CN105895957B - 一种电池液及锂离子电池 - Google Patents

一种电池液及锂离子电池 Download PDF

Info

Publication number
CN105895957B
CN105895957B CN201610499049.5A CN201610499049A CN105895957B CN 105895957 B CN105895957 B CN 105895957B CN 201610499049 A CN201610499049 A CN 201610499049A CN 105895957 B CN105895957 B CN 105895957B
Authority
CN
China
Prior art keywords
electrolyte
unsubstituted
substituted
battery
sulfone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610499049.5A
Other languages
English (en)
Other versions
CN105895957A (zh
Inventor
王珂
谢岚
史松君
王耀辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Contemporary Amperex Technology Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Priority to CN201610499049.5A priority Critical patent/CN105895957B/zh
Publication of CN105895957A publication Critical patent/CN105895957A/zh
Application granted granted Critical
Publication of CN105895957B publication Critical patent/CN105895957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本申请涉及一种电解液,包括有机溶剂、电解质和添加剂,所述添加剂含有砜‑三氟化硼配位化合物和含有硫氧双键的环状酯化合物;当电解液中同时包括砜‑三氟化硼配位化合物和含有硫氧双键的环状酯化合物时,含有硫氧双键的环状酯化合物可以在负极形成良好的SEI膜,抑制电解液在负极表面的分解,砜‑三氟化硼配位化合物可以与正极材料相互作用,有效减少电解液在正极氧化,能够提高锂离子电池在常温循环和存储性能,由于二者的协同作用,电池的高温下的循环性能以及高温下的存储性能也得到较大的提升。

Description

一种电池液及锂离子电池
技术领域
本申请涉及锂电池技术领域,具体涉及一种电解液及锂离子电池。
背景技术
与传统的二次电池相比,锂离子电池具有工作电压高、体积小、质量轻、能量密度高、无记忆效应、无污染,以及自放电小、循环寿命长等优点。1990年,日本Sony公司生产出第一块锂离子电池,掀起了锂离子电池的商业化浪潮。近年来,锂离子二次电池除了应用在消费类电子产品领域,还广泛应用在电动汽车上,并被视为解决汽车尾气污染、减少化石能源消耗的重要手段。目前,电动汽车的发展瓶颈之一就是使用寿命短和安全性隐患,尤其对于高电压镍锰、三元等材料的电解液氧化分解更严重,导致的安全隐患更大。为了提升锂离子电池的循环性能和安全性能,除了寻求新型的正负极材料,开发新的电解液配方也是一种重要的解决方案。锂离子电池非水电解液主要是由电解质溶解在有机溶剂中形成的。此外,电解液中还包含一定的添加剂,用于促进石墨负极的成膜、提升电解液的电导率、降低电池内阻、改善电池的储存性能、提升电池的循环性能等等。
发明内容
本申请的目的之一在于提供一种电解液。
本申请的目的之二在于提供一种锂离子电池。
本申请的具体技术方案为:
本申请涉及的一种电解液,包括有机溶剂、电解质和添加剂,所述添加剂含有砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物。
优选的,所述砜-三氟化硼配位化合物中的砜选自结构式ⅠA和ⅠB所示化合物中的至少一种,
R11、R12各自独立地选自取代或未取代的C1~20烷基、取代或未取代的C2~20的烯基、取代或未取代的C6~26的芳基、取代或未取代的C1~20的烷氧基、取代或未取代的C6~26的芳氧基;
R13、R14各自独立地选自取代或未取代的C1~5的亚烷基、取代或未取代的C2~5的亚烯基;
其中,取代基选自卤原子。
优选的,
R11、R12各自独立地选自取代或未取代的C1~6的烷基、取代或未取代的C2~6的烯基、取代或未取代的苯基;
R13、R14各自独立地选自取代或未取代的C2~4的亚烷基、取代或未取代的C2~4的亚烯基。
优选的,所述砜-三氟化硼配位化合物选自以下化合物中的至少一种,
优选的,所述含有硫氧双键的环状酯化合物选自式ⅡA、式ⅡB、式ⅡC所示的化合物中的至少一种,
其中,R21、R22、R23、R24各自独立地选自取代或未取代的C1~5的亚烷基、取代或未取代的C2~5的亚烯基;优选,取代或未取代的C1~3的亚烷基、取代或未取代的C2~3的亚烯基;取代基选自卤原子。
优选的,所述式ⅡA所示化合物选自以下结构化合物中的至少一种;
其中,R25、R26、R27、R28各自独立地选自氢原子、卤原子、取代或未取代的C1~5烷基、取代或未取代的C2~5烯基、取代或未取代的C6~10芳基,取代基选自卤原子。
优选的,所述含有硫氧双键的环状酯化合物选自以下化合物中的至少一种,
优选的,所述砜-三氟化硼配位化合物的含量为电解液的总重量的0.05%~10%;优选0.1%~5%。
优选的,所述含有硫氧双键的环状酯化合物的含量为电解液的总重量的0.5%~10%;优选1%~5%。
本申请涉及一种锂离子电池,包括正极片、负极片、间隔设置于正极片和负极片之间的隔离膜、以及电解液;所述电解液为前任一所述的电解液。
本申请提供的技术方案可以达到以下有益效果:
本申请技术方案可提高锂离子电池的在常温和高温下的循环性能以及高温下的存储性能。经研究发现,当电解液中同时包括上述提到的砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物时,含有硫氧双键的环状酯化合物可以在负极形成良好的SEI膜,抑制电解液在负极表面的分解,砜-三氟化硼配位化合物可以与正极材料相互作用,有效减少电解液在正极氧化,能够提高锂离子电池在常温循环和存储性能,由于二者的协同作用,电池的高温下的循环性能以及高温下的存储性能也得到较大的提升,例如锂离子电池在4.6V高电压下且在25℃和45℃下均具有优异的循环性能,在85℃下具有优异存储性能。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例,对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请提供的技术方案及所给出的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请涉及一种电解液,包括有机溶剂、电解质和添加剂,所述添加剂含有砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物;在砜-三氟化硼配位化合物中,三氟化硼提供阴离子,砜提供阳离子,整个砜基-三氟化硼配位化合物呈电中性。
作为本申请电解液的一种改进,砜-三氟化硼配位化合物中的砜选自结构式ⅠA和ⅠB所示化合物中的至少一种;即,可以为链状砜、也可以为环状砜;
R11、R12各自独立地选自取代或未取代的C1~20烷基、取代或未取代的C2~20的烯基、取代或未取代的C6~26的芳基、取代或未取代的C1~20的烷氧基、取代或未取代的C6~26的芳氧基;
R13、R14各自独立地选自取代或未取代的C1~5的亚烷基、取代或未取代的C2~5的亚烯基;
其中,取代基选自卤原子;其中,卤原子为F、Cl、Br,优选F。
优选的,
R11、R12各自独立地选自取代或未取代的C1~6的烷基、取代或未取代的C2~6的烯基、取代或未取代的苯基;
R13、R14各自独立地选自取代或未取代的C2~4的亚烷基、取代或未取代的C2~4的亚烯基。
在本申请中,当前述提到C1~20的烷基,烷基可为链状烷基,也可为环烷基,环烷基的环上的氢可被取代基取代;所述C1~20的烷基中碳原子数优选的下限值为2,3,4,5,优选的上限值为3,4,5,6,8,10,12,14,16,18。优选地,选择碳原子数为1~10的烷基,进一步优选地,选择碳原子数为1~6的链状烷基,碳原子数为3~8的环烷基,更进一步优选地,选择碳原子数为1~4的链状烷基,碳原子数为5~7的环烷基。作为烷基的实例,具体可以举出:甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、环戊基、环己基。
当前述提到C1~5的亚烷基,优选为链状亚烷基,亚烷基的氢可被取代基取代;进一步优选地,选择碳原子数为2~4的链状亚烷基。
当前述提到C2~20的烯基,可为链状烯基,也可为环状烯基。另外,烯基中双键的个数优选为1个。所述烯基中碳原子数优选的下限值为3,4,5,优选的上限值为3,4,5,6,8,10,12,14,16,18。优选地,选择碳原子数为2~10的烯基,进一步优选地,选择碳原子数为2~6的烯基,更进一步优选地,选择碳原子数为2~5的烯基。作为烯基的实例,具体可以举出:乙烯基、烯丙基、异丙烯基、戊烯基、环己烯基、环庚烯基、环辛烯基。
当前述提到C2~5的亚烯基,优选链状烯基。另外,亚烯基中双键的个数优选为1个。进一步优选地,选择碳原子数为2~4的亚烯基。
当前述提到C6~26的芳基,例如苯基、苯烷基、至少含有一个苯基的芳基如联苯基、稠环芳烃基如萘、蒽、菲均可,联苯基和稠环芳烃基还可被烷基或是烯基所取代。优选地,选择碳原子数为6~16的芳基,进一步优选地,选择碳原子数为6~14的芳基,更进一步优选地,选择碳原子数为6~9的芳基。作为芳基的实例,具体可以举出:苯基、苄基、联苯基、对甲苯基、邻甲苯基、间甲苯基。
当前述提到C1~20的烷氧基,优选碳原子数为1~10的烷氧基;进一步优选地,选择碳原子数为1~6的烷氧基;更进一步优选地,选择碳原子数为1~4的烷氧基。作为烷氧基的实例,具体可以举出:甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、正戊氧基、异戊氧基、环戊氧基、环己氧基。
当前述提到C6~26的芳氧基,优选碳原子数为6~16的芳氧基;进一步优选地,选择碳原子数为6~14的芳氧基,更进一步优选地,选择碳原子为6~10的芳氧基,最优选为苯氧基。作为芳氧基的实例,具体可以举出:苯氧基、苄氧基、4-甲基苯氧基、3,5-二甲基苯氧基、4-甲基苄氧基、3-甲基苄氧基、2,6-二异丙基苄氧基、1-萘氧基。
当前述提到C1~20的烷基、C1~20的烯基、C6~26的芳基、C1~20的烷氧基、C6~26的芳氧基中的氢被卤原子取代后,依次相应的形成碳原子数为1~20的卤代烷基、碳原子数为2~20的卤代烯基、碳原子数为6~26的卤代芳基、碳原子数为1~20的卤代烷氧基、碳原子数为6~26的卤代芳氧基,其中卤原子为F、Cl、Br,优选为F、Cl。在所形成的卤代基团中,卤原子对部分氢原子或者全部氢原子进行取代,卤原子的个数可为1个、2个、3个或4个。C1~5的亚烷基、C2~5的亚烯基的氢被卤原子取代后可类比同上。
优选地,选择碳原子数为1~10的卤代烷基、碳原子数为2~10的卤代烯基、碳原子数为6~16的卤代芳基、碳原子数为1~10的卤代烷氧基、碳原子数为6~16的卤代芳氧基;进一步优选地,选择碳原子数为1~6的卤代链状烷基、碳原子数为3~8的卤代环烷基、碳原子数为2~6的卤代烯基、碳原子数为6~14的卤代芳基、碳原子数为1~6的卤代烷氧基、碳原子数为6~14的卤代芳氧基;更进一步优选地,选择碳原子数为1~4的卤代链状烷基、碳原子数为5~7的卤代环烷基、碳原子数为2~5的卤代烯基、碳原子为6~10的卤代芳基、碳原子数为1~4的卤代烷氧基、碳原子为6~10的卤代芳氧基。
作为卤代基团的实例,具体可以举出:三氟甲基(-CF3)、2-氟乙基、3-氟正丙基、2-氟异丙基、4-氟正丁基、3-氟仲丁基、5-氟正戊基、4-氟异戊基、1-氟乙烯基、3-氟烯丙基、6-氟-4-己烯基、邻氟苯基、对氟苯基、间氟苯基、4-氟甲基苯基、2,6-二氟甲基苯基、2-氟-1-萘基、氟代甲氧基、1-氟乙氧基、2-氟-正丙氧基、1-氟-异丙氧基、3-氟-正丁氧基、4-氟-正戊氧基、2,2-二氟甲基丙氧基、5-氟-正己氧基、1,1,2-三氟甲基丙氧基、6-氟-正庚基氧基、7-氟-正辛基氧基、3-氟-环戊氧基、4-氟-2-甲基环戊氧基、3-氟-环己氧基、3-氟环庚氧基、4-氟-2-甲基环庚氧基、3-氟环辛氧基、4-氟苯氧基、3-氟苯氧基、2-氟苯氧基、3,5-二氟苯氧基、2,6-二氟苯氧基、2,3-二氟苯氧基、2,6-二氟-4-甲基苯氧基、3-(2-氟乙基)苯氧基、2-(1-氟乙基)苯氧基、3,5-二氟苄氧基、2-氟苄氧基、2-氟-1-萘氧基。在上述具体的实例中,F可被Cl和/或Br取代。
优选的,R11、R12、R13、R14中的取代基中至少一个为卤原子,优选为F或Cl。
作为砜-三氟化硼配位化合物的实例,具体如下所示:
作为本申请的改进,本申请含有硫氧双键的环状酯化合物选自式ⅡA、式ⅡB、式ⅡC所示的化合物中的至少一种,
其中,
R21、R22、R23、R24各自独立地选自取代或未取代的C1~5的亚烷基、取代或未取代的C2~5的亚烯基;优选,取代或未取代的C1~3的亚烷基、取代或未取代的C2~3的亚烯基;取代基选自卤原子,如F、Cl、Br。
作为本申请的一种改进,含有硫氧双键的环状酯化合物选自式ⅡA所示化合物中的至少一种;并优选以下结构所示的化合物中的至少一种,
其中,R25、R26、R27、R28各自独立地选自氢原子、卤原子、取代或未取代的C1~5烷基、取代或未取代的C2~5烯基、取代或未取代的C6~10芳基,取代基选自卤原子,如F、Cl、Br。
优选的,R25、R26、R27、R28各自独立地选自选自氢原子、卤原子、取代或未取代的C1~3烷基、取代或未取代的C2~3烯基、取代或未取代的C6~8芳基;更优选的,R25、R26、R27、R28各自独立地选自氢原子、卤原子、取代或未取代的C1~2烷基、取代或未取代的C2~3烯基、取代或未取代的苯基。
在本申请中,可以列举的式ⅡA所示的化合物有:
在本申请中,式ⅡA所示的化合物还可选自:
可以列举的式ⅡB所示的化合物有:
在本申请中,式ⅡB所示的化合物还可选自:
可以列举的式ⅡC所示的化合物有:
在上述电解液中,所述砜-三氟化硼配位化合物的含量为电解液的总重量的0.05%~10%。所述含有硫氧双键的环状酯化合物的含量为电解液的总重量的0.5%~10%。
进一步优选地,本申请砜-三氟化硼配位化合物在电解液中的质量百分含量范围的下限任选自0.06%、0.07%、0.08%、0.1%、0.2%、0.5%、1.0%、1.5%、2.0%,上限任选自4%、4.5%、5.0%、5.5%、6.0%、8.0%;更优选为0.1%~5%。本申请含有硫氧双键的环状酯化合物在电解液中的质量百分含量范围的下限任选自0.6%、0.7%、0.8%、1.0%、1.5%、2.0%、2.5%,上限任选自4%、4.5%、5.0%、5.5%、6.0%、8.0%;更优选为1%~5%。
若电解液中砜-三氟化硼配位化合物的含量过大,则会在负极片表面形成较厚的、且致密的钝化膜,降低锂离子的传导性能,同时电解液的粘度会迅速上升,导致电解液电导率降低,从而恶化锂离子电池在常温下的循环性能;而含有硫氧双键的环状酯化合物的含量过大,也会在负极片表面形成很厚的、且稳定的钝化膜,同样使得负极片的阻抗大大增加,降低锂离子的传导性能,从而恶化锂离子电池在常温和高温下的循环性能。
在上述电解液中,所述有机溶剂可为非水有机溶剂,所述有机溶剂为碳原子数为1~8、且含有至少一个酯基的化合物。
作为有机溶剂的实例,可列举:碳酸乙烯酯、碳酸丙烯脂、碳酸丁烯酯、氟代碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙丙酯、1,4-丁内酯、丙酸甲酯、丁酸甲酯、乙酸乙酯、丙酸乙酯、丙酸丙酯、丁酸乙酯。本申请有机溶剂优选以上酯类化合物中的至少一种。
在上述电解液中,电解质可为有机电解质,也可为无机电解质;优选的,电解质中可含有氟元素、硼元素、磷元素中的至少一种。
优选地,本申请电解质选自六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、高氯酸锂(LiClO4)、六氟砷酸锂(LiAsF6)、四氟草酸磷酸锂、LiN(SO2RF)2、LiN(SO2F)(SO2RF)、双三氟甲烷磺酰亚胺锂LiN(CF3SO2)2(简写为LiTFSI)、双(氟磺酰)亚胺锂Li(N(SO2F)2)(简写为LiFSI)、双草酸硼酸锂LiB(C2O4)2(简写为LiBOB)、二氟草酸硼酸锂LiBF2(C2O4)(简写为LiDFOB)中的至少一种;其中,取代基RF分子式为-CnF2n+1的饱和全氟烷基,n为1~10的整数,优选为1~4的整数。本申请电解质特别优选为LiPF6和/或LiN(SO2RF)2。电解质在电解液中的浓度为0.3M~1.8M。
在本申请中,电解液的制备方法选用常规方法即可,例如可将有机溶剂、电解质和添加剂混合均匀即可。
本申请还涉及一种锂离子电池,包括正极片、负极片、间隔设置于正极片和负极片之间的隔离膜、以及电解液;电解液为前述任一段落所述的的电解液。
本申请还涉及的一种锂离子电池,包括电解液、含有正极活性材料的正极片、含有负极活性材料的负极片和隔离膜。
在上述锂离子电池中,所述正极片还包括粘结剂和导电剂,将包含有正极活性材料、粘结剂和导电剂的正极浆料涂覆在正极集流体上,待正极浆料干燥后获得正极片。同样的,将包含有负极活性材料、粘结剂和导电剂的负极浆料涂覆在负极集流体上,待负极浆料干燥后获得负极片。
优选地,所述正极活性材料选自钴酸锂LiCoO2、锂镍锰钴三元材料、锰酸锂(LiMnO2)中的至少一种,例如钴酸锂与锂镍锰钴三元材料的混合物可作为正极活性材料。作为锂镍锰钴三元材料的实例,具体可以举出:LiNi1/3Co1/3Mn1/3O2、镍钴锰酸锂LiNi0.5Co0.2Mn0.3O2、LiNi0.6Co0.2Mn0.2O2
优选地,所述负极活性材料为石墨和/或硅。
在上述锂离子电池中,锂电池隔膜的具体种类并不受到具体的限制,可以是现有锂离子电池中使用的任何隔膜材料,例如聚乙烯、聚丙烯、聚偏氟乙烯以及它们的多层复合膜,但不仅限于这些。
实施例
以下通过具体实例进一步描述本申请。不过这些实例仅仅是范例性的,并不对本申请的保护范围构成任何限制。
在下述实施例、对比例以及试验例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均为常规试剂、常规材料以及常规仪器,均可商购获得,其中所涉及的试剂也可通过常规合成方法合成获得。
在下述实施例、对比例中,所用到的试剂如下:
添加剂:
砜-三氟化硼配位化合物:前述提到的化合物(Ⅰ-1)~化合物(Ⅰ-7)。
含有硫氧双键的环状酯化合物:化合物ⅡA-1(1,3-丙基磺酸内酯,简称PS)、化合物ⅡB-1(硫酸乙烯酯,简称DTD)。
电解质:六氟磷酸锂(LiPF6)。
有机溶剂:碳酸乙烯酯(EC),碳酸甲乙酯(EMC)。
正极活性材料:锂镍锰钴三元材料LiNi1/3Co1/3Mn1/3O2
隔离膜:以PE多孔聚合物薄膜作为隔离膜。
实施例1~26锂离子电池(下述均简称电池)1~26的制备
电池1~26均按照下述方法进行制备:
(1)负极片制备
将负极活性物质石墨、导电剂乙炔黑、粘结剂丁苯橡胶、增稠剂羧甲基纤维素钠按照重量比为石墨:乙炔黑:丁苯橡胶:羧甲基纤维素钠=95:2:2:1进行混合,加入去离子水后,充分搅拌混合,形成均匀的负极浆料;将此浆料涂覆于负极集流体铜箔上,然后烘干、冷压,得到负极片。
(2)正极片制备
将正极活性材料锂镍锰钴三元材料、导电剂乙炔黑、粘结剂聚偏二氟乙烯按重量比为锂镍锰钴三元材料:乙炔黑:聚偏二氟乙烯=96:2:2进行混合,加入溶剂N-甲基吡咯烷酮,充分搅拌混合后,形成均匀的正极浆料;将此浆料涂覆于正极集流体铝箔上,然后烘干、冷压,得到正极片。
(3)电解液制备
电解液1~26均按照下述方法进行制备:
在含水量<10ppm的氩气气氛手套箱中,将EC、EMC按照重量比为EC:EMC=3:7进行混合后,得到混合溶剂,再将充分干燥的电解质LiPF6溶解于上述混合溶剂中,然后向其中加入含砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物,搅拌均匀后,获得电解液,其中LiPF6的浓度为1mol/L。
(4)电池的制备
电池1~26均按照下述方法制备得到:
将正极片、隔离膜、负极片按顺序叠好,使隔离膜处于正极片和负极片之间起到隔离的作用,然后卷绕得到裸电芯;将裸电芯置于外包装箔中,将上述制备好的电解液注入到干燥后的电池中,然后经过真空封装、静置、化成、整形等工序,获得电池。
在上述制备电池的过程中,各个电池中所选用的电解液、各电解液中所用到的砜-三氟化硼配位化合物的种类及其含量、含有硫氧双键的环状酯化合物的种类及其含量,如下述表1中所示。
在表1中,砜-三氟化硼配位化合物的含量以及含有硫氧双键的环状酯化合物的含量均为基于电解液的总重量计算得到的重量百分数。
表1实施例1-26中电池电解液中添加剂组分及含量列表
对比例1~17锂离子电池(下述均简称电池)1#~17#的制备
对比例1~17
电池1#~17#均按照下述方法进行制备:
重复实施例1中电池1的制备,其中在电解液的制备中,改变砜-三氟化硼配位化合物的种类、含量,和/或改变含有硫氧双键的环状酯化合物的种类、含量,其余条件均不变。
在上述制备电池的过程中,各个电池中所选用的电解液、各电解液中所用到的砜-三氟化硼配位化合物的种类及其含量、含有硫氧双键的环状酯化合物的种类及其含量,如下述表2中所示。
在表2中,砜-三氟化硼配位化合物的含量以及含有硫氧双键的环状酯化合物的含量均为基于电解液的总质量计算得到的质量百分数。
表2对比例1~17中电池电解液中添加剂组分及含量列表
注:在表2中,“-”表示未添加任何种类的物质。
测试例
(1)电池的高温存储性能测试
以电池存储前后的体积变化率表征电池的高温存储性能。
将实施例以及对比例中制备得到的电池均进行下述测试:
在25℃下,先以0.5C的恒定电流对电池充电至4.6V,进一步以4.6V恒定电压充电至电流为0.025C,然后用排水法将电池在去离子水中测得电池的初始体积,将此时的电池的初始体积作为电池存储前的体积,然后将电池置于85℃下存储6h,待存储结束后,测试电池在高温存储后的体积,然后通过下式计算得出电池的体积变化率。另外,测试结果如表3中所示。
电池的体积变化率(%)=(电池高温存储后的体积/电池存储前的体积)×100%
(2)电池的常温循环性能测试
将实施例以及对比例中制备得到的电池均进行下述测试:
在25℃下,先以1C的恒定电流对电池充电至4.6V,进一步以4.6V恒定电压充电至电流为0.025C,然后以1C的恒定电流将电池放电至3.0V,此为一个充放电循环过程,此次的放电容量为第1次循环的放电容量。电池按上述方式进行多次循环充放电测试,检测得到第100次循环的放电容量,并通过下式计算得出电池的循环容量保持率。另外,测试结果如表3中所示。
电池100次循环后的容量保持率(%)=(第100次循环的放电容量/第1次循环的放电容量)×100%
(3)电池的高温循环性能测试
在实施例以及对比例中制备得到的电池均进行下述测试:
在45℃下,先以1C的恒定电流对锂离子二次电池充电至4.6V,进一步以4.6V恒定电压充电至电流为0.025C,然后以1C的恒定电流将电池放电至3.0V,此为一个充放电循环过程,此次的放电容量为第1次循环的放电容量。电池按上述方式进行多次循环充放电测试,检测得到第100次循环的放电容量,并通过下式计算得出电池的循环后的容量保持率。另外,测试结果如下表3中所示。
电池100次循环后的容量保持率(%)=(第100次循环的放电容量/第1次循环的放电容量)×100%
表3对比例1~26及对比例1~17电池测试结果
从上述表3中的相关数据,进行如下分析:
(1)高温存储性能的测试结果分析
由电池1~26得到的体积变化率与电池1#得到的体积变化率的对比可以看出,在电解液中添加砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物,能够使得电池具有较低的体积变化率。
由电池1#~8#得到的体积变化率可以得知,电解液1#中没有加入任何添加剂,使得正极在高电压状态下具有很强的氧化性,会氧化电解液中的有机溶剂,容易导致电池产气,使电池的体积变化率过高。
此外,从电池2#和电池3#得到的体积变化率可以得知,相比电解液中含有硫氧双键的环状酯化合物的情况,当电解液中含有砜-三氟化硼配位化合物时,电池具有更低的体积变化率。
由于在电池4#、电池5#和电池7#中,砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物的重量百分含量太少,所形成的钝化膜不能兼具致密性和稳定性的特点,也无法有效地阻止活性物质与电解液之间的副反应,使电池存储后的体积变化率过高。
在电池6#和电池8#中,砜-三氟化硼配位化合物或含有硫氧双键的环状酯化合物含量过多,过多的砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物继续在正负极片表面反应,造成界面阻抗过大,增加了极片与电解液之间的副反应,导致电池存储后的体积变化率较大。
在电池1~8中,含有硫氧双键的环状酯化合物的含量为2%,加入含量为0.05%~10%砜-三氟化硼配位化合物,可形成致密的、稳定的钝化膜,阻止活性物质与电解液之间的副反应,使电池在高温存储后具有较低的体积变化率,且使得电池在85℃下存储6h后,具有较低的体积变化率。
在电池9~14中,砜-三氟化硼配位化合物的含量为2%,加入含量为0.5%~10%的含有硫氧双键的环状酯化合物,可形成致密的、稳定的钝化膜,阻止活性物质与电解液之间的副反应,使电池在高温存储后具有较低的体积变化率,且随含有硫氧双键的环状酯化合物的含量的增加,电池在85℃下存储6h后,具有较低的体积变化率。同样的,对电池15~26所得的体积变化率进行分析,具有与上述相同的分析结果。
(2)循环性能的测试结果分析
由电池1~26得到的循环后的容量保持率与电池1#得到的循环后的容量保持率对比可以看出,电解液中含有砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物,电池具有较高的容量保持率,电池在高温和常温下具有优异的循环性能。
由电池1#~17#得到的循环后的容量保持率可以得知,电解液1#中没有加入任何添加剂,使得有机溶剂会在极片表面产生较多的副反应,导致电池的容量保持率低。
在电池2#和电池3#中,分别在各自的电解液中添加砜-三氟化硼配位化合物、含有硫氧双键的环状酯化合物,由于所形成的钝化膜还不能有效地阻止活性物质与电解液之间的副反应,从而使电池的循环性能的基本得不到改善。
由于在电池4#、电池5#和电池7#中,砜-三氟化硼配位化合物和/或含有硫氧双键的环状酯化合物的重量百分含量太少,所形成的钝化膜不能兼具致密性和稳定性的特点,无法有效地阻止活性物质与电解液之间的副反应,使电池在高温和常温下的循环性能得不到有效的改善。
在电池6#和电池8#中,含砜-三氟化硼配位化合物或含有硫氧双键的环状酯化合物含量过多,过多的砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物残留在电解液中,继续在极片表面反应,造成界面阻抗变大,恶化电池在高温和常温下的循环性能。
在电池1~8中,含有硫氧双键的环状酯化合物的含量为2%,加入含量为0.05%~10%含砜-三氟化硼配位化合物,可形成致密的、稳定的钝化膜,阻止活性物质与电解液之间的副反应,使电池在高温和常温下循环后具有较高的容量保持率。
在电池4以及电池9~14中,含砜-三氟化硼配位化合物的含量为2%,加入含量为0.5%~10%的含有硫氧双键的环状酯化合物,可形成致密的、稳定的复合钝化膜,阻止活性物质与电解液之间的副反应,使电池在高温和常温下循环后具有较高的容量保持率。同样的,对电池15~26循环后的容量保持率进行分析,具有与上述相同的分析结果。
从上述结果中可以看出,当电解液中同时含砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物时,提高电池在高温和常温下循环后的容量保持率,电池在高温和常温下具有优异的循环性能。
综上所述:在电解液中,当含砜-三氟化硼配位化合物的含量过小或者过大,当含有硫氧双键的环状酯化合物含量过小或过大,都不能形成致密的、稳定的、界面性能较好的复合钝化膜,无法同时得到在高温和常温下循环性能好的电池。当电解液含有0.05%~10%的砜-三氟化硼配位化合物和0.5%~10%的含有硫氧双键的环状酯化合物,尤其是含有0.1%~4.0%的砜-三氟化硼配位化合物和1%~4%的含有硫氧双键的环状酯化合物,电池在高温和常温下的循环性能以及高温存储性能都较为优异。
本申请其它实施例:
按照前述实施例的方法制备实施例27~33的电解液及锂电池,区别在于:电解液中添加剂组分及添加比例如表4所示:
表4实施例27~33电池电解液添加剂组分及添加比例
按照前述实施例的方法对制备得到的电池的性能进行检测,检测得到实施例电池27~33的性能与以上实施例相似,限于篇幅不再赘述。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (9)

1.一种电解液,包括有机溶剂、电解质和添加剂,其特征在于,所述添加剂含有砜-三氟化硼配位化合物和含有硫氧双键的环状酯化合物;
所述砜-三氟化硼配位化合物中的砜选自结构式ⅠA和ⅠB所示化合物中的至少一种:
R11、R12各自独立地选自取代或未取代的C1~20烷基、取代或未取代的C2~20的烯基、取代或未取代的C6~26的芳基、取代或未取代的C1~20的烷氧基、取代或未取代的C6~26的芳氧基;R13、R14各自独立地选自取代或未取代的C1~5的亚烷基、取代或未取代的C2~5的亚烯基;取代基选自卤原子;
所述含有硫氧双键的环状酯化合物选自式ⅡA、式ⅡB、式ⅡC所示的化合物中的至少一种:
R21、R22、R23、R24各自独立地选自取代或未取代的C1~5的亚烷基、取代或未取代的C2~5的亚烯基;取代基选自卤原子;
所述砜-三氟化硼配位化合物的含量为电解液的总重量的0.05%~10%,所述含有硫氧双键的环状酯化合物的含量为所述电解液的总重量的0.5%~10%。
2.根据权利要求1所述的电解液,其特征在于,
R11、R12各自独立地选自取代或未取代的C1~6的烷基、取代或未取代的C2~6的烯基、取代或未取代的苯基;
R13、R14各自独立地选自取代或未取代的C2~4的亚烷基、取代或未取代的C2~4的亚烯基。
3.根据权利要求1所述的电解液,其特征在于,所述砜-三氟化硼配位化合物选自以下化合物中的至少一种:
4.根据权利要求1所述的电解液,其特征在于,所述R21、R22、R23、R24各自独立地选自取代或未取代的C1~3的亚烷基、取代或未取代的C2~3的亚烯基;取代基选自卤原子。
5.根据权利要求1所述的电解液,其特征在于,所述式ⅡA所示化合物选自以下结构化合物中的至少一种:
R25、R26、R27、R28各自独立地选自氢原子、卤原子。
6.根据权利要求1所述的电解液,其特征在于,所述含有硫氧双键的环状酯化合物选自以下化合物中的至少一种:
7.根据权利要求1所述的电解液,其特征在于,所述砜-三氟化硼配位化合物的含量为电解液的总重量的0.1%~5%。
8.根据权利要求1所述的电解液,其特征在于,所述含有硫氧双键的环状酯化合物的含量为电解液的总重量的1%~5%。
9.一种锂离子电池,包括正极片、负极片、间隔设置于正极片和负极片之间的隔离膜、以及电解液;其特征在于,所述电解液为权利要求1~8任一所述的电解液。
CN201610499049.5A 2016-06-29 2016-06-29 一种电池液及锂离子电池 Active CN105895957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610499049.5A CN105895957B (zh) 2016-06-29 2016-06-29 一种电池液及锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610499049.5A CN105895957B (zh) 2016-06-29 2016-06-29 一种电池液及锂离子电池

Publications (2)

Publication Number Publication Date
CN105895957A CN105895957A (zh) 2016-08-24
CN105895957B true CN105895957B (zh) 2019-04-02

Family

ID=56718470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610499049.5A Active CN105895957B (zh) 2016-06-29 2016-06-29 一种电池液及锂离子电池

Country Status (1)

Country Link
CN (1) CN105895957B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356559A (zh) * 2016-10-11 2017-01-25 宁德时代新能源科技股份有限公司 一种电解液以及使用该电解液的二次电池
CN109301326B (zh) 2018-09-21 2020-11-27 宁德新能源科技有限公司 一种电解液及电化学装置
CN112002942B (zh) 2018-09-21 2022-08-02 宁德新能源科技有限公司 一种电解液及包含该电解液的电化学装置
CN111740159B (zh) 2018-09-21 2023-01-20 宁德新能源科技有限公司 电解液和包含该电解液的电化学装置
CN111384466B (zh) * 2018-12-29 2020-12-08 广州汽车集团股份有限公司 一种动力电池热管理***中水泵故障处理方法与***
CN109687025A (zh) * 2019-01-25 2019-04-26 宁德新能源科技有限公司 电解液、包含所述电解液的电化学装置和电子装置
CN109786834B (zh) 2019-01-25 2021-01-12 宁德新能源科技有限公司 电解液及电化学装置
CN114649583A (zh) * 2020-12-17 2022-06-21 北京卫蓝新能源科技有限公司 一种含有不饱和杂环的硫基三氟化硼盐类电解质及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780039A (zh) * 2012-07-24 2012-11-14 华为技术有限公司 锂离子二次电池的非水有机电解液及其制备方法
CN103219543A (zh) * 2013-04-26 2013-07-24 奇瑞汽车股份有限公司 锂电池用电解液及含该电解液的锂离子电池
CN103367801A (zh) * 2012-04-09 2013-10-23 张家港市国泰华荣化工新材料有限公司 能提高锂离子电池高温性能的电解液

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336998B2 (ja) * 1998-08-28 2002-10-21 株式会社豊田中央研究所 非水電解液二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103367801A (zh) * 2012-04-09 2013-10-23 张家港市国泰华荣化工新材料有限公司 能提高锂离子电池高温性能的电解液
CN102780039A (zh) * 2012-07-24 2012-11-14 华为技术有限公司 锂离子二次电池的非水有机电解液及其制备方法
CN103219543A (zh) * 2013-04-26 2013-07-24 奇瑞汽车股份有限公司 锂电池用电解液及含该电解液的锂离子电池

Also Published As

Publication number Publication date
CN105895957A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN105895957B (zh) 一种电池液及锂离子电池
CN105845977B (zh) 一种电解液及包括该电解液的锂离子电池
CN105489934B (zh) 电解液以及包括该电解液的锂离子电池
CN105655639B (zh) 电解液以及包括该电解液的锂离子电池
CN105489935B (zh) 电解液以及包括该电解液的锂离子电池
CN105680096B (zh) 电解液以及包括该电解液的锂离子电池
CN109728340B (zh) 锂离子电池
CN105845982B (zh) 电解液以及包括该电解液的锂离子电池
CN105655643B (zh) 电解液以及包括该电解液的锂离子电池
CN111883839B (zh) 高压电解液及基于其的锂离子电池
WO2018099097A1 (zh) 电解液及二次锂电池
CN106159330A (zh) 一种pc基高电压电解液及一种锂离子电池
CN105811009B (zh) 一种电解液以及包括该电解液的锂离子电池
CN105895958A (zh) 一种电解液及锂离子电池
CN107359369A (zh) 电解液及锂离子电池
CN109004275B (zh) 电解液及二次电池
Li et al. Compatibility between LiNi0. 5Mn1. 5O4 and electrolyte based upon lithium bis (oxalate) borate and sulfolane for high voltage lithium-ion batteries
CN109428119A (zh) 锂离子电池及其非水电解液
CN105789701B (zh) 电解液以及包括该电解液的锂离子电池
CN107293776A (zh) 电解液及锂离子电池
CN109428118A (zh) 锂离子电池及其电解液
CN105762410B (zh) 一种非水电解液及使用该非水电解液的锂离子电池
Zhou et al. Enhanced performance of the electrolytes based on sulfolane and lithium difluoro (oxalate) borate with enhanced interfacial stability for LiNi0. 5Mn1. 5O4 cathode
CN108987802A (zh) 一种高电压锂离子电池非水电解液
CN109309245A (zh) 电解液及电化学储能装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191217

Address after: 213300 No. 1000, Chengbei Avenue, Kunlun Street, Liyang City, Changzhou City, Jiangsu Province

Patentee after: CONTEMPORARY AMPEREX TECHNOLOGY Ltd. (JIANGSU)

Address before: 352100, Xingang Road, Ningde Town, Jiaocheng District, Fujian, 1

Patentee before: Contemporary Amperex Technology Co.,Ltd.