CN105891860A - 一种基于误差分离模式的gnss区域伪距差分增强定位方法 - Google Patents

一种基于误差分离模式的gnss区域伪距差分增强定位方法 Download PDF

Info

Publication number
CN105891860A
CN105891860A CN201610179816.4A CN201610179816A CN105891860A CN 105891860 A CN105891860 A CN 105891860A CN 201610179816 A CN201610179816 A CN 201610179816A CN 105891860 A CN105891860 A CN 105891860A
Authority
CN
China
Prior art keywords
frequency
satellite
reference station
correction
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610179816.4A
Other languages
English (en)
Other versions
CN105891860B (zh
Inventor
汪亮
李子申
袁洪
赵姣姣
周凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Academy of Opto Electronics of CAS
Original Assignee
Academy of Opto Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academy of Opto Electronics of CAS filed Critical Academy of Opto Electronics of CAS
Priority to CN201610179816.4A priority Critical patent/CN105891860B/zh
Publication of CN105891860A publication Critical patent/CN105891860A/zh
Application granted granted Critical
Publication of CN105891860B publication Critical patent/CN105891860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种基于误差分离模式的GNSS区域伪距差分增强定位方法,具体为:GNSS区域伪距差分增强定位通常采用n个参考站和一个终端用户;其中任一参考站r其接收机接收卫星s的观测数据,处理后得到该参考站r上关于卫星s的误差矢量改正数;每个参考站均将自身获得的关于卫星s的误差矢量改正数发送至终端用户处,将每个参考站的频率相关项误差改正数依据参考站和终端用户之间的基线距离进行距离加权平均,然后与其中一个参考站的频率无关项误差改正数相加获得总的误差改正数;将伪距测量值加上所述总的误差改正数得到改正后的用户伪距,进而按照标准伪距单点定位方式解算获得经误差改正后的用户位置。该方法能够提高单频卫星导航的定位性能。

Description

一种基于误差分离模式的GNSS区域伪距差分增强定位方法
技术领域
本发明涉及全球卫星导航***(Global Navigation Satellite System,GNSS)差分增强定位技术领域,提出了一种基于误差分离模式的GNSS区域伪距差分增强定位方法。
背景技术
通常情况下,现有的卫星导航终端可分为测量型和导航型两类;前者定位精度通常较高,但是其体积大、成本高,仅应用于测绘、地震、气象等特殊行业;后者定位精度通常较低,但其具有成本低、功耗小、体积小、易于集成等优点,广泛应用于大众位置服务,***量巨大。相对于测量型终端,导航型终端通常仅可获得单频的伪距观测数据,并且观测量噪声相对较大,其定位性能与测量型终端具有较大差异。目前广大单频导航终端主要通过单点自主方式进行定位,由于无法通过双频数据进行电离层误差的自修正,一般仅可获得10米级的定位精度。如要获得较高精度的导航定位,一般需通过局域差分或广域增强两类技术进行实现。
局域差分通过实时播发伪距改正数,采用标量方式修正用户测距误差,可实现1~2米级精度的定位;但是,要求地面参考站的分布较密集。另外,局域差分定位中是把各种误差源所造成的影响合在一起形成综合的误差改正信息发播给用户使用的。但不同误差源对差分定位的影响事实上并不相同,有些误差对差分定位的影响与基线长度无关,如卫星钟差;有些误差与基线长度的相关性很弱,如卫星星历误差;而有些误差则与基线长度高度相关,如电离层延迟误差。当采取综合误差的改正数方式时,差分定位精度受参考站分布和有效距离的影响显著。
广域增强通过实时播发卫星轨道误差、卫星时钟误差以及格网电离层误差等改正信息,采用矢量方式修正用户测距误差;但是,由于电离层具有显著的地域特性,格网电离层精度通常较差,从而使得单频导航终端的定位精度仅为2~3米;受电离层误差修正效果的限制,其定位精度难以进一步提高;并且***实现的复杂度非常高,一般需要借助卫星来播发增强信息。
发明内容
有鉴于此,本发明提供了一种基于误差分离模式的GNSS区域伪距差分增强定位方法,依据卫星导航***误差源在区域范围内的变化特性设计了频率相关以及频率无关两类差分增强信息,用以提高广大单频卫星导航终端的定位性能。
为了达到上述目的,本发明的技术方案为:一种基于误差分离模式的GNSS区域伪距差分增强定位方法,包括如下步骤:
步骤一、全球卫星导航***GNSS区域伪距差分增强定位采用n个参考站和一个终端用户;其中任一参考站r其接收机接收原始卫星s的观测数据,然后进行如下S101-S103的处理后得到该参考站r上关于卫星s的误差矢量改正数;所述原始卫星观测数据包括伪距观测量和载波相位观测量。
S101、建立GNSS非差观测方程,其中的电离层延迟误差、硬件延迟偏差以及整周模糊度为频率相关项,其他误差项为频率无关项,通过两个以上频率的同类型观测量的几何无关组合消除频率无关项,然后进行DCB误差校正得到基本频率信号的电离层延迟量。
S102、由基本频率信号的电离层延迟量转换得到该原始卫星观测信号载波频率上的信号电离层延迟量,即为频率相关项误差改正数。
S103、根据频率无关项误差改正数、频率相关项误差改正数以及卫星与接收机之间天线相位中心之间的几何距离三者之和为伪距观测量;计算得到频率无关项误差改正数。
步骤二、每个参考站均将自身获得的关于卫星s的误差矢量改正数发送至终端用户处,针对每个参考站的频率相关项误差改正数依据参考站和终端用户之间的基线距离进行距离加权平均,然后与其中一个参考站的频率无关项误差改正数相加获得总的误差改正数。
其中在进行加权平均时,权重与参考站和终端用户之间的基线距离成反比;
步骤三、将伪距测量值加上所述总的误差改正数得到改正后的用户伪距,进而按照标准伪距单点定位方式解算获得经误差改正后的用户位置。
进一步地,GNSS非差观测方程具体为:
P r , f i s = ρ r s + c ( δt r - δt s ) + α f i I r s + T r s + c ( b f i s + b r , f i ) + ϵ r , f i s Φ r , f i s = ρ r s + c ( δt r - δt s ) - α f i I r s + T r s + c ( b f i s + b r , f i ) + λ f i s N r , f i s + ζ r , f i s
其中:
上标s表示卫星、下标r表示接收机;
fi表示所接收信号的载波频率;
表示所接收信号的载波波长;
为接收机r关于卫星s在fi频率上的伪距观测量;
为接收机r关于卫星s在fi频率上的载波相位观测量;
为在信号发射时刻的卫星与接收机二者天线相位中心之间的几何距离量;
c为真空中的光速;
δtr为信号接收时刻的接收机钟差;
δts为信号发射时刻的卫星钟差;
为接收机关于卫星s在基本频率f0上的电离层延迟误差量,对伪距观测量和载波相位观测量的影响符号相反;
αfi为频率为fi的电磁波与基本频率f0之间的系数关系,为
为对流层延迟误差量;
br,fi分别为卫星和接收机在fi频率上的硬件延迟偏差;
为fi频率上关于卫星s的载波相位整周模糊度;
分别为伪距及载波相位的测量噪声以及其他未建模误差项。
进一步地,S101中,观测噪声不计,通过两个或以上频率的同类型观测量的几何无关组合包括:
伪距观测量在频率f1与f2上的几何无关组合
载波相位观测量在频率f1与f2上的几何无关组合
参考站上接收机r的硬件延迟偏差在频率f1与f2上几何无关组合为其中分别为接收机r在f1与f2频率上的硬件延迟偏差;
卫星s的硬件延迟偏差在频率f1与f2上几何无关组合为其中分别为卫星s在f1与f2频率上的硬件延迟偏差。
接收机r在频率f1与f2上关于卫星s的载波相位整周模糊度的几何无关组合为
由此得到的包含频率相关项的伪距观测量及载波相位观测量分别为:
P r , f 1 f 2 s = ( α f 1 - α f 2 ) I r s + c · DCB r , f 1 f 2 + c · DCB s , f 1 f 2 Φ r , f 1 f 2 s = ( α f 2 - α f 1 ) I r s + c · DCB r , f 1 f 2 + c · DCB s , f 1 f 2 + ( λ f 1 s N r , f 1 s - λ f 2 s N r , f 2 s ) .
在卫星s没有发生周跳的连续观测时段内,对伪距观测量与载波相位电离层观测量之和取平均即消除频率无关项,得到
进而得到基本频率的电离层延迟量:
I r s = &Phi; r , f 1 f 2 s - < P r , f 1 f 2 s + &Phi; r , f 1 f 2 s > T + c &CenterDot; DCB r , f 1 f 2 + c &CenterDot; DCB s , f 1 f 2 &alpha; f 2 - &alpha; f 1 .
进一步地,S102中,由基本频率信号的电离层延迟量转换得到该原始卫星观测信号载波频率上的信号电离层延迟量,转换公式具体为:其中为该原始卫星观测信号载波频率上的信号电离层延迟量,αfi为频率为fi的电磁波与基本频率f0之间的系数关系,为
进一步地,步骤三中,针对每个参考站的频率相关项误差改正数依据参考站和终端用户之间的基线距离进行距离加权平均公式具体为:
I u , c o r r = &Sigma; i = 1 n &alpha; i I i , c o r r .
其中Iu,corr为加权平均的最终结果,Ii,corr为参考站i的频率相关项误差改正数;αi为权重系数。
&alpha; i = 1 ( x i - x u ) 2 + ( y i - y u ) 2 + ( z i - z u ) 2 &Sigma; i n 1 ( x i - x u ) 2 + ( y i - y u ) 2 + ( z i - z u ) 2 .
其中,(xi,yi,zi)为地心地固坐标系下第i个参考站的坐标,(xu,yu,zu)为地心地固坐标系下终端用户的坐标。
进一步地,步骤三中针对每个参考站的频率相关项误差改正数依据参考站和终端用户之间的基线距离进行距离加权平均,然后与其中一个参考站的频率无关项误差改正数相加获得总的误差改正数。
上述其中一个参考站的频率无关项改正数直接用距离终端用户最近的参考站的频率无关项改正数。
有益效果:
为了解决目前广大单频卫星导航终端定位精度不高的问题,本发明提出了一种基于误差分离模式的GNSS区域伪距差分增强定位方法,依据卫星导航***误差源在区域范围内的变化特性设计了频率相关以及频率无关两类差分增强信息,用以提高广大单频卫星导航终端的定位性能,并能有效克服传统卫星导航局域差分定位性能受参考站分布和有效距离的影响。
附图说明
图1为基于误差分离模式的GNSS区域伪距差分增强定位方法实施流程图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
实施例1、一种基于误差分离模式的GNSS区域伪距差分增强定位方法,包括如下步骤:
步骤一、全球卫星导航***GNSS区域伪距差分增强定位采用n个参考站和一个终端用户;其中任一参考站其接收机r接收原始卫星观测数据,然后进行如下处理后得到该参考站r上关于卫星s的误差矢量改正数;所述原始卫星观测数据包括伪距观测量和载波相位观测量。
S101、建立GNSS非差观测方程,其中的电离层延迟误差、硬件延迟偏差以及整周模糊度为频率相关项,其他误差项为频率无关项,通过两个或以上频率的同类型观测量的几何无关组合消除频率无关项,然后进行DCB误差校正得到基本频率信号的电离层延迟量。
S102、由基本频率信号的电离层延迟量转换得到该原始卫星观测信号载波频率上的信号电离层延迟量,即为频率相关项误差改正数。
S103、其中频率无关项误差改正数、频率相关项误差改正数以及卫星与接收机之间天线相位中心之间的几何距离三者之和为伪距观测量;由此计算得到频率无关项误差改正数。
步骤二、每个参考站均将自身获得的关于卫星s的误差矢量改正数发送至终端用户处,针对每个参考站的频率相关项误差改正数依据参考站和终端用户之间的基线距离进行距离加权平均,然后与其中一个参考站的频率无关项误差改正数相加获得总的误差改正数。
其中在进行加权平均时,权重与参考站和终端用户之间的基线距离成反比。
步骤三、将伪距测量值加上所述总的误差改正数得到改正后的用户伪距,进而按照标准伪距单点定位方式解算获得经误差改正后的用户位置。
实施例2、在实施例1的基础上,本实施例采用具体实例对实施例1进行具体的说明,其中参数仅为举例方便使用,不涉及对实施例1的限制。
步骤一、获取参考站接收机的原始卫星观测数据,进行处理后得到该参考站r上关于卫星s的误差矢量改正数。
一般地,GNSS非差观测模型的伪距以及载波相位观测方程为:
P r , f i s = &rho; r s + c ( &delta;t r - &delta;t s ) + &alpha; f i I r s + T r s + c ( b f i s + b r , f i ) + &epsiv; r , f i s &Phi; r , f i s = &rho; r s + c ( &delta;t r - &delta;t s ) - &alpha; f i I r s + T r s + c ( b f i s + b r , f i ) + &lambda; f i s N r , f i s + &zeta; r , f i s - - - ( 1 )
式中:
s、r分别表示导航卫星(Satellite)、接收机(Receiver);
fi、分别表示所接收信号的载波频率(Hz)及相应的载波波长(m);
为接收机r关于卫星s在fi频率上的伪距观测量(m);
为接收机r关于卫星s在fi频率上的载波相位观测量(m);
为在信号发射时刻的卫星与接收机二者天线相位中心之间的几何距离量(m);
c为真空中的光速(c=299 792 458.0m/s);
δtr为信号接收时刻的接收机钟差(s);
δts为信号发射时刻的卫星钟差(s);
为接收机关于卫星s在基本频率f0(如GPS L1频率)上的电离层延迟误差量(m),它对伪距和载波相位的影响二者符号相反;
αfi为频率为fi的电磁波与基本频率f0之间的系数关系,为
为对流层延迟误差量(m);
br,fi分别为卫星和接收机在fi频率上的硬件延迟偏差(s);
为fi频率上关于卫星s的载波相位整周模糊度(cycle);
分别为伪距及载波相位的测量噪声以及其他未建模误差项(m);
在上述GNSS非差观测方程中,电离层延迟误差、硬件延迟偏差以及整周模糊度与信号频率相关,其他误差项与频率无关,通过两个或以上频率的同类型观测量的几何无关组合便能消除频率无关误差项,得到包含卫星与接收机硬件延迟以及整周模糊度的伪距及载波相位电离层原始观测信息,为:
P r , f 1 f 2 s = P r , f 1 s - P r , f 2 s = ( &alpha; f 1 - &alpha; f 2 ) I r s + c &CenterDot; DCB r , f 1 f 2 + c &CenterDot; DCB s , f 1 f 2 &Phi; r , f 1 f 2 s = &Phi; r , f 1 s - &Phi; r , f 2 s = ( &alpha; f 2 - &alpha; f 1 ) I r s + c &CenterDot; DCB s , f 1 f 2 + c &CenterDot; DCB s , f 1 f 2 + ( &lambda; f 1 N r , f 1 s - &lambda; f 2 N r , f 2 s ) - - - ( 2 )
式中,分别表示伪距和载波相位在频率f1与f2之间形成的几何无关组合观测量;表示参考站接收机r的硬件延迟偏差在频率f1与f2上的几何无关组合;表示卫星s的硬件延迟偏差在频率f1与f2上几何无关组合;式中忽略了观测噪声。
由于载波相位观测值的测量精度通常要比码伪距的大约高2个数量级,利用载波相位获得的原始电离层观测信息精度将远高于仅利用伪距获得的原始电离层观测信息精度。因此,本发明先通过载波相位平滑伪距方法确定(2)式中载波相位电离层观测中的模糊度组合参数,即进而获得高精度的原始电离层观测信息。具体求解步骤如下:
在某颗卫星没有发生周跳的连续观测时段内,整周模糊度组合参数将保持不变,并且卫星和接收机的频间偏差在一定时段内也可看作常量。利用电离层对伪距和载波相位所产生的延迟二者大小相等、符号相反的特性,通过对一连续时段内伪距与载波相位电离层观测量之和取平均即可确定整周模糊度及频间偏差组合参数的值,为:
2 c &CenterDot; ( DCB r , f 1 f 2 + DCB s , f 1 f 2 ) + ( &lambda; f 1 N r , f 1 s - &lambda; f 2 N r , f 2 s ) = < P r , f 1 f 2 s + &Phi; r , f 1 f 2 s > T - - - ( 3 )
其中,符号〈·〉T表示在连续时段T内求平均值。
再将求得的组合参数代回载波相位电离层观测式(2)中,得到对于基本频率的绝对电离层延迟信息:
I r s = &Phi; r , f 1 f 2 s - < P r , f 1 f 2 s + &Phi; r , f 1 f 2 s > T + c &CenterDot; DCB r , f 1 f 2 + c &CenterDot; DCB s , f 1 f 2 &alpha; f 2 - &alpha; f 1 - - - ( 4 )
在完成(4)式中的DCB误差校正之后,便能求出基本频率f0信号的电离层延迟量进而可以转换得到fi频率卫星信号上的电离层延迟量,即为该频率卫星信号上的频率相关项误差改正数,用表示,具体为:
I r , c o r r , f s = &alpha; f i I r s - - - ( 5 )
进而可求出fi频率卫星信号上的频率无关误差项的改正数,用表示,为:
E r , c o r r , f i s = P r , f i s - &rho; r s - I r , c o r r , f i s - - - ( 6 )
于是,可将上述得到的两部分误差改正信息组成矢量形式(用表示,不再区分卫星信号频率fi):一部分是频率相关增强信息,即电离层延迟误差改正数,用Icorr表示;另一部分是频率无关增强信息,即扣除电离层延迟误差之后的剩余误差改正数,用Ecorr表示。这样,参考站r上关于卫星s的误差矢量改正数为:
&Delta; P &RightArrow; r , c o r r s = &lsqb; I r , c o r r s , E r , c o r r s &rsqb; - - - ( 7 )
然后,参考站r将所计算的两类增强信息通过一定的通讯链路发送给其区域内的用户。
步骤二、终端用户u接收到增强参考站或数据处理中心发来的误差改正信息后,即可通过该增强信息改正自身的观测误差,从而提高定位精度。当用户接收到包含多个参考站的矢量增强信息时,由于此时存在关于用户区域内的多个电离层延迟误差改正信息,因此,在用户通过一定的建模算法对该多个电离层延迟误差信息进行处理后,可以获得比单参考站更为精确的电离层延迟误差改正信息;而关于多个频率无关增强信息,用户同样可以对其进行建模处理,不过由于其受距离的影响较弱,也可仅使用某一参考站的该类信息,本发明中不对其进行建模处理,而是直接使用距离用户最近的一个参考站的该类信息。
关于对多个参考站频率相关电离层延迟误差改正信息的建模处理,本发明采用了距离加权平均法进行建模处理,即对各参考站发来的该类误差改正值进行距离加权平均后得到用户的该类误差改正量。其基本原理是参考站改正数的权重与用户和参考站间的基线距离成反比,具体的数学表达式可写成:
&Delta;X u = &Sigma; i = 1 n &alpha; i &Delta;X i - - - ( 8 )
式中,n为参考站个数,ΔXi为第i个参考站的误差改正值,αi为第i个参考站的权系数,ΔXu为用户计算得到的误差改正值。各权系数的计算公式为:
其中,(xi,yi,zi)为第i个参考站的坐标,地心地固坐标系下,其事先精确已知,(xu,yu,zu)为用户的概略坐标。可以看到,用户使用的误差改正数是与其位置相关的函数,当用户处于不同的位置时,将得到不同的误差改正数。
对于本发明所提出的误差分离式区域伪距差分增强定位方法中多个参考站的电离层延迟误差改正信息,经上述(8)式和(9)式的建模处理后可以得到:
I u , c o r r = &Sigma; i = 1 n &alpha; i I i , c o r r - - - ( 10 )
式中,Iu,corr为用户u的电离层延迟误差改正值,Ii,corr为第i个参考站的电离层延迟误差改正数,αi为权系数,n为参考站个数。这样,便计算得到了更为精确的电离层延迟量。
而对于频率无关增强信息,由于其受距离的影响较弱,可不对其进行建模,直接用某个参考站(如离它最近的一个站)所播发的频率无关改正信息即可。于是,用户可组成新的误差改正信息为:
&Delta;P u , c o r r s - I u , c o r r s + E u , c o r r s - - - ( 11 )
步骤三、经上述误差改正之后的用户伪距为:
P u , c o r r s - P u s + &Delta;P u , c o r r s - - - ( 12 )
进而按照标准伪距单点定位方式便可解算出经误差改正之后的用户位置。
综上,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于误差分离模式的GNSS区域伪距差分增强定位方法,其特征在于,包括如下步骤:
步骤一、全球卫星导航***GNSS区域伪距差分增强定位采用n个参考站和一个终端用户;其中任一参考站r其接收机接收原始卫星s的观测数据,然后进行如下S101-S103的处理后得到该参考站r上关于卫星s的误差矢量改正数;所述原始卫星观测数据包括伪距观测量和载波相位观测量;
S101、建立GNSS非差观测方程,其中的电离层延迟误差、硬件延迟偏差以及整周模糊度为频率相关项,其他误差项为频率无关项,通过两个以上频率的同类型观测量的无几何组合消除频率无关项,然后进行DCB误差校正得到基本频率信号的电离层延迟量;
S102、由基本频率信号的电离层延迟量转换得到该原始卫星观测信号载波频率上的信号电离层延迟量,即为频率相关项误差改正数;
S103、根据频率无关项误差改正数、频率相关项误差改正数以及卫星与接收机之间天线相位中心之间的几何距离三者之和为伪距观测量;计算得到频率无关项误差改正数;
步骤二、每个参考站均将自身获得的关于卫星s的误差矢量改正数发送至终端用户处,针对每个参考站的频率相关项误差改正数依据参考站和终端用户之间的基线距离进行距离加权平均,然后与其中一个参考站的频率无关项误差改正数相加获得总的误差改正数;
其中在进行加权平均时,权重与参考站和终端用户之间的基线距离成反比;
步骤三、将伪距测量值加上所述总的误差改正数得到改正后的用户伪距,进而按照标准伪距单点定位方式解算获得经误差改正后的用户位置。
2.如权利要求1所述的一种基于误差分离模式的GNSS区域伪距差分增强定位方法,其特征在于,所述GNSS非差观测方程具体为:
P r , f i s = &rho; r s + c ( &delta; t r - &delta; t s ) + &alpha; f i I r s + T r s + c ( b f i s + b r , f i ) + &epsiv; r , f i s &Phi; r , f i s = &rho; r s + c ( &delta;t r - &delta;t s ) - &alpha; f i I r s + T r s + c ( b f i s + b r , f i ) + &lambda; f i s N r , f i s + &zeta; r , f i s
其中:
上标s表示卫星、下标r表示接收机;
fi表示所接收信号的载波频率;
表示所接收信号的载波波长;
为接收机r关于卫星s在fi频率上的伪距观测量;
为接收机r关于卫星s在fi频率上的载波相位观测量;
为在信号发射时刻的卫星与接收机二者天线相位中心之间的几何距离量;
c为真空中的光速;
δtr为信号接收时刻的接收机钟差;
δts为信号发射时刻的卫星钟差;
为接收机关于卫星s在基本频率f0上的电离层延迟误差量,对伪距观测量和载波相位观测量的影响符号相反;
为频率为fi的电磁波与基本频率f0之间的系数关系,为
为对流层延迟误差量;
br,fi分别为卫星和接收机在fi频率上的硬件延迟偏差;
为fi频率上关于卫星s的载波相位整周模糊度;
分别为伪距及载波相位的测量噪声以及其他未建模误差项。
3.如权利要求2所述的一种基于误差分离模式的GNSS区域伪距差分增强定位方法,其特征在于,所述S101中,观测噪声不计,通过两个以上频率的同类型观测量的几何无关组合包括:
伪距观测量在频率f1与f2之间形成的几何无关组合
载波相位观测量在频率f1与f2之间形成的几何无关组合
参考站上接收机r的硬件延迟偏差在频率f1与f2上的几何无关组合为其中分别为接收机r在f1与f2频率上的硬件延迟偏差;
卫星s的硬件延迟偏差在频率f1与f2上几何无关组合为其中分别为卫星s在f1与f2频率上的硬件延迟偏差;
接收机r在频率f1与f2上关于卫星s的载波相位整周模糊度的几何无关组合为
由此得到的包含频率相关项的伪距观测量及载波相位观测量分别为:
P r , f 1 f 2 s = ( &alpha; f 1 - &alpha; f 2 ) I r s + c &CenterDot; DCB r , f 1 f 2 + c &CenterDot; DCB s , f 1 f 2 &Phi; r , f 1 f 2 s = ( &alpha; f 2 - &alpha; f 1 ) I r s + c &CenterDot; DCB r , f 1 f 2 + c &CenterDot; DCB s , f 1 f 2 + ( &lambda; f 1 s N r , f 1 s - &lambda; f 2 s N r , f 2 s ) ;
在卫星s没有发生周跳的连续观测时段内,对伪距观测量与载波相位电离层观测量之和取平均即消除频率无关项,得到
进而得到基本频率的电离层延迟量:
I r s = &Phi; r , f 1 f 2 s - < P r , f 1 f 2 s + &Phi; r , f 1 f 2 s > T + c &CenterDot; DCB r , f 1 f 2 + c &CenterDot; DCB s , f 1 f 2 &alpha; f 2 - &alpha; f 1 .
4.如权利要求3所述的一种基于误差分离模式的GNSS区域伪距差分增强定位方法,其特征在于,所述S102中,由基本频率信号的电离层延迟量转换得到该原始卫星观测信号载波频率上的信号电离层延迟量,转换公式具体为:其中为该原始卫星观测信号载波频率上的信号电离层延迟量,αfi为频率为fi的电磁波与基本频率f0之间的系数关系,为
5.如权利要求4所述的一种基于误差分离模式的GNSS区域伪距差分增强定位方法,其特征在于,所述步骤三中,针对每个参考站的频率相关项误差改正数依据参考站和终端用户之间的基线距离进行距离加权平均公式具体为:
I u , c o r r = &Sigma; i = 1 n &alpha; i I i , c o r r ;
其中Iu,corr为加权平均的最终结果,Ii,corr为参考站i的频率相关项误差改正数;αi为权重系数;
&alpha; i = 1 ( x i - x u ) 2 + ( y i - y u ) 2 + ( z i - z u ) 2 &Sigma; i n 1 ( x i - x u ) 2 + ( y i - y u ) 2 + ( z i - z u ) 2 ;
其中,(xi,yi,zi)为地心地固坐标系下第i个参考站的坐标,(xu,yu,zu)为地心地固坐标系下终端用户的坐标。
6.如权利要求1或者4所述的一种基于误差分离模式的GNSS区域伪距差分增强定位方法,其特征在于,所述步骤三中针对每个参考站的频率相关项误差改正数依据参考站和终端用户之间的基线距离进行距离加权平均,然后与其中一个参考站的频率无关项误差改正数相加获得总的误差改正数;
上述其中一个参考站的频率无关项改正数直接用距离终端用户最近的参考站的频率无关项改正数。
CN201610179816.4A 2016-03-25 2016-03-25 一种基于误差分离模式的gnss区域伪距差分增强定位方法 Active CN105891860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610179816.4A CN105891860B (zh) 2016-03-25 2016-03-25 一种基于误差分离模式的gnss区域伪距差分增强定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610179816.4A CN105891860B (zh) 2016-03-25 2016-03-25 一种基于误差分离模式的gnss区域伪距差分增强定位方法

Publications (2)

Publication Number Publication Date
CN105891860A true CN105891860A (zh) 2016-08-24
CN105891860B CN105891860B (zh) 2018-06-19

Family

ID=57014842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610179816.4A Active CN105891860B (zh) 2016-03-25 2016-03-25 一种基于误差分离模式的gnss区域伪距差分增强定位方法

Country Status (1)

Country Link
CN (1) CN105891860B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490796A (zh) * 2017-07-17 2017-12-19 深圳市时空导航科技有限公司 一种单站差分gnss定位的方法及装置
CN108089207A (zh) * 2017-06-06 2018-05-29 中国科学院光电研究院 一种基于单差电离层建模的nrtk增强定位方法
CN108205150A (zh) * 2016-12-19 2018-06-26 千寻位置网络有限公司 差分定位方法及***
CN108254762A (zh) * 2016-12-28 2018-07-06 千寻位置网络有限公司 伪距差分定位方法及***
CN108415046A (zh) * 2017-12-20 2018-08-17 中国科学院上海天文台 一种接收机导航定位的方法以及接收机
CN108535749A (zh) * 2018-03-19 2018-09-14 千寻位置网络有限公司 基于cors的定位增强方法及***、定位***
CN109709591A (zh) * 2018-12-07 2019-05-03 中国科学院光电研究院 一种面向智能终端的gnss高精度定位方法
WO2019090966A1 (zh) * 2017-11-09 2019-05-16 深圳思凯微电子有限公司 双通道卫星导航差分数据接收方法、接收机及存储介质
CN110208835A (zh) * 2019-05-21 2019-09-06 哈尔滨工程大学 一种基于消电离层组合的跨***紧组合差分定位方法
CN110907972A (zh) * 2019-12-04 2020-03-24 辰芯科技有限公司 一种位置定位、速度定位方法、装置及定位终端
CN111092887A (zh) * 2019-12-17 2020-05-01 北京华力创通科技股份有限公司 网络rtk数据的安全传输方法、装置及***
CN111551971A (zh) * 2020-05-14 2020-08-18 中国北方工业有限公司 一种支持异频gnss信号伪距差分定位的方法
CN112147643A (zh) * 2020-08-24 2020-12-29 西安空间无线电技术研究所 一种gnss-r***成像预处理的方法及装置
CN112666578A (zh) * 2020-12-16 2021-04-16 中国人民解放军61081部队 顾及轨道误差和电离层延迟的双向定时算法及计算装置
CN113467221A (zh) * 2021-07-13 2021-10-01 湖南国科微电子股份有限公司 一种卫星导航授时方法、***及相关组件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295014A (zh) * 2008-05-19 2008-10-29 中国测绘科学研究院 基于gnss的远距离高精度实时/快速定位方法和***
CN101887128A (zh) * 2010-07-09 2010-11-17 中国科学院测量与地球物理研究所 确定全球卫星导航***导航卫星频间偏差的方法
US20130044026A1 (en) * 2011-02-14 2013-02-21 Trimble Navigation Limited GNSS Signal Processing with Ionosphere Model for Synthetic Reference Data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295014A (zh) * 2008-05-19 2008-10-29 中国测绘科学研究院 基于gnss的远距离高精度实时/快速定位方法和***
CN101887128A (zh) * 2010-07-09 2010-11-17 中国科学院测量与地球物理研究所 确定全球卫星导航***导航卫星频间偏差的方法
US20130044026A1 (en) * 2011-02-14 2013-02-21 Trimble Navigation Limited GNSS Signal Processing with Ionosphere Model for Synthetic Reference Data
CN103064097A (zh) * 2011-02-14 2013-04-24 天宝导航有限公司 使用用于合成参考数据的电离层模型的gnss信号处理
US20160011314A1 (en) * 2011-02-14 2016-01-14 Trimble Navigation Limited Gnss signal processing with ionosphere model for synthetic reference data

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王建立等: "区域格网电离层建模空间插值方法研究", 《全球定位***》 *
祝会忠: "《长距离单历元非差GNSS网络RTK理论与方法》", 30 June 2014 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108205150A (zh) * 2016-12-19 2018-06-26 千寻位置网络有限公司 差分定位方法及***
CN108254762A (zh) * 2016-12-28 2018-07-06 千寻位置网络有限公司 伪距差分定位方法及***
CN108254762B (zh) * 2016-12-28 2021-07-27 千寻位置网络有限公司 伪距差分定位方法及***
CN108089207A (zh) * 2017-06-06 2018-05-29 中国科学院光电研究院 一种基于单差电离层建模的nrtk增强定位方法
CN107490796B (zh) * 2017-07-17 2019-10-29 深圳市时空导航科技有限公司 一种单站差分gnss定位的方法及装置
CN107490796A (zh) * 2017-07-17 2017-12-19 深圳市时空导航科技有限公司 一种单站差分gnss定位的方法及装置
WO2019090966A1 (zh) * 2017-11-09 2019-05-16 深圳思凯微电子有限公司 双通道卫星导航差分数据接收方法、接收机及存储介质
CN108415046A (zh) * 2017-12-20 2018-08-17 中国科学院上海天文台 一种接收机导航定位的方法以及接收机
CN108535749A (zh) * 2018-03-19 2018-09-14 千寻位置网络有限公司 基于cors的定位增强方法及***、定位***
CN109709591B (zh) * 2018-12-07 2021-04-20 中国科学院光电研究院 一种面向智能终端的gnss高精度定位方法
CN109709591A (zh) * 2018-12-07 2019-05-03 中国科学院光电研究院 一种面向智能终端的gnss高精度定位方法
CN110208835A (zh) * 2019-05-21 2019-09-06 哈尔滨工程大学 一种基于消电离层组合的跨***紧组合差分定位方法
CN110208835B (zh) * 2019-05-21 2023-05-05 哈尔滨工程大学 一种基于消电离层组合的跨***紧组合差分定位方法
CN110907972A (zh) * 2019-12-04 2020-03-24 辰芯科技有限公司 一种位置定位、速度定位方法、装置及定位终端
CN111092887A (zh) * 2019-12-17 2020-05-01 北京华力创通科技股份有限公司 网络rtk数据的安全传输方法、装置及***
CN111551971A (zh) * 2020-05-14 2020-08-18 中国北方工业有限公司 一种支持异频gnss信号伪距差分定位的方法
CN112147643A (zh) * 2020-08-24 2020-12-29 西安空间无线电技术研究所 一种gnss-r***成像预处理的方法及装置
CN112147643B (zh) * 2020-08-24 2024-02-09 西安空间无线电技术研究所 一种gnss-r***成像预处理的方法及装置
CN112666578A (zh) * 2020-12-16 2021-04-16 中国人民解放军61081部队 顾及轨道误差和电离层延迟的双向定时算法及计算装置
CN113467221A (zh) * 2021-07-13 2021-10-01 湖南国科微电子股份有限公司 一种卫星导航授时方法、***及相关组件

Also Published As

Publication number Publication date
CN105891860B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
CN105891860A (zh) 一种基于误差分离模式的gnss区域伪距差分增强定位方法
CN104714244B (zh) 一种基于抗差自适应Kalman滤波的多***动态PPP解算方法
CN110531392A (zh) 一种基于ppp算法的高精度定位方法和***
CN107422351A (zh) 一种基于虚拟网格的gnss分米级差分定位方法
CN103837879B (zh) 基于北斗***民用载波相位组合实现高精度定位的方法
CN110031881A (zh) 高精度星间激光测距辅助精密单点定位的方法
CN106125110A (zh) 基于分区改正的星基增强***定位精度提高方法
CN106054216A (zh) 基于gdop和uere的多模gnss选星方法
CN104614741B (zh) 一种不受glonass码频间偏差影响的实时精密卫星钟差估计方法
CN105044741B (zh) 一种伪距相位综合广域差分改正值的求解方法
CN105929424A (zh) 一种bds/gps高精度定位方法
CN104597465A (zh) 一种提高gps与glonass组合精密单点定位收敛速度的方法
CN107861131A (zh) 一种斜路径电离层延迟的获取方法及***
WO2017070732A1 (en) A method of analysing a signal transmitted between a global satellite navigation satellite system and a receiver
CN108196284B (zh) 一种进行星间单差模糊度固定的gnss网数据处理方法
CN104680008A (zh) 一种基于多参考站的网络rtk区域大气误差建模方法
CN103344978A (zh) 一种适用于大规模用户的区域增强精密定位服务方法
CN110109158A (zh) 基于gps、glonass和bds多***的事后超快速rtk定位算法
CN102608633B (zh) 一种卫星定位伪距差分方法
CN108549095A (zh) 一种区域cors网非差并行增强方法及***
CN110261879A (zh) 广域地基增强位置服务的格网化虚拟参考站方法
CN110058282A (zh) 一种基于双频gnss智能手机的ppp高精度定位方法
CN109407126A (zh) 一种多模接收机联合定位解算的方法
CN110146908B (zh) 一种虚拟参考站观测数据的生成方法
CN103235321A (zh) Gps单站伪距定位精密授时方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant