f ( z 3 &theta; ) , f 2 = &lambda; &theta; 2 f ( z 3 &theta; ) , f ( z 3 &theta; ) = r &theta; &lsqb; s i n &lsqb; z 3 &theta; r &theta; &rsqb; - z 3 &theta; r &theta; &rsqb; , z 3 &theta; = w 3 - w 4 &lambda; &theta;
步骤3.5:证明如公式(54)所示的闭环***的全局渐近稳定性:
对于闭环***(54),设
A 4 = - 1 0 0 0 - 1 - 1 0 0 - 1 - 1 - 1 0 - 1 - 1 - 1 - 1 , b 4 = 1 1 1 1 , F = f 1 f 2 0 0
取Lyapunov函数V5(w)=wTPw,其中P=I4为4阶单位矩阵,则
V &CenterDot; 5 ( w ) = w &CenterDot; T P w + w T P w &CenterDot; = ( &lambda; &theta; A 4 w + F ) T P w + w T P ( &lambda; &theta; A 4 w + F ) = &lambda; &theta; w T A 4 T P w + F T P w + &lambda; &theta; w T PA 4 w + w T P F = w T ( &lambda; &theta; A 4 T P + &lambda; &theta; PA 4 ) w + 2 F T P w = w T ( - &lambda; &theta; P - &lambda; &theta; b 4 b 4 T ) w + 2 F T P w = - &lambda; &theta; w T P w + 2 F T P w - &lambda; &theta; w T b 4 b 4 T w - - - ( 55 )
由于
2 F T P w = F T P 1 2 P 1 2 w + wP 1 2 P 1 2 F T = ( P 1 2 F ) T ( P 1 2 w ) + ( P 1 2 w ) T ( P 1 2 F ) &le; &lambda; &theta; 2 w T P w + 2 &lambda; &theta; F T P F - - - ( 56 )
则(55)可进一步写成
V &CenterDot; 5 ( w ) &le; - &lambda; &theta; w T P w + &lambda; &theta; 2 w T P w + 2 &lambda; &theta; F T P F - &lambda; &theta; w T b 4 b 4 T w = - &lambda; &theta; 2 w 2 + 2 &lambda; &theta; F T P F - &lambda; &theta; w T b 4 b 4 T w - - - ( 57 )
由于
2 &lambda; &theta; F T P F = 2 &lambda; &theta; 3 &lambda; &theta; 2 f ( z 3 &theta; ) &lambda; &theta; 2 f ( z 3 &theta; ) 0 0 3 &lambda; &theta; 2 f ( z 3 &theta; ) &lambda; &theta; 2 f ( z 3 &theta; ) 0 0 = 20 &lambda; &theta; 3 ( f ( z 3 &theta; ) ) 2 - - - ( 58 )
成立,从(57)可以推出
V &CenterDot; 5 ( w ) &le; - &lambda; &theta; 2 ( w 1 2 + w 2 2 + w 3 2 + w 4 2 ) + 20 &lambda; &theta; 3 f 2 ( z 3 &theta; ) - - - ( 59 )
另一方面,由于
20 &lambda; &theta; 3 f 2 ( z 3 &theta; ) z 3 &theta; 2 z 3 &theta; 2 = 20 &lambda; &theta; 3 f 2 ( z 3 &theta; ) z 3 &theta; 2 &lsqb; w 3 - w 4 &lambda; &theta; &rsqb; 2 &le; 20 &lambda; &theta; 3 f 2 ( z 3 &theta; ) z 3 &theta; 2 2 &lambda; &theta; 2 ( w 3 2 + w 4 2 ) = 40 &lambda; &theta; f 2 ( z 3 &theta; ) z 3 &theta; 2 ( w 3 2 + w 4 2 )
不等式(59)可以进一步写成
V &CenterDot; 5 ( w ) &le; - &lambda; &theta; 2 ( w 3 2 + w 4 2 ) + 40 &lambda; &theta; &lsqb; f ( z 3 &theta; ) z 3 &theta; &rsqb; 2 ( w 3 2 + w 4 2 ) - &lambda; &theta; 2 ( w 1 2 + w 2 2 ) = - &lsqb; &lambda; &theta; 2 - 40 &lambda; &theta; f 2 ( z 3 &theta; ) z 3 &theta; 2 &rsqb; ( w 3 2 + w 4 2 ) - &lambda; &theta; 2 ( w 1 2 + w 2 2 ) - - - ( 60 )
g ( z 3 ) = f ( z 3 &theta; ) z 3 &theta; = z 3 &theta; r &theta; - s i n ( z 3 &theta; r &theta; ) z 3 &theta; r &theta; = 1 - s i n ( z 3 &theta; r &theta; ) z 3 &theta; r &theta;
再令由于所以又由于所以l3∈[0,a];从而g(z)可以写成
g ( z 3 &theta; ) = 1 - sin l 3 l 3
由于函数在[0,π]上单调递增,所以当l3=a时g(z)取极大值因此(60)可以写成
V &CenterDot; 5 ( w ) &le; - &lsqb; &lambda; &theta; 2 - 40 &lambda; &theta; ( 1 - sin a a ) 2 &rsqb; ( w 3 2 + w 4 2 ) - &lambda; &theta; 2 ( w 1 2 + w 2 2 )
因此,如果
&lambda; &theta; 2 - 40 &lambda; &theta; ( 1 - sin a a ) 2 > 0
或者等价地
1 80 > 1 - sin a a - - - ( 61 )
则存在充分小的正数δθ使得
V &CenterDot; 5 ( w ) &le; - &delta; &theta; ( w 3 2 + w 4 2 ) - &lambda; &theta; 2 ( w 1 2 + w 2 2 )
根据Lyapunov稳定性定理,闭环***(54)是一致指数渐近稳定的;最后,解不等式(61)得到
a<0.8 (62)
综上,如果a满足不等式(62),则闭环***(54)是渐近稳定的。
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式步骤三中设计横滚通道控制***的嵌套饱和非线性控制律的具体设计过程为:
步骤4.1:将如公式(18)所示的横滚通道控制***变换成上三角非线性***:
对于如公式(18)所示的横滚通道控制***,设
以及
A 3 = 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 , b 3 = 0 0 0 1 - - - ( 64 )
其中为待设计的正的常数,对如公式(18)所示的横滚通道***作变换其中
根据(63)和(64)可推出
则其逆矩阵为
则如公式(18)所示的横滚通道控制***可以变换为
步骤4.2:设计横滚通道控制***的嵌套饱和非线性控制律uφ=-u,其中
分别是饱和值为ε‐ε的一般的饱和函数;是定义的中间参量;由于
上式恰好可以写成(3);
步骤4.3:建立保证控制律uφ=-u工作在线性区的条件:
考虑(67)和(68)组成的闭环***的最后一个状态v4满足的方程
v &CenterDot; 4 = - u 4 &phi; = - &sigma; &epsiv; 4 &phi; ( &lambda; &phi; v 4 + u 3 &phi; )
取Lyapunov函数
<ε (69)
则存在一个数d4使得ε<d4≤ε,当λφv4>d4时,有
&sigma; &epsiv; 4 &phi; ( &lambda; &phi; v 4 + u 3 &phi; ) > &sigma; &epsiv; 4 &phi; ( d 4 - &epsiv; 3 &phi; ) = d 4 - &epsiv; 3 &phi; > 0
其中0<d4<ε,所以因此
V &CenterDot; 6 ( v 4 ) = v 4 v &CenterDot; 4 < - | v 4 | ( d 4 - &epsiv; 3 &phi; ) - - - ( 70 )
类似地,如果λφv4<-d4,那么
&sigma; &epsiv; 4 &phi; ( &lambda; &phi; v 4 + u 3 &phi; ) < &sigma; &epsiv; 4 &phi; ( - d 4 + &epsiv; 3 &phi; ) = - d 4 + &epsiv; 3 &phi; < 0
由于2ε<-d4<0,也就是因此
V &CenterDot; 6 ( v 4 ) = v 4 v &CenterDot; 4 < - | v 4 | ( d 4 - &epsiv; 3 &phi; ) - - - ( 71 )
综合(70)和(71)可知,如果(69)成立,则
V &CenterDot; 6 ( v 4 ) < - ( d 4 - &epsiv; 3 &phi; ) 2 V 6 ( v 4 ) , &ForAll; v 4 &Element; { v 4 : V 6 ( v 4 ) > d 4 2 2 &lambda; &phi; 2 }
根据Lyapunov稳定性理论,存在有限时间T5>t0,对于最终对有|λφv4|≤d4和|λφv4+u|≤d4≤ε,从而有
u=λφv4+u (72)
以及
φv4|≤ε (73)
将(72)代入***(67)和(68),得到如下***
v &CenterDot; 1 = &lambda; &phi; v 2 + &lambda; &phi; v 3 - u 3 &phi; + 3 &lambda; &phi; 2 h ( z 3 &phi; ) v &CenterDot; 2 = &lambda; &phi; v 3 - u 3 &phi; + &lambda; &phi; 2 h ( z 3 &phi; ) v &CenterDot; 3 = - u 3 &phi; v &CenterDot; 4 = - &lambda; &phi; v 4 - u 3 &phi; - - - ( 74 )
考虑闭环***(74)的第三个状态v3满足的方程
v &CenterDot; 3 = - u 3 &phi; = - &sigma; &epsiv; 3 &phi; ( &lambda; &phi; v 3 + u 2 &phi; )
取Lyapunov函数
<ε (75)
则存在一个数d5使得ε<d5≤ε,当λφv3>d5时,有
&sigma; &epsiv; 3 &phi; ( &lambda; &phi; v 3 + u 2 &phi; ) > &sigma; &epsiv; 3 &phi; ( d 5 - &epsiv; 2 &phi; ) = d 5 - &epsiv; 2 &phi; > 0
其中0<d5<ε,所以因此
V &CenterDot; 7 ( v 3 ) = v 3 v &CenterDot; 3 < - | v 3 | ( d 5 - &epsiv; 2 &phi; ) - - - ( 76 )
类似地,如果λφv3<-d5,那么
&sigma; &epsiv; 3 &phi; ( &lambda; &phi; v 3 + u 2 &phi; ) < &sigma; &epsiv; 3 &phi; ( - d 5 + &epsiv; 2 &phi; ) = - d 5 + &epsiv; 2 &phi; < 0
由于2ε<-d5<0,也就是因此
V &CenterDot; 7 ( v 3 ) = v 3 v &CenterDot; 3 < - | v 3 | ( d 5 - &epsiv; 2 &phi; ) - - - ( 77 )
综合(76)和(77)可知,如果(75)成立,则
V &CenterDot; 7 ( v 3 ) < - ( d 5 - &epsiv; 2 &phi; ) 2 V 7 ( v 3 ) , &ForAll; v 3 &Element; { v 3 : V 7 ( v 3 ) > d 5 2 2 &lambda; &phi; 2 }
按照Lyapunov稳定性理论,存在有限时间T6>t0,对于最终,对于有|λφv3|≤d5和|λφv3+u|≤d5≤ε成立;从而有
u=λφv3+u (78)
以及
φv3|≤ε (79)
将(78)代入***(74)可以得到
v &CenterDot; 1 = &lambda; &phi; v 2 - u 2 &phi; + 3 &lambda; &phi; 2 h ( z 3 &phi; ) v &CenterDot; 2 = - u 2 &phi; + &lambda; &phi; 2 h ( z 3 &phi; ) v &CenterDot; 3 = - &lambda; &phi; v 3 - u 2 &phi; v &CenterDot; 4 = - &lambda; &phi; v 4 - &lambda; &phi; v 3 - u 2 &phi; - - - ( 80 )
考虑闭环***(74)的第二个状态v2满足的方程
v &CenterDot; 2 = - u 2 &phi; + &lambda; &phi; 2 h ( z 3 &phi; ) = - &sigma; &epsiv; 2 &phi; ( &lambda; &phi; v 2 + u 1 &phi; ) + &lambda; &phi; 2 h ( z 3 &phi; )
由于
z 3 &phi; = v 3 - v 4 &lambda; &phi; | v 3 | &le; &epsiv; 3 &phi; - &epsiv; 2 &phi; &lambda; &phi; | v 4 | &le; &epsiv; 4 &phi; - &epsiv; 3 &phi; &lambda; &phi; - - - ( 81 )
所以有下面求取函数
h ( z 3 &phi; ) = r &phi; &lsqb; z 3 &phi; r &phi; - s i n &lsqb; z 3 &phi; r &phi; &rsqb; &rsqb; , z 3 &phi; &Element; &lsqb; 0 , &epsiv; 4 &phi; - &epsiv; 2 &phi; &lambda; &phi; 2 &rsqb;
极大值,由于
| h ( z 3 &phi; ) | = r &phi; | s i n ( z 3 &phi; r &phi; ) - z 3 &phi; r &phi; | = h ( - z 3 &phi; )
所以只要假设z≥0;取其中c为大于0待定常数,那么
m a x { h ( z 3 &phi; ) } = r &phi; ( &epsiv; 4 &phi; - &epsiv; 2 &phi; r &phi; &lambda; &phi; 2 - s i n ( &epsiv; 4 &phi; - &epsiv; 2 &phi; r &phi; &lambda; &phi; 2 ) ) = r &phi; ( c - sin c ) = ( &epsiv; 4 &phi; - &epsiv; 2 &phi; ) ( c - sin c ) &lambda; &phi; 2 c
( &epsiv; 4 &phi; - &epsiv; 2 &phi; ) ( c - sin c ) c = &epsiv; 0 &phi;
取Lyapunov函数
<ε (82)
存在一个数d6使得ε<d6≤ε;当λφv2>d6时,有
&sigma; &epsiv; 2 &phi; ( &lambda; &phi; v 2 + u 1 &phi; ) + &lambda; &phi; 2 h ( z 3 &phi; ) > &sigma; &epsiv; 2 &phi; ( d 6 - &epsiv; 1 &phi; ) - &epsiv; 0 &phi; = d 6 - &epsiv; 1 &phi; - &epsiv; 0 &phi; > 0
其中ε<d6<ε,所以因此
V &CenterDot; 8 ( v 2 ) = v 2 v &CenterDot; 2 < - | v 2 | ( d 6 - &epsiv; 1 &phi; - &epsiv; 0 &phi; ) - - - ( 83 )
类似地,如果λφv2<-d6,那么
&sigma; &epsiv; 2 &phi; ( &lambda; &phi; v 2 + u 1 &phi; ) + &lambda; &phi; 2 h ( z 3 &phi; ) < &sigma; &epsiv; 2 &phi; ( - d 6 + &epsiv; 1 &phi; ) + &epsiv; 0 &phi; = - d 6 + &epsiv; 1 &phi; + &epsiv; 0 &phi; < 0
由于2ε≤-d6<-ε,也就是因此
V &CenterDot; 8 ( v 2 ) = v 2 v &CenterDot; 2 < - | v 2 | ( d 6 - &epsiv; 1 &phi; - &epsiv; 0 &phi; ) - - - ( 84 )
综合(83)和(84)可知,如果(82)成立,则
V &CenterDot; 8 ( v 2 ) < - ( d 6 - &epsiv; 1 &phi; - &epsiv; 0 &phi; ) 2 V 8 ( v 2 ) , &ForAll; v 2 &Element; { v 2 : V 8 ( v 2 ) > d 6 2 2 &lambda; &phi; 2 }
根据Lyapunov稳定性理论,存在有限时间T7>t0,对于最终,对于有|λφv2|≤d6和|λφv2+u|≤d6≤ε成立;从而有
u=λφv1+u
将上式代入***(80)可以得到
v &CenterDot; 1 = - u 1 &phi; + 3 &lambda; &phi; 2 h ( z 3 &phi; ) v &CenterDot; 2 = - &lambda; &phi; v 2 - u 1 &phi; + &lambda; &phi; 2 h ( z 3 &phi; ) v &CenterDot; 3 = - &lambda; &phi; v 3 - &lambda; &phi; v 2 - u 1 &phi; v &CenterDot; 4 = - &lambda; &phi; v 4 - &lambda; &phi; v 3 - &lambda; &phi; v 2 - u 1 &phi; - - - ( 85 )
考虑闭环***的第一个状态v1满足的方程
v &CenterDot; 1 = - u 1 &phi; + 3 &lambda; &phi; 2 h ( z 3 &phi; ) = - &sigma; &epsiv; 1 &phi; ( &lambda; &phi; v 1 ) + 3 &lambda; &phi; 2 h ( z 3 &phi; )
取Lyapunov函数
3 ( &epsiv; 4 &phi; - &epsiv; 2 &phi; ) ( c - sin c ) c = &beta;
如果不等式
3 ( &epsiv; 4 &phi; - &epsiv; 2 &phi; ) ( c - sin c ) c < &epsiv; 1 &phi; - - - ( 86 )
成立,则当λφv1
V &CenterDot; 9 ( v ) = v 1 v &CenterDot; 1 &le; - | v 1 | ( &epsiv; 1 &phi; - &beta; ) < 0
当λφv1<-ε时有
V &CenterDot; 9 ( v 1 ) = v 1 v &CenterDot; 1 &le; - | v 1 | ( &epsiv; 1 &phi; - &beta; ) < 0
根据Lyapunov稳定性理论,存在有限时间T8>t0,对于有|λφv1|≤ε,从而有u=λφv1,将此式代入***(82)可以得到
v &CenterDot; 1 = - &lambda; &phi; v 1 + 3 &lambda; &phi; 2 h ( z 3 &phi; ) v &CenterDot; 2 = - &lambda; &phi; v 2 - &lambda; &phi; v 1 + &lambda; &phi; 2 h ( z 3 &phi; ) v &CenterDot; 3 = - &lambda; &phi; v 3 - &lambda; &phi; v 2 - &lambda; &phi; v 1 v &CenterDot; 4 = - &lambda; &phi; v 4 - &lambda; &phi; v 3 - &lambda; &phi; v 2 - &lambda; &phi; v 1 - - - ( 87 )
综合上述推导,如果不等式(69)、(75)、(82)、(86)成立,控制律(68)最终工作在线性区,闭环***可以写成(87);将不等式(69)、(75)、(82)、(86)综合写成
2 &epsiv; 3 &phi; < &epsiv; 4 &phi; 2 &epsiv; 2 &phi; < &epsiv; 3 &phi; 2 &epsiv; 1 &phi; + ( &epsiv; 4 &phi; - &epsiv; 2 &phi; ) ( c - sin c ) c < &epsiv; 2 &phi; 3 ( &epsiv; 4 &phi; - &epsiv; 2 &phi; ) ( c - sin c ) c < &epsiv; 1 &phi; - - - ( 88 )
因此可以取
2 &epsiv; 3 &phi; = d&epsiv; 4 &phi; 2 &epsiv; 2 &phi; = d&epsiv; 3 &phi; 2 &epsiv; 1 &phi; + ( &epsiv; 4 &phi; - &epsiv; 2 ) ( c - sin c ) c < &epsiv; 2 &phi; 3 ( &epsiv; 4 &phi; - &epsiv; 2 &phi; ) ( c - sin c ) c < &epsiv; 1 &phi; - - - ( 89 )
其中d<1是正的常数;解不等式(89)可得
&epsiv; 3 &phi; = d 2 &epsiv; 4 &phi; &epsiv; 2 &phi; = d 2 &epsiv; 3 &phi; = ( d 2 ) 2 &epsiv; 4 &phi; &epsiv; 1 &phi; < 1 2 &lsqb; &lsqb; d 2 &rsqb; 2 &epsiv; 4 &phi; - &lsqb; 1 - &lsqb; d 2 &rsqb; 2 &rsqb; ( c - sin c ) c &epsiv; 4 &phi; &rsqb; 3 &epsiv; 4 &phi; &lsqb; 1 - &lsqb; d 2 &rsqb; 2 &rsqb; ( c - sin c ) c < &epsiv; 1 &phi; - - - ( 90 )
显然ε存在的充分必要条件是
3 &epsiv; 4 &phi; &lsqb; 1 - &lsqb; d 2 &rsqb; 2 &rsqb; ( c - sin c ) c < 1 2 &lsqb; &lsqb; d 2 &rsqb; 2 &epsiv; 4 &phi; - &lsqb; 1 - &lsqb; d 2 &rsqb; 2 &rsqb; ( c - sin c ) c &epsiv; 4 &phi; &rsqb; - - - ( 91 )
由此解得
d > 28 c - 28 sin c 8 c - 7 sin c - - - ( 92 )
另一方面注意到
u m a x &phi; &GreaterEqual; &epsiv; 4 &phi; r &phi; = &epsiv; 4 &phi; &epsiv; 4 &phi; - &epsiv; 2 &phi; c&lambda; &phi; 2 = c&lambda; &phi; 2 &epsiv; 4 &phi; &epsiv; 4 &phi; - &epsiv; 2 &phi; = c&lambda; &phi; 2 1 - ( d 2 ) 2 - - - ( 93 )
其中umaxφ是给定的正的常数,代表四旋翼无人机横滚角加速度允许的最大值;由上式解得λφ应满足不等式:
&lambda; &phi; &le; u m a x &phi; c &lsqb; 1 - ( d 2 ) 2 &rsqb; - - - ( 94 )
进而取
&epsiv; 1 &phi; = 1 2 &lsqb; 1 2 &lsqb; &lsqb; d 2 &rsqb; 2 &epsiv; 4 &phi; - &lsqb; 1 - &lsqb; d 2 &rsqb; 2 &rsqb; ( c - sin c ) c &epsiv; 4 &phi; &rsqb; + 3 &epsiv; 4 &phi; &lsqb; 1 - &lsqb; d 2 &rsqb; 2 &rsqb; ( c - sin c ) c &rsqb; = 20 c - 20 sin c - 4 cd 2 + 5 d 2 sin c 16 c &epsiv; 4 &phi; - - - ( 95 )
总结可知,如果下面的一组条件满足
&lambda; &phi; &le; u m a x &phi; c &lsqb; 1 - ( d 2 ) 2 &rsqb; 28 c - 28 sin c 8 c - 7 sin c < d < 1 &epsiv; 4 &phi; > 0 &epsiv; 3 &phi; = d 2 &epsiv; 4 &phi; &epsiv; 2 &phi; = ( d 2 ) 2 &epsiv; 4 &phi; &epsiv; 1 &phi; = 20 c - 20 sin c - 4 cd 2 + 5 d 2 sin c 16 c &epsiv; 4 &phi; - - - ( 96 )
则如公式(68)所示的控制律工作在线性区,闭环***可以写成:
v &CenterDot; = - &lambda; &phi; 0 0 0 - &lambda; &phi; - &lambda; &phi; 0 0 - &lambda; &phi; - &lambda; &phi; - &lambda; &phi; 0 - &lambda; &phi; - &lambda; &phi; - &lambda; &phi; - &lambda; &phi; v 1 v 2 v 3 v 4 + h 1 h 2 0 0 - - - ( 97 )
其中
h 1 = 3 &lambda; &phi; 2 h ( z 3 &phi; ) , h 2 = &lambda; &phi; 2 h ( z 3 &phi; ) , h ( z 3 &phi; ) = r &phi; ( s i n z 3 &phi; r &phi; - z 3 &phi; r &phi; ) , z 3 &phi; = v 3 - v 4 &lambda; &phi;
步骤4.4:证明如公式(97)所示的闭环***的全局渐近稳定性:
对于闭环***(97),设
A 5 = - 1 0 0 0 - 1 - 1 0 0 - 1 - 1 - 1 0 - 1 - 1 - 1 - 1 , b 5 = 1 1 1 1 , H = h 1 h 2 0 0
取Lyapunov函数V0(v)=vTPv,则
V &CenterDot; 0 ( v ) = v &CenterDot; T P v + v T P v &CenterDot; = ( &lambda; &phi; A 4 v + H ) T P v + v T P ( &lambda; &phi; A 4 v + H ) = &lambda; &phi; v T A 4 T P v + H T P v + &lambda; &phi; v T PA 4 v + v T P H = v T ( &lambda; &phi; A 4 T P + &lambda; &phi; PA 4 ) v + 2 H T P v = v T ( - &lambda; &phi; P - &lambda; &phi; b 4 b 4 T ) v + 2 H T P v = - &lambda; &phi; v T P v + 2 H T P v - &lambda; &phi; v T b 4 b 4 T v - - - ( 98 )
由于
2 H T P v = H T P 1 2 P 1 2 v + vP 1 2 P 1 2 H T = ( P 1 2 H ) T ( P 1 2 v ) + ( P 1 2 v ) T ( P 1 2 H ) &le; &lambda; &phi; 2 v T P v + 2 &lambda; &phi; H T P H - - - ( 99 )
则(98)可进一步写成
V &CenterDot; 0 ( v ) &le; - &lambda; &phi; v T P v + &lambda; &phi; 2 v T P v + 2 &lambda; &phi; H T P H - &lambda; &phi; v T b 4 b 4 T v = - &lambda; &phi; 2 v 2 + 2 &lambda; &phi; H T P H - &lambda; &phi; v T b 4 b 4 T v - - - ( 100 )
由于
2 &lambda; &phi; H T P H = 2 &lambda; &phi; 3 &lambda; &phi; 2 h ( z 3 &phi; ) &lambda; &phi; 2 h ( z 3 &phi; ) 0 0 3 &lambda; &phi; 2 h ( z 3 &phi; ) &lambda; &phi; 2 h ( z 3 &phi; ) 0 0 = 20 &lambda; &phi; 3 ( h ( z 3 &phi; ) ) 2 - - - ( 101 )
则从(100)可以推出
V &CenterDot; 0 ( v ) &le; - &lambda; &phi; 2 ( v 1 2 + v 2 2 + v 3 2 + v 4 2 ) + 20 &lambda; &phi; 3 h 2 ( z 3 &phi; ) - - - ( 102 )
另一方面,由于
20 &lambda; &phi; 3 h 2 ( z 3 &phi; ) z 3 &phi; 2 z 3 &phi; 2 = 20 &lambda; &phi; 3 h 2 ( z 3 &phi; ) z 3 &phi; 2 ( v 3 - v 4 &lambda; &phi; ) 2 &le; 20 &lambda; &phi; 3 h 2 ( z 3 &phi; ) z 3 &phi; 2 2 &lambda; &phi; 2 ( v 3 2 + v 4 2 ) = 40 &lambda; &phi; h 2 ( z 3 &phi; ) z 3 &phi; 2 ( v 3 2 + v 4 2 )
则(102)可以进一步写成
V &CenterDot; 0 ( v ) &le; - &lambda; &phi; 2 ( v 3 2 + v 4 2 ) + 40 &lambda; &phi; &lsqb; h ( z 3 &phi; ) z 3 &phi; &rsqb; 2 ( v 3 2 + v 4 2 ) - &lambda; &phi; 2 ( v 1 2 + v 2 2 ) = - &lsqb; &lambda; &phi; 2 - 40 &lambda; &phi; h 2 ( z 3 &phi; ) z 3 &phi; 2 &rsqb; ( v 3 2 + v 4 2 ) - &lambda; &phi; 2 ( v 1 2 + v 2 2 ) - - - ( 103 )
p ( z 3 &phi; ) = h ( z 3 &phi; ) z 3 &phi; = z 3 &phi; r &phi; - s i n ( z 3 &phi; r &phi; ) z 3 &phi; r &phi; = 1 - s i n ( z 3 &phi; r &phi; ) z 3 &phi; r &phi;
再令由于所以又由于所以k3∈[0,c],从而p(z)可以写成
p ( z 3 &phi; ) = 1 - sin k 3 k 3
对于函数在[0,π]上单调递增,所以p(z)当k3=c时取极大值为因此(103)可以写成
V &CenterDot; 0 ( v ) &le; - &lsqb; &lambda; &phi; 2 - 40 &lambda; &phi; ( 1 - sin c c ) 2 &rsqb; ( v 3 2 + v 4 2 ) - &lambda; &phi; 2 ( v 1 2 + v 2 2 )
因此,如果
&lambda; &phi; 2 - 40 &lambda; &phi; ( 1 - sin c c ) 2 > 0
或者等价地
1 80 > 1 - sin c c - - - ( 104 )
则存在充分小的正数δφ使得
V &CenterDot; 0 ( v ) &le; - &delta; &phi; ( v 3 2 + v 4 2 ) - &lambda; &phi; 2 ( v 1 2 + v 2 2 )
根据Lyapunov稳定性定理,闭环***(97)是一致指数渐近稳定的;最后,解不等式(101)得到
c<0.8 (105)
综上,如果c满足不等式(105),则闭环***(97)是渐近稳定的。
其它步骤及参数与具体实施方式一至三之一相同。
具体实施例
直接针对原始非线性***(4)进行仿真分析。对于俯仰通道控制***的控制律(1),取a=0.5,λθ=0.8,b=0.99,rθ=2;对于横滚通道控制***的控制律(3),取c=0.5,λφ=0.8,d=0.99,rφ=2。由前述分析过程知
εθ=[ε]T
可设计如下
&epsiv; 4 &theta; = 4 , &epsiv; 3 &theta; = 1.98 , &epsiv; 2 &theta; = 0.9801 , &epsiv; 1 &theta; = 0.4004 , &epsiv; 4 &phi; = 4 &epsiv; 3 &phi; = 1.98 &epsiv; 2 &phi; = 0.9801 &epsiv; 1 &phi; = 0.4004
在仿真中设定俯仰通道和横滚通道允许的最大角加速度为2rad/s2,四旋翼无人机质量为482g;在地理坐标系中期望位移的控制目标为(X,Y)=(0,0),其初始值为(X0,Y0)=(5,5)。姿态角的控制目标为(θ,φ)=(0,0),其初始值设为(θ00)=(0.2,0.2)。仿真结果如图2-3所示。图2为地理坐标系下X和Y方向位移仿真图,图3为地理坐标系下俯仰角θ和横滚角φ仿真图。
仿真结果显示,在地理坐标系中,在控制律τθ和τφ的作用下,闭环***具有非常好的动态特性,在地理坐标系下X,Y方向的位移及俯仰角θ和横滚角φ分别能够快速地达到设定值。这表明所设计的嵌套饱和非线性控制方法对于具有执行器饱和的四旋翼无人机控制***具有超调小、收敛快等优良的控制性能。

Claims (4)

1.四旋翼无人机控制***的嵌套饱和非线性设计方法,其特征在于包括以下步骤:
步骤一:对四旋翼无人机控制***进行状态变换,将其转化为前馈型非线性控制***;
步骤二:设计四旋翼无人机俯仰通道控制***的嵌套饱和非线性控制律
&tau; &theta; = - &epsiv; 4 &theta; r &theta; &sigma; &lsqb; r &theta; &lambda; &theta; w 4 &epsiv; 4 &theta; + r &theta; &epsiv; 3 &theta; &epsiv; 4 &theta; &sigma; &lsqb; &lambda; &theta; w 3 &epsiv; 3 &theta; + &epsiv; 2 &theta; &epsiv; 3 &theta; &sigma; &lsqb; &lambda; &theta; w 2 &epsiv; 2 &theta; + &epsiv; 1 &theta; &epsiv; 2 &theta; &sigma; &lsqb; &lambda; &theta; w 1 &epsiv; 1 &theta; &rsqb; &rsqb; &rsqb; &rsqb; - - - ( 1 )
σ(·)为标准的饱和函数,σ(·)定义为
&sigma; ( x &prime; ) = 1 , x &prime; > 1 x &prime; , - 1 &le; x &prime; &le; 1 - 1 , x &prime; < - 1 - - - ( 2 )
x′表示σ(x′)的自变量;w4,w3,w2,w1为四旋翼俯仰通道控制***的状态变量;λθ,ε,ε,ε,ε,rθ为满足下式的参数
&lambda; &theta; &le; u m a x &theta; a &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; &epsiv; 4 &theta; > 0 &epsiv; 3 &theta; = b 2 &epsiv; 4 &theta; &epsiv; 2 &theta; = ( b 2 ) 2 &epsiv; 4 &theta; &epsiv; 1 &theta; = 20 a - 20 sin a - 4 ab 2 + 5 b 2 sin a 16 a &epsiv; 4 &theta; r &theta; = &epsiv; 4 &theta; - &epsiv; 2 &theta; a&lambda; &theta; 2
a和b是限定λθ、ε、ε、ε、ε、rθ而选取的参数,其中umaxθ是给定的正的常数,代表四旋翼无人机俯仰角加速度允许的最大值;参数λθ是待设计的正常数;
步骤三:设计横滚通道控制***的嵌套饱和非线性控制律
σ(·)为标准的饱和函数;v4,v3,v2,v1为四旋翼横滚通道控制***的状态变量; 为满足下式的参数
c和d是限定而选取的参数,其中 是给定的正的常数,代表四旋翼无人机横滚角加速度允许的最大值;参数为待设计的正常数。
2.根据权利要求1所述的四旋翼无人机控制***的嵌套饱和非线性设计方法,其特征在于步骤一所述的将四旋翼无人机控制***转化为前馈型非线性控制***的具体过程如下:
四旋翼无人机***,其模型为
其中:
u:四旋翼无人机四个电机的总输入量;
地理坐标系E:O-XYZ,
X表示地理坐标系E下X方向位移;
Y表示地理坐标系E下Y方向位移;
Z表示地理坐标系E下Z方向位移;
机体坐标系B:o-xyz,
x:机体坐标系B下x方向位移;
y:机体坐标系B下y方向位移;
z:机体坐标系B下z方向位移;
m:四旋翼无人机的质量;
g:重力加速度;
横滚角的角加速度;
τθ:俯仰角的角加速度;
偏航角的角加速度;
θ:俯仰角,定义为机体轴ox与水平面OXY平面上的夹角,ox向上为正;
横滚角,定义为无人机对称平面oxz与包含ox轴的与水平面垂直的铅垂线平面之间的夹角,向右滚转时为正;
ψ:偏航角,定义为机体轴ox在水平面上的投影与机体坐标系轴ox之间的夹角,无人机右偏航时形成的角度为正;
机体坐标系B和地理坐标系E通过矩阵R相联系:
机体坐标系下的加速度向量作如下表示
m x &CenterDot;&CenterDot; y &CenterDot;&CenterDot; z &CenterDot;&CenterDot; = mR T X &CenterDot;&CenterDot; Y &CenterDot;&CenterDot; Z &CenterDot;&CenterDot; = R T m X &CenterDot;&CenterDot; m Y &CenterDot;&CenterDot; m Z &CenterDot;&CenterDot; - - - ( 5 )
将式(4)和R代入到式(5)得到
m x &CenterDot;&CenterDot; = m g s i n &theta; - - - ( 6 )
考虑俯仰通道控制***为
x &CenterDot;&CenterDot; = g sin &theta; &theta; &CenterDot;&CenterDot; = &tau; &theta; - - - ( 8 )
取状态变量x=x,x=θ,
x &CenterDot; 1 &theta; = x 2 &theta; x &CenterDot; 2 &theta; = gx 3 &theta; + g ( s i n ( x 3 &theta; ) - x 3 &theta; ) x &CenterDot; 3 &theta; = x 4 &theta; x &CenterDot; 4 &theta; = &tau; &theta; - - - ( 9 )
令y=rθx,y=rθx,y=rθx,y=rθx,uθ=rθτθ,则公式(9)变换成
y &CenterDot; 1 &theta; = y 2 &theta; y &CenterDot; 2 &theta; = gy 3 &theta; + r &theta; g ( s i n ( y 3 &theta; r &theta; ) - y 3 &theta; r &theta; ) y &CenterDot; 3 &theta; = y 4 &theta; y &CenterDot; 4 &theta; = u &theta; - - - ( 10 )
z 1 &theta; = y 1 &theta; g z 2 &theta; = y 2 &theta; g z 3 &theta; = y 3 &theta; z 4 &theta; = y 4 &theta; - - - ( 11 )
则如公式(9)所示的俯仰通道控制***被变换成如下的前馈型非线性***
z &CenterDot; 1 &theta; = z 2 &theta; z &CenterDot; 2 &theta; = z 3 &theta; + r &theta; ( s i n ( z 3 &theta; r &theta; ) - z 3 &theta; r &theta; ) z &CenterDot; 3 &theta; = z 4 &theta; z &CenterDot; 4 &theta; = u &theta; - - - ( 12 )
考虑横滚通道控制***为
在设计横滚通道控制律时认为俯仰通道的俯仰角θ已经收敛到零,所以公式(13)写成
取状态变量
则如公式(14)所示的横滚通道控制***被变换成如下的前馈型非线性***
3.根据权利要求2所述的四旋翼无人机控制***的嵌套饱和非线性设计方法,其特征在于步骤二中设计俯仰通道控制***的嵌套饱和非线性控制律的具体设计过程为:
步骤3.1:定义一般的饱和函数:
σε(.)为一般的饱和函数,按如下方式进行定义
&sigma; &epsiv; ( x &prime; ) = &epsiv; , x &prime; > &epsiv; x &prime; , - &epsiv; &le; x &prime; &le; &epsiv; - &epsiv; , x &prime; < - &epsiv; - - - ( 19 )
ε表示一般的饱和函数的饱和值;如果ε=1则σ1(x′)=σ(x′)为(2)式定义的标准饱和函数;
步骤3.2:将如公式(12)所示的俯仰通道控制***变换成上三角非线性***:
对于如公式(12)所示的俯仰通道控制***,设
A 0 = 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 , b 0 = 0 0 0 1 - - - ( 20 )
以及
A 1 = 0 &lambda; &theta; &lambda; &theta; &lambda; &theta; 0 0 &lambda; &theta; &lambda; &theta; 0 0 0 &lambda; &theta; 0 0 0 0 , b 1 = 1 1 1 1 - - - ( 21 )
其中λθ为待设计的正的常数;对如公式(12)所示的俯仰通道控制***作变换w=Tθzθ
zθ=[z,z,z,z]T,w=[w1,w2,w3,w4]T
T &theta; = b 1 A 1 b 1 A 1 2 b 1 A 1 3 b 1 b 0 A 0 b 0 A 0 2 b 0 A 0 3 b 0 - 1 - - - ( 22 )
根据(20)和(21)能够推出
T &theta; = &lambda; &theta; 3 3 &lambda; &theta; 2 3 &lambda; &theta; 1 0 &lambda; &theta; 2 2 &lambda; &theta; 1 0 0 &lambda; &theta; 1 0 0 0 1 - - - ( 23 )
其逆矩阵为
T &theta; - 1 = 1 &lambda; &theta; 3 - 3 &lambda; &theta; 3 3 &lambda; &theta; 3 - 1 &lambda; &theta; 3 0 1 &lambda; &theta; 2 - 2 &lambda; &theta; 2 1 &lambda; &theta; 2 0 0 1 &lambda; &theta; - 1 &lambda; &theta; 0 0 0 1
f ( z 3 &theta; ) = r &theta; ( s i n ( z 3 &theta; r &theta; ) - z 3 &theta; r &theta; )
则如公式(12)所示的俯仰通道控制***变换为
w &CenterDot; 1 = &lambda; &theta; w 2 + &lambda; &theta; w 3 + &lambda; &theta; w 4 + u &theta; + 3 &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 2 = &lambda; &theta; w 3 + &lambda; &theta; w 4 + u &theta; + &lambda; &theta; 2 f ( z 3 &theta; ) w &CenterDot; 3 = &lambda; &theta; w 4 + u &theta; w &CenterDot; 4 = u &theta; - - - ( 24 )
步骤3.3:设计俯仰通道控制***的嵌套饱和非线性控制律uθ=-u,其中
u 4 &theta; = &sigma; &epsiv; 4 &theta; ( &lambda; &theta; w 4 + u 3 &theta; ) u 3 &theta; = &sigma; &epsiv; 3 &theta; ( &lambda; &theta; w 3 + u 2 &theta; ) u 2 &theta; = &sigma; &epsiv; 2 &theta; ( &lambda; &theta; w 2 + u 1 &theta; ) u 1 &theta; = &sigma; &epsiv; 1 &theta; ( &lambda; &theta; w 1 ) - - - ( 25 )
分别是饱和值为ε‐ε的一般的饱和函数;u—u是定义的中间参量;由于上式恰好写成(1);
步骤3.4:建立保证控制律uθ=-u工作在线性区的条件:
&lambda; &theta; &le; u m a x &theta; a &lsqb; 1 - &lsqb; b 2 &rsqb; 2 &rsqb; 28 a - 28 sin a 8 a - 7 sin a < b < 1 &epsiv; 4 &theta; > 0 &epsiv; 3 &theta; = b 2 &epsiv; 4 &theta; &epsiv; 2 &theta; = ( b 2 ) 2 &epsiv; 4 &theta; &epsiv; 1 &theta; = 20 a - 20 sin a - 4 ab 2 + 5 b 2 sin a 16 a &epsiv; 4 &theta; - - - ( 53 )
则如公式(25)所示的控制律工作在线性区,闭环***写成:
w &CenterDot; = - &lambda; &theta; 0 0 0 - &lambda; &theta; - &lambda; &theta; 0 0 - &lambda; &theta; - &lambda; &theta; - &lambda; &theta; 0 - &lambda; &theta; - &lambda; &theta; - &lambda; &theta; - &lambda; &theta; w 1 w 2 w 3 w 4 + f 1 f 2 0 0 - - - ( 54 )
其中
f 1 = 3 &lambda; &theta; 2 f ( z 3 &theta; ) , f 2 = &lambda; &theta; 2 f ( z 3 &theta; ) , f ( z 3 &theta; ) = r &theta; &lsqb; s i n &lsqb; z 3 &theta; r &theta; &rsqb; - z 3 &theta; r &theta; &rsqb; , z 3 &theta; = w 3 - w 4 &lambda; &theta;
步骤3.5:证明如公式(54)所示的闭环***全局渐近稳定性,并确定a<0.8。
4.根据权利要求3所述的四旋翼无人机控制***的嵌套饱和非线性设计方法,其特征在于步骤三中设计横滚通道控制***的嵌套饱和非线性控制律的具体设计过程为:
步骤4.1:将如公式(18)所示的横滚通道控制***变换成上三角非线性***:
对于如公式(18)所示的横滚通道控制***,设
以及
A 3 = 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 , b 3 = 0 0 0 1 - - - ( 64 )
其中为待设计的正的常数,对如公式(18)所示的横滚通道***作变换其中
v=[v1,v2,v3,v4]T
根据(63)和(64)可推出
则其逆矩阵为
则如公式(18)所示的横滚通道控制***变换为
步骤4.2:设计横滚通道控制***的嵌套饱和非线性控制律其中
分别是饱和值为的一般的饱和函数;;是定义的中间参量;由于上式恰好写成(3);
步骤4.3:建立保证控制律工作在线性区的条件:
则如公式(68)所示的控制律工作在线性区,闭环***写成:
其中
步骤4.4:证明如公式(97)所示的闭环***全局渐近稳定性,并确定c<0.8。
CN201610494491.9A 2016-06-29 2016-06-29 四旋翼无人机控制***的嵌套饱和非线性设计方法 Active CN105912826B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610494491.9A CN105912826B (zh) 2016-06-29 2016-06-29 四旋翼无人机控制***的嵌套饱和非线性设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610494491.9A CN105912826B (zh) 2016-06-29 2016-06-29 四旋翼无人机控制***的嵌套饱和非线性设计方法

Publications (2)

Publication Number Publication Date
CN105912826A true CN105912826A (zh) 2016-08-31
CN105912826B CN105912826B (zh) 2019-01-08

Family

ID=56758889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610494491.9A Active CN105912826B (zh) 2016-06-29 2016-06-29 四旋翼无人机控制***的嵌套饱和非线性设计方法

Country Status (1)

Country Link
CN (1) CN105912826B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748491A (zh) * 2017-09-21 2018-03-02 中国科学院长春光学精密机械与物理研究所 多旋翼飞行器偏航抗饱和控制方法及多旋翼飞行器
CN110147113A (zh) * 2019-04-28 2019-08-20 南京邮电大学 一种基于级联***的四旋翼携带载荷控制方法和***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965414A (zh) * 2015-06-30 2015-10-07 天津大学 针对四旋翼无人机执行器部分失效的容错控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965414A (zh) * 2015-06-30 2015-10-07 天津大学 针对四旋翼无人机执行器部分失效的容错控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIN ZHOU: "Global stabilization of periodic linear systems by bounded controls with applications to spacecraft magnetic attitude control", 《AUTOMATICA》 *
QIANWANG等: "Robust gain scheduled control of spacecraft rendezvous system subject to input saturation", 《AEROSPACE SCIENCE AND TECHNOLOGY》 *
程桂芳 等: "一类非线性前馈***基于饱和函数的镇定问题", 《河南科学》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107748491A (zh) * 2017-09-21 2018-03-02 中国科学院长春光学精密机械与物理研究所 多旋翼飞行器偏航抗饱和控制方法及多旋翼飞行器
CN107748491B (zh) * 2017-09-21 2019-11-15 中国科学院长春光学精密机械与物理研究所 多旋翼飞行器偏航抗饱和控制方法及多旋翼飞行器
CN110147113A (zh) * 2019-04-28 2019-08-20 南京邮电大学 一种基于级联***的四旋翼携带载荷控制方法和***
CN110147113B (zh) * 2019-04-28 2022-05-17 南京邮电大学 一种基于级联***的四旋翼携带载荷控制方法和***

Also Published As

Publication number Publication date
CN105912826B (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
Shao et al. Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer
Zheng et al. Finite-time path following control for a stratospheric airship with input saturation and error constraint
Chen et al. Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV
CN109189087B (zh) 一种垂直起降重复使用运载器的自适应容错控制方法
Cong et al. Distributed attitude synchronization of formation flying via consensus-based virtual structure
CN104238357A (zh) 一种近空间飞行器的容错滑模控制方法
CN111142562B (zh) 基于应力矩阵的混合条件约束下的编队变换控制方法
Lee Geometric controls for a tethered quadrotor UAV
Bonna et al. Trajectory tracking control of a quadrotor using feedback linearization
Chen et al. Characteristic model-based discrete-time sliding mode control for spacecraft with variable tilt of flexible structures
CN108804846A (zh) 一种非合作目标组合体航天器的数据驱动姿态控制器设计方法
CN105912826A (zh) 四旋翼无人机控制***的嵌套饱和非线性设计方法
Zeghlache et al. Adaptive type-2 fuzzy sliding mode control using supervisory type-2 fuzzy control for 6 DOF octorotor aircraft
Zolotukhin et al. Aircraft attitude control
Lei et al. Attitude tracking control for Mars entry vehicle via TS model with time-varying input delay
Khelfi et al. Robust control with sliding mode for a quadrotor unmanned aerial vehicle
Wang et al. General formation control for multi-agent systems with double-integrator dynamics
Gu et al. Geometry-based adaptive tracking control for an underactuated small-size unmanned helicopter
Zhu et al. A PID based approximation-free controller with prescribed performance function for model helicopter attitude control
Falconi et al. Novel stability analysis of direct MRAC with redundant inputs
Chen Random fuzzy slow state feedback control for networked two time-scale nonlinear systems with time-delay and data packets dropout
Tan et al. Characteristic model–based generalized predictive control and its application to the parafoil and payload system
Vang et al. Geometric attitude control via contraction on manifolds with automatic gain selection
Zhou et al. Robust adaptive attitude control of the quad-rotor uav based on the lqr and neso technique
Zhang et al. The robust maneuver flight control of hypersonic glide vehicles with input saturation using disturbance observer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191213

Address after: 150001 No. 434, postal street, Nangang District, Heilongjiang, Harbin

Patentee after: Harbin Institute of Technology National University Science Park Development Co., Ltd.

Address before: 150001 Harbin, Nangang, West District, large straight street, No. 92

Patentee before: Harbin Institute of Technology

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200509

Address after: 610000 5 / F, building 4, Tianfu international financial center, No. 996, north section of Tianfu Avenue, Chengdu high tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu [40530-40543]

Patentee after: Chengdu Sichuan Harbin Industrial Robot and Intelligent Equipment Technology Research Institute Co.,Ltd.

Address before: 150001 No. 434, postal street, Nangang District, Heilongjiang, Harbin

Patentee before: Harbin Institute of Technology National University Science Park Development Co., Ltd.