CN105882648B - 一种基于模糊逻辑算法的混合动力***能量管理方法 - Google Patents

一种基于模糊逻辑算法的混合动力***能量管理方法 Download PDF

Info

Publication number
CN105882648B
CN105882648B CN201610300469.6A CN201610300469A CN105882648B CN 105882648 B CN105882648 B CN 105882648B CN 201610300469 A CN201610300469 A CN 201610300469A CN 105882648 B CN105882648 B CN 105882648B
Authority
CN
China
Prior art keywords
mrow
power
vehicle
controller
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610300469.6A
Other languages
English (en)
Other versions
CN105882648A (zh
Inventor
刘旭鹏
李科迪
童珎
何荣国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAIC Volkswagen Automotive Co Ltd
Original Assignee
SAIC Volkswagen Automotive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAIC Volkswagen Automotive Co Ltd filed Critical SAIC Volkswagen Automotive Co Ltd
Priority to CN201610300469.6A priority Critical patent/CN105882648B/zh
Publication of CN105882648A publication Critical patent/CN105882648A/zh
Application granted granted Critical
Publication of CN105882648B publication Critical patent/CN105882648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/209Fuel quantity remaining in tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种基于模糊逻辑算法的混合动力***能量管理方法,自动实时计算整车功率需求以及功率分配组合,在保证动力性和满足不同用户需求的前提下提高整车的燃油经济性。其技术方案为:***自检;整车控制器向能量源控制器、驱动电机控制器发送访问信号,获取信号数据;判断信号数据是否完整;整车控制器根据信号数据,实时计算出整车需求功率、整车动力***附件功率,通过模糊逻辑算法实时计算得出各能量源输出功率;利用模糊逻辑算法对实时计算得出的能量源输出功率进行调整修正,以得出功率分配组合;整车控制器基于功率分配组合通过CAN总线向各能量源控制器发送输出功率分配结果,完成整车控制器对动力***各能量源输出功率的实时调整。

Description

一种基于模糊逻辑算法的混合动力***能量管理方法
技术领域
本发明涉及混合动力汽车控制技术领域,尤其涉及基于模糊逻辑算法实现的混合动力***能量管理方法。
背景技术
增程式电动汽车是一种特殊的混合动力电动汽车,旨在解决纯电动汽车续航里程短的问题,在纯电动汽车的基础上,增加1个增程器以增加电动汽车的续航里程。动力电池作为其主要能源,增程器***则是它的备用能源,当动力电池电能降低到一定程度时,增程器开始工作,为动力电池充电或直接驱动车辆,增加汽车续航里程。双能源***在整车能量管理***的协调控制下,与其他部件相互配合,可以进行多种优化组合,形成不同的动力***工作模式,以适应不同的行驶工况。
能量管理策略的目标通常是具有多个输入变量和多个约束条件的多目标非线性优化问题,其控制策略对车辆的动力性和燃油经济性均有显著影响。通常在到达设计的车辆行驶距离时,车载储能***达到耗尽状态。一方面,过度的整车动力电池电量耗尽可能会导致整车***的高压电气损耗或是增程器能量剩余,影响汽车整体的能量效率;另一方面,车辆电量消耗不充分可能无法获得预先设计的减少燃料消耗的目的,动力电池***的能力远没有达到可利用极限。因此如何在混合动力汽车的应用中获得合适的不同能量源之间的功率和能量流分配是能量管理策略的根本问题之一。在实际应用中,由于行驶工况并不能精确预知,因此合适的能量管理策略是实现混合动力汽车节能环保的关键所在。
目前研究最为广泛的四类混合动力汽车能量管理策略:基于规则的控制策略、瞬时优化控制策略、全局优化控制策略和基于优化算法的自适应控制策略。
基于规则的控制策略的工作机理是:事先凭理论分析和工作经验直觉设定一系列的车辆预计工作状态值,将其工作区域划分。根据设置的临界工作点来判断车辆所工作的区域,从而采取相应的控制方式。基于规则逻辑门限算法相对简单,能够应用于实车控制器,结合离线优化的结果,能够对参数进行优化,从而得到更合理、经济的工作模式切换规则。这类策略的最大的优点是易于工程实现。但是,基于规则的能量管理策略,无论是否进行过控制参数优化,其在燃油经济性的提高方面还是存在一定的局限性。
瞬时优化控制策略通常采用等效燃油消耗最少或功率损失最小算法,通过将两个能量源的能量消耗用特定方法进行量化统一,计算出整车瞬时最小能耗。该策略在每一步长内是最优的,但无法保证在整个行驶周期内最优,而且需要大量的浮点运算和比较精确的车辆及动力***模型,计算量大,实现困难。这类能量管理策略目前在计算机仿真上取得了很好的燃料经济性效果,但在实车上并未广泛应用,因为其对于车辆实时行驶状态参数的采集、分析及处理要求较高,同时整车动力***性能的变化对基础数据库的实时更新影响较大。
全局优化控制策略,在事先知道汽车行驶的所有过程中所有工况参数的条件下,可以实现能量管理的全局优化。全局优化模式实现了真正意义上的最优化,但实现这种策略的算法往往都比较复杂,计算量也很大,并且需要预先获得所有的道路信息,在实际车辆的实时控制中很难得到应用。
基于优化算法的自适应控制策略,可以根据当前车辆行驶状态和路况自动预测未来一段时间内的功率和能量需求来自动调整控制参数以适应行驶工况的变化。所谓自适应,就是在每一时间步,根据当前的行驶条件和路况要求来调整部件工作方式,通过优化算法,在保证目标函数最优化的前提下,将能量需求合理地分配给各个能量源。虽然自适应控制策略的目标函数模型优化算法等各不相同,但由于自适应控制要实时采集大量的动力***运行数据,计算能耗,预测未来工况,优化过程复杂,计算量大,导致其目前无法在实际中得到应用。
发明内容
以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在指认出所有方面的关键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一的目的是要以简化形式给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之序。
本发明的目的在于解决上述问题,提供了一种基于模糊逻辑算法的混合动力***能量管理方法,能够根据整车实际状态自动实时计算整车功率需求以及功率分配组合,在保证动力性和满足不同用户需求的前提下能够提高整车的燃油经济性,同时还易于在实车上实现。
本发明的技术方案为:本发明揭示了一种基于模糊逻辑算法的混合式***能量管理方法,其特征在于,混合式***包括整车控制器、能量源控制器、电机控制器和CAN总线,所述混合式***能量管理方法包括:
步骤1:对整车控制器、能量控制器和电机控制器进行自检,若无故障则进入步骤2,若有故障则进入故障处理机制;
步骤2:整车控制器通过CAN总线向能量源控制器、驱动电机控制器发送访问信号并获取模糊逻辑算法计算所需的信号数据;
步骤3:整车控制器判断接收到的模糊逻辑算法计算所需的信号数据是否完整,若完整则进入步骤4,若不完整则返回步骤2;
步骤4:整车控制器根据接收到的模糊逻辑算法计算所需的信号数据,实时计算出整车需求功率和/或整车动力***附件功率和/或能量源输出功率。
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,还包括:
步骤5:利用模糊逻辑算法对能量源输出功率进行调整修正,得出输出功率分配组合;
步骤6:整车控制器基于功率分配组合通过CAN总线向各能量源控制器发送输出功率分配结果,完成整车控制器对能量源输出功率的实时调整。
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,所述混合式***还包括动力电池控制器、增程器控制器、整车动力附件,其能量源包括动力电池、增程器,整车控制器通过CAN总线分别和动力电池控制器、增程器控制器、驱动电机控制器、整车动力附件连接,增程器与增程器控制器之间、动力电池与动力电池控制器之间通过CAN总线连接,增程器通过高压电线与动力电池连接。
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,整车动力附件包括整车散热子***、空调子***以及大灯、继电器的电器件、包括仪表的用电器。
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,步骤2中的信号数据包括当前动力电池SOC、Δt时间内SOC变化量ΔSOC、增程器***剩余燃料质量mre、整车需求功率Pvehicle、整车动力***附件功率Pauxiliary
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,步骤4中的整车需求功率计算如下:
整车需求功率G=mg,m为整车满载质量,f为滚动阻力系数,CD为空气阻力系数,A为汽车迎风面积,V为汽车当前车速,ηt为整体传动效率,δ为汽车质量转换系数,α为行驶道路坡度角,当α小于一定值时cosα=1,α=sinα=tanα=i,i为道路坡度,Pauxiliary为整车动力附件***功率。
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,整车动力附件***功率Pauxiliary为包括整车散热子***、空调子***以及大灯、继电器的电器件、仪表的用电器在内的所有低压用电器件全部以最大功率工作时的总和。
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,步骤4中的增程器的输出功率的实时计算如下:
增程器输出功率其中Ere为剩余燃料经过增程器可以转化出的电能,T为动力电池根据前一段荷电状态SOC的消耗率估算出的可持续使用的时间,M是增程器所用燃料的热值,η是增程器***将燃料转化为电能的能量转换效率,SOCt为动力电池当前荷电状态,SOCmin为动力电池所允许的截止值,Δt为采样周期,ΔSOC为采样周期内的SOC变化量,mre为当前增程器***燃料的剩余质量。
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,步骤5的能量源输出功率的调整修正如下:
其中Pre为调整后的增程器的输出功率,Pre_cal为实时计算得到的增程器的输出功率,Pre_max为增程器最大可持续输出功率,Pre_min为增程器最低许可输出功率;
动力电池输出功率Pbattery=Pvehicle-Pre
根据本发明的基于模糊逻辑算法的混合动力***能量管理方法的一实施例,该能量控制方法包括适用于增程式电动车混合动力***的能量管理策略。
本发明对比现有技术有如下的有益效果:
1)本发明基于模糊逻辑算法可以提供实时检测当前车辆的能量消耗率及各个能量源的实时状态,通过模糊逻辑计算预测未来整车的功率请求,根据模糊逻辑的计算结果和相应的逻辑规则实时调整各能量源的输出功率,实时性好;
2)本发明中的模糊逻辑计算公式和逻辑规则具有以下作用:a)当动力电池电量消耗过快时可实时提高增程器功率输出,电量消耗率较低时可实时降低增程器功率输出,避免了动力电池大电流充放电,兼顾了动力电池寿命和能量转换效率;b)根据相应的模糊逻辑规则可以避免增程器***的低效率工作区域,提高了整车燃油经济性;
3)该模糊逻辑算法解决了背景技术中提到的混合动力汽车动力电池电量过度消耗或者是消耗不充分的问题;
4)该模糊逻辑算法对控制器硬件要求较低,易于在整车上实现;
5)本发明所采用的能量管理算法可应用于燃料电池-蓄电池,内燃机-蓄电池,内燃机-超级电容等多种形式的新能源汽车混合动力***,具有良好的扩展性。
附图说明
图1示出了适用本发明的增程式混合动力电动车动力***的拓扑结构示意图。
图2示出了本发明的基于模糊逻辑算法的混合动力***能量管理方法的较佳实施例的流程图。
具体实施方式
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的上述特征和优点,但不以任何形式限制本发明。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,都属于本发明的保护范围。
先说明本发明的混合动力***能量管理方法的总体构思,其基于模糊逻辑算法,该模糊逻辑算法将混合动力***的能量管理策略简化为一组多输入、单输出的能力管理规则,使用模糊逻辑计算方式根据动力电池SOC、Δt时间内SOC变化量ΔSOC、增程器***剩余燃料质量mre、整车需求功率Pvehicle、整车动力***附件功率Pauxiliary等参数通过实时计算来控制混合动力***能量源的输出功率,在满足用户需求的前提下提供高整车的燃油经济性。
再结合图1描述应用本实施例的方法的增程式电动车混合动力***的拓扑结构。如图1所示,动力***包括动力电池1、增程器2、增程器***3、驱动电机4、整车控制器VMS5、动力电池控制器BMS 6、增程器控制器RES 7、驱动电机控制器PEU 8、整车动力***附件9、CAN总线10。
整车控制器VMS 5分别通过CAN总线10连接增程器控制器RES 7与动力电池控制器BMS 6、驱动电机控制器PEU 8和整车动力***附件9。增程器2与增程器控制器RES 7连接,动力电池1与动力电池控制器BMS 6连接,增程器2通过高压电线与动力电池1连接。
能量管理策略的控制参数通过CAN总线10在整车控制器VMS 5与作为能量源的动力电池控制器6和增程器控制器7之间完成数据交互。整车控制器VMS 5从CAN总线获10得能量管理策略计算所需数据后提供模糊逻辑算法公式计算出增程器输出功率,再通过CAN总线10将输出功率组合发送给各个能量源的控制器(动力电池控制器6和增程器控制器7),以完成动力***能量源功率的实时调整。
整车动力***附件9包括整车散热子***、空调子***以及大灯、继电器等电器件、仪表等用电器功耗。
基于图1所示的增程式电动车混合动力***,本发明的基于模糊逻辑算法的混合动力***能量管理方法的较佳实施例的流程如图2所示。
在步骤S201中,整车控制器VMS、驱动电机控制器PEU、动力电池控制器BMS、增程器控制器RES分别对其负责的子***进行自检,判断有无故障,若无则进入各***就绪状态,执行步骤203;若有,则进行故障处理机制步骤S202。
在步骤203中,整车控制器VMS通过CAN总线向动力电池控制器BMS、增程器控制器RES、驱动电机控制器PEU发送访问信号,从中获取能量管理策略计算所需的信号数据。
所需的信号数据包括当前动力电池SOC(State of Charge,即动力蓄电池的荷电状态,表征的是蓄电池使用一段时间后的剩余容量)、Δt时间内SOC变化量ΔSOC、增程器***剩余燃料质量mre、整车需求功率Pvehicle、整车动力***附件功率Pauxiliary
在步骤204中,整车控制器VMS判断接收到的信号数据是否完整,若是,则执行步骤205;若无,则返回步骤203。
在步骤205中,整车控制器VMS根据接收到的能量管理策略计算需求数据,通过实时计算得出整车请求功率Pvehicle,通过模糊逻辑算法和相应规则得出增程器输出功率Pre和动力电池输出功率Pbattery,经过实时调整最终得出功率分配组合Pvehicle=F(Pbattery,Pre,Pauxiliary),然后进入步骤206。
在步骤205中涉及的模糊逻辑算法如下:
a)整车请求功率G=mg,m为整车满载质量,f为滚动阻力系数,ηt为整车传动效率,α为坡度,CD为空气阻力系数,A为汽车迎风面积,V为汽车当前车速,δ为汽车质量转换系数,通常行驶道路的坡度角不大时cosα=1,α=sinα=tanα=i,i为道路坡度,Pauxiliary为整车动力***的附件功率,主要为整车散热子***、空调子***以及大灯、继电器的电器件、仪表灯的用电器,Pauxiliary取值为上述所有低压用电器件全部以最大功率工作时的总和;
b)增程器输出功率的实时计算值
其中Ere为剩余燃料经过增程器可以转化出的电能,T为动力电池根据前一段SOC的消耗率估算出的可持续使用的时间,M是增程器所用燃料的热值(xx MJ/kg),η是增程器***将燃料转化为电能的能量转换效率(%),SOCt为动力电池当前荷电状态,SOCmin为动力电池所允许的截止值,Δt为采样周期(h),ΔSOC为采样周期内的SOC变化量,mre当前增程器***燃料的剩余质量。
在步骤206中,通过模糊逻辑算法对实时计算得出的能量源输出功率进行调整修正,以得到功率分配组合。具体如下:a)如果Pre_cal大于增程器***最大可持续功率Pre_max,则只能以Pre_max输出;如果Pre_cal小于增程器***最低许可输出功率,则以Pre_min输出。其中Pre_min为根据增程器***特性曲线定义的低效率区对应的功率点。以发动机为例,Pre_min为避免发动机进入低转速区域对应的功率点。
总结公式为:
电池输出功率Pbattery=Pvehicle-Pre
在步骤207中,整车控制器VMS通过CAN总线向动力电池控制器BMS和增程器控制器RES发送功率输出结果,完成整车控制器VMS对动力***各能量源输出功率分配。
尽管为使解释简单化将上述方法图示并描述为一系列动作,但是应理解并领会,这些方法不受动作的次序所限,因为根据一个或多个实施例,一些动作可按不同次序发生和/或与来自本文中图示和描述或本文中未图示和描述但本领域技术人员可以理解的其他动作并发地发生。
本领域技术人员将进一步领会,结合本文中所公开的实施例来描述的各种解说性逻辑板块、模块、电路、和算法步骤可实现为电子硬件、计算机软件、或这两者的组合。为清楚地解说硬件与软件的这一可互换性,各种解说性组件、框、模块、电路、和步骤在上面是以其功能性的形式作一般化描述的。此类功能性是被实现为硬件还是软件取决于具体应用和施加于整体***的设计约束。技术人员对于每种特定应用可用不同的方式来实现所描述的功能性,但这样的实现决策不应被解读成导致脱离了本发明的范围。
结合本文所公开的实施例描述的各种解说性逻辑板块、模块、和电路可用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其设计成执行本文所描述功能的任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,该处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可以被实现为计算设备的组合,例如DSP与微处理器的组合、多个微处理器、与DSP核心协作的一个或多个微处理器、或任何其他此类配置。
结合本文中公开的实施例描述的方法或算法的步骤可直接在硬件中、在由处理器执行的软件模块中、或在这两者的组合中体现。软件模块可驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM、或本领域中所知的任何其他形式的存储介质中。示例性存储介质耦合到处理器以使得该处理器能从/向该存储介质读取和写入信息。在替换方案中,存储介质可以被整合到处理器。处理器和存储介质可驻留在ASIC中。ASIC可驻留在用户终端中。在替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中。
在一个或多个示例性实施例中,所描述的功能可在硬件、软件、固件或其任何组合中实现。如果在软件中实现为计算机程序产品,则各功能可以作为一条或更多条指令或代码存储在计算机可读介质上或藉其进行传送。计算机可读介质包括计算机存储介质和通信介质两者,其包括促成计算机程序从一地向另一地转移的任何介质。存储介质可以是能被计算机访问的任何可用介质。作为示例而非限定,这样的计算机可读介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁存储设备、或能被用来携带或存储指令或数据结构形式的合意程序代码且能被计算机访问的任何其它介质。任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波之类的无线技术从web网站、服务器、或其它远程源传送而来,则该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括压缩碟(CD)、激光碟、光碟、数字多用碟(DVD)、软盘和蓝光碟,其中盘(disk)往往以磁的方式再现数据,而碟(disc)用激光以光学方式再现数据。上述的组合也应被包括在计算机可读介质的范围内。
提供对本公开的先前描述是为使得本领域任何技术人员皆能够制作或使用本公开。对本公开的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变体而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所描述的示例和设计,而是应被授予与本文中所公开的原理和新颖性特征相一致的最广范围。

Claims (9)

1.一种基于模糊逻辑算法的混合式***能量管理方法,其特征在于,混合式***包括整车控制器、能量源控制器、电机控制器和CAN总线,所述混合式***能量管理方法包括:
步骤1:对整车控制器、能量控制器和电机控制器进行自检,若无故障则进入步骤2,若有故障则进入故障处理机制;
步骤2:整车控制器通过CAN总线向能量源控制器、驱动电机控制器发送访问信号并获取模糊逻辑算法计算所需的信号数据;
步骤3:整车控制器判断接收到的模糊逻辑算法计算所需的信号数据是否完整,若完整则进入步骤4,若不完整则返回步骤2;
步骤4:整车控制器根据接收到的模糊逻辑算法计算所需的信号数据,实时计算出整车需求功率和/或整车动力***附件功率和/或能量源输出功率;
其中步骤4中的整车需求功率计算如下:
整车需求功率G=mg,m为整车满载质量,f为滚动阻力系数,CD为空气阻力系数,A为汽车迎风面积,V为汽车当前车速,ηt为整体传动效率,δ为汽车质量转换系数,α为行驶道路坡度角,当α小于一定值时cosα=1,α=sinα=tanα=i,i为道路坡度,Pauxiliary为整车动力附件***功率。
2.根据权利要求1所述的基于模糊逻辑算法的混合动力***能量管理方法,其特征在于,还包括:
步骤5:利用模糊逻辑算法对能量源输出功率进行调整修正,得出输出功率分配组合;
步骤6:整车控制器基于功率分配组合通过CAN总线向各能量源控制器发送输出功率分配结果,完成整车控制器对能量源输出功率的实时调整。
3.根据权利要求2所述的基于模糊逻辑算法的混合动力***能量管理方法,其特征在于,所述混合式***还包括动力电池控制器、增程器控制器、整车动力附件,其能量源包括动力电池、增程器,整车控制器通过CAN总线分别和动力电池控制器、增程器控制器、驱动电机控制器、整车动力附件连接,增程器与增程器控制器之间、动力电池与动力电池控制器之间通过CAN总线连接,增程器通过高压电线与动力电池连接。
4.根据权利要求3所述的基于模糊逻辑算法的混合动力***能量管理方法,其特征在于,整车动力附件包括整车散热子***、空调子***以及大灯、继电器的电器件、包括仪表的用电器。
5.根据权利要求4所述的基于模糊逻辑算法的混合动力***能量管理方法,其特征在于,步骤2中的信号数据包括当前动力电池SOC、Δt时间内SOC变化量ΔSOC、增程器***剩余燃料质量mre、整车需求功率Pvehicle、整车动力***附件功率Pauxiliary
6.根据权利要求5所述的基于模糊逻辑算法的混合动力***能量管理方法,其特征在于,整车动力附件***功率Pauxiliary为包括整车散热子***、空调子***以及大灯、继电器的电器件、仪表的用电器在内的所有低压用电器件全部以最大功率工作时的总和。
7.根据权利要求6所述的基于模糊逻辑算法的混合动力***能量管理方法,其特征在于,步骤4中的增程器的输出功率的实时计算如下:
增程器输出功率其中Ere为剩余燃料经过增程器可以转化出的电能,T为动力电池根据前一段荷电状态SOC的消耗率估算出的可持续使用的时间,M是增程器所用燃料的热值,η是增程器***将燃料转化为电能的能量转换效率,SOCt为动力电池当前荷电状态,SOCmin为动力电池所允许的截止值,Δt为采样周期,ΔSOC为采样周期内的SOC变化量,mre为当前增程器***燃料的剩余质量。
8.根据权利要求7所述的基于模糊逻辑算法的混合动力***能量管理方法,其特征在于,步骤5的能量源输出功率的调整修正如下:
<mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>min</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>min</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>min</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>max</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>max</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>e</mi> <mo>_</mo> <mi>max</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中Pre为调整后的增程器的输出功率,Pre_cal为实时计算得到的增程器的输出功率,Pre_max为增程器最大可持续输出功率,Pre_min为增程器最低许可输出功率;
动力电池输出功率Pbattery=Pvehicle-Pre
9.根据权利要求1所述的基于模糊逻辑算法的混合动力***能量管理方法,其特征在于,该能量管理方法包括适用于增程式电动车混合动力***的能量管理策略。
CN201610300469.6A 2016-05-09 2016-05-09 一种基于模糊逻辑算法的混合动力***能量管理方法 Active CN105882648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610300469.6A CN105882648B (zh) 2016-05-09 2016-05-09 一种基于模糊逻辑算法的混合动力***能量管理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610300469.6A CN105882648B (zh) 2016-05-09 2016-05-09 一种基于模糊逻辑算法的混合动力***能量管理方法

Publications (2)

Publication Number Publication Date
CN105882648A CN105882648A (zh) 2016-08-24
CN105882648B true CN105882648B (zh) 2018-03-13

Family

ID=56702409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610300469.6A Active CN105882648B (zh) 2016-05-09 2016-05-09 一种基于模糊逻辑算法的混合动力***能量管理方法

Country Status (1)

Country Link
CN (1) CN105882648B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106427990B (zh) * 2016-12-16 2018-09-28 上汽大众汽车有限公司 混合动力***及其能量管理方法
CN106740822A (zh) * 2017-02-14 2017-05-31 上汽大众汽车有限公司 混合动力***及其能量管理方法
CN108363855B (zh) * 2018-02-02 2021-06-25 杭州电子科技大学 一种基于路况识别的燃料电池与超级电容***优化方法
CN110103949B (zh) * 2019-04-18 2021-04-23 浙江吉利控股集团有限公司 一种混动车的故障处理方法、故障处理装置及车辆
CN110228482B (zh) * 2019-05-15 2020-07-03 吉林大学 一种基于智能交通信息的混合动力公交客车公交站点区域控制方法
CN110414042B (zh) * 2019-06-14 2023-05-05 青岛科技大学 一种冲突会遇局面下船舶集群态势分析方法
CN112356818B (zh) * 2019-10-23 2021-12-21 万向集团公司 一种增程器控制***功能安全监控方法
CN111976458B (zh) * 2019-12-16 2021-11-26 中北大学 一种串联式重度混合动力工程机械传动***及其控制方法
CN111660827B (zh) * 2020-06-03 2021-07-06 东风小康汽车有限公司重庆分公司 用于增程式电动汽车的状态机及增程式电动汽车
CN112109594B (zh) * 2020-08-31 2021-12-28 上汽大众汽车有限公司 用于混合动力车的能量管理控制方法和***
CN113859214B (zh) * 2021-09-28 2023-03-14 清华大学 混合动力***发动机动态能效控制方法及装置
CN114103732B (zh) * 2021-12-16 2023-10-24 上汽大众汽车有限公司 一种电动车动力电池充电加热方法及其***
CN117311330B (zh) * 2023-11-29 2024-03-15 江西五十铃汽车有限公司 一种整车控制器的控制方法、***、存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708722A (zh) * 2009-11-06 2010-05-19 吉林大学 基于模糊逻辑的串联式混合动力电动汽车整车控制方法
CN102963353A (zh) * 2012-11-16 2013-03-13 同济大学 基于神经网络的混合动力***能量管理方法
CN103507656A (zh) * 2013-10-10 2014-01-15 同济大学 一种可在线自调整的增程式电动汽车能量管理方法及***
DE102013223980A1 (de) * 2012-12-11 2014-06-12 Ford Global Technologies, Llc Tourbezogene Energiemanagement-Steuerung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133197B2 (ja) * 2008-10-15 2013-01-30 日野自動車株式会社 ハイブリッド自動車およびコンピュータ装置ならびにプログラム
US9669724B2 (en) * 2012-08-31 2017-06-06 Johnson Controls Technology Center Optimized fuzzy logic controller for energy management in micro and mild hybrid electric vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708722A (zh) * 2009-11-06 2010-05-19 吉林大学 基于模糊逻辑的串联式混合动力电动汽车整车控制方法
CN102963353A (zh) * 2012-11-16 2013-03-13 同济大学 基于神经网络的混合动力***能量管理方法
DE102013223980A1 (de) * 2012-12-11 2014-06-12 Ford Global Technologies, Llc Tourbezogene Energiemanagement-Steuerung
CN103507656A (zh) * 2013-10-10 2014-01-15 同济大学 一种可在线自调整的增程式电动汽车能量管理方法及***

Also Published As

Publication number Publication date
CN105882648A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN105882648B (zh) 一种基于模糊逻辑算法的混合动力***能量管理方法
Lei et al. An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information
CN106427990B (zh) 混合动力***及其能量管理方法
CN110936949B (zh) 基于行驶工况的能量控制方法、设备、存储介质及装置
Chen et al. Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions
Zhang et al. Adaptive energy management of a plug-in hybrid electric vehicle based on driving pattern recognition and dynamic programming
Hu et al. A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data
Liu et al. Rule-corrected energy management strategy for hybrid electric vehicles based on operation-mode prediction
Li et al. Multi-objective optimization study of energy management strategy and economic analysis for a range-extended electric bus
Wang et al. A multi-objective optimization energy management strategy for power split HEV based on velocity prediction
Zhang et al. Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction
Li et al. Rule-based control strategy with novel parameters optimization using NSGA-II for power-split PHEV operation cost minimization
Anselma et al. Slope-weighted energy-based rapid control analysis for hybrid electric vehicles
CN103507656B (zh) 一种可在线自调整的增程式电动汽车能量管理方法及***
Sun et al. Adaptive ECMS with gear shift control by grey wolf optimization algorithm and neural network for plug-in hybrid electric buses
Wang et al. Control rules extraction and parameters optimization of energy management for bus series-parallel AMT hybrid powertrain
Fang et al. Online power management strategy for plug-in hybrid electric vehicles based on deep reinforcement learning and driving cycle reconstruction
Yang et al. Research on the energy management strategy of extended range electric vehicles based on a hybrid energy storage system
Yi et al. Hardware-in-loop simulation for the energy management system development of a plug-in hybrid electric bus
Hofman et al. Rule-based equivalent fuel consumption minimization strategies for hybrid vehicles
Xu et al. Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy
Dong et al. Rapid assessment of series–parallel hybrid transmission comprehensive performance: A near-global optimal method
Ye et al. An imitation learning-based energy management strategy for electric vehicles considering battery aging
Ma et al. A data-driven energy management strategy for plug-in hybrid electric buses considering vehicle mass uncertainty
Fu et al. Real‐time implementation of optimal control considering gear shifting and engine starting for parallel hybrid electric vehicle based on dynamic programming

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant