CN105868565A - 一种燃料稀燃极限理论计算方法 - Google Patents

一种燃料稀燃极限理论计算方法 Download PDF

Info

Publication number
CN105868565A
CN105868565A CN201610207475.7A CN201610207475A CN105868565A CN 105868565 A CN105868565 A CN 105868565A CN 201610207475 A CN201610207475 A CN 201610207475A CN 105868565 A CN105868565 A CN 105868565A
Authority
CN
China
Prior art keywords
fuel
molar fraction
nitrogen
molar
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610207475.7A
Other languages
English (en)
Other versions
CN105868565B (zh
Inventor
韩永强
李润钊
刘忠长
谭满志
许允
田径
陈阳
王延庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201610207475.7A priority Critical patent/CN105868565B/zh
Publication of CN105868565A publication Critical patent/CN105868565A/zh
Application granted granted Critical
Publication of CN105868565B publication Critical patent/CN105868565B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本发明提出一种燃料稀燃极限理论计算方法,具体包括以下步骤:(a)确定各组分摩尔分数;(b)将各种稀释气体折合为当量氮气N2摩尔分数;(c)将含燃料混合气近似为由燃料‑氧气‑氮气构成的混合气;(d)将各组分摩尔分数归一化处理;(e)求出氮气N2与氧气O2的摩尔分数之比λ;(f)构造燃料、氧气和氮气在富氧条件的非理论比通用反应方程;(g)假设燃料在稀燃极限下的绝热燃烧温度,根据绝热燃烧温度计算公式和非理论比通用反应方程反推燃料的摩尔分数xf

Description

一种燃料稀燃极限理论计算方法
技术领域
本发明属于燃料燃烧技术领域,具体涉及一种燃料稀燃极限理论计算方法。
背景技术
燃料的着火极限对工业生产安全、燃料的高效清洁燃烧意义重大。1812年5月25日英国纽卡斯尔附近发生了著名的Felling矿难,导致92人死亡,这次矿难事件的调查发现迈出了人类对燃料着火极限探索的第一步,Davy爵士领导的团队首次提出了着火极限的概念和揭示了燃料着火的原理,作为本次调查的成果之一的Davy安全灯成为了煤矿的必备安全装置。在20世纪上半叶美国矿业局开展了针对燃料着火极限的大规模实验研究,得到了大量燃料包括烃类、醇类、酮类等在常温(25℃)、常压(1atm)下与不同稀释气体构成的混合气着火极限,其实验数据至今仍是科研工作者、工业生产企业研究燃料着火极限极其重要的参考资料。Jones总结了影响着火管测定燃料着火极限的8个因素,包括:火焰传播方向、着火管设计、着火管长度、混合气温度、压力、稀释气体的浓度和点火能量。
除了煤矿企业外,燃料着火极限还受到多个产业关注包括化学及过程工业安全生产、制冷剂工质安全、消防安全和燃烧安全。以制冷剂工质安全为例,20世纪90年代世界各国政府决定逐步淘汰卤代烷制冷剂,而替代工质有相当一部分是可燃的,因此需要考虑到工质一旦泄露所造成的火灾危险性。而且部分工质的着火燃烧过程激烈迅猛甚至是***式,因此更加需要对工质的着火极限作出***的研究。
发明内容
目前燃料着火极限一般在常温、常压下通过定容***或着火管进行实验,实验结果的精确性受实验设备的容积、结构形状、尺寸影响很大,特别可视化定容***和着火管一般不能在高温(>1200K)、高压(>20bar)下运行,因此燃料着火极限的实验测定受到很大局限。而且燃料的类别繁多逐一试验燃料在不同温度、压力下的着火极限,工作量巨大而且造成资源浪费,因此有必要提出一种简易、精确性较好的预测燃料着火极限的理论计算方法。
本发明提出一种燃料稀燃极限理论计算方法,其特征在于:用于计算纯质燃料与一种或多种稀释气体构成的含燃料混合气在空气中的稀燃极限;具体包括以下步骤:
a)确定含燃料混合气中各组分摩尔分数,分别是A%Fuel+B1%Inert1+B2%Inert2+…Bj%Inertj+…+Bp%Inertp+C%Air,即包括摩尔分数为A%的燃料Fuel、摩尔分数分别为B1%、B2%…Bj%、…Bp%的p种稀释气体Inert和摩尔分数为C%的空气Air,而且A%+B1%+B2%+…Bj%+…+Bp%+C%=100%;
b)p种稀释气体根据稀释效果分别将各自的摩尔分数乘以相应的当量系数Kk,折合为当量的氮气N2摩尔分数D%,即D%=B1%×Kk1+B2%×Kk2+…Bj%×Kkj+…+Bp%×Kkp;此时含燃料混合气中各组分摩尔分数分别为A%Fuel+D%N2+C%Air各种常用稀释气体的当量系数Kk如下表所示:
c)将含燃料混合气近似为由燃料-氧气-氮气(Fuel-O2-N2)构成的混合气,此时燃料Fuel的摩尔分数为A%,氧气O2的摩尔分数为E%=20.95%×C%,氮气N2的摩尔分数为F%=D%+79.05%×C%,此时含燃料混合气中各组分摩尔分数分别为A%Fuel+E%O2+F%N2
d)将近似得到的三组分混合气Fuel-O2-N2的摩尔分数进行归一化处理,燃料Fuel摩尔分数为G%=A%/(A%+E%+F%)%,氧气O2摩尔分数为H%=E%/(A%+E%+F%)%,氮气N2的摩尔分数为I%=F%/(A%+E%+F%)%,此时含燃料混合气中各组分摩尔分数分别为G%Fuel+H%O2+I%N2,但此时G%+H%+I%=100%;
e)求出氮气N2与氧气O2的摩尔分数之比λ=I%/H%;
f)构造单一燃料Fuel、氧气O2和氮气N2在富氧条件即当量比的非理论比通用反应方程:
其中:
v air = a + b 4 - c 2
μ CO 2 = a
μ H 2 O = b 2
μ N 2 = λ × μ air + d 2
μ o 2 = μ air - a - b 4 + c 2
g)假设燃料在稀燃极限下的绝热燃烧温度为TAFT、环境温度为To,查找燃料的燃烧焓ΔHc、所有燃烧产物的定压比热容cp i,根据以下绝热燃烧温度计算公式和上述非理论比通用反应方程反推此时燃料的摩尔分数xf,即得燃料在该混合气下的稀燃极限xL
T AFT = T o + Δ H c Σ μ i × c p , i
其中:
TAFT-绝热燃烧温度,单位K;
To-环境温度,单位K;
ΔHc-燃料的燃烧焓,单位J/mol;
μi-非理论比通用反应方程中第i种燃烧产物的系数;
cp i-非理论比通用反应方程中第i种燃烧产物的定压比热容,单位J/(mol*K)。
附图说明
图1为本发明的实现流程图。
图2为实验得出的甲烷着火区域图。
图3为利用本发明原理计算得到的甲烷稀燃极限示意图。
具体实施方式
以下结合附图和实施例详细描述本发明的具体实施方式,但本发明不受所述具体实施例所限。下述实施例均按照说明书附图1的实现流程进行计算。
实施例1:现有含燃料混合气9%CH4+10%CO2+81%Air在容积为12L定容***内,求在相同稀释条件下(10%CO2)CH4的稀燃极限。
解答:
(a)确定含燃料混合气中各组分摩尔分数:该混合气含9%CH4、10%CO2和81%Air;
(b)利用稀释气体的N2当量系数将CO2根据稀释效果折合为当量的氮气N2摩尔分数;
由上述表格知CO2的N2当量系数Kk=1.5
CO2的折合N2摩尔分数=10%×1.5=15%
(c)将含燃料混合气近似为由燃料-氧气-氮气(Fuel-O2-N2)构成的混合气;
CH4的摩尔分数=9%
O2的摩尔分数=81%×20.95%=16.9695%
N2的摩尔分数=15%+81%×79.05%=79.0305%
CH4-O2-N2构成的混合气中各组分摩尔分数分别为9%Fuel+16.9695%O2+79.0305%N2
折算后混合气总摩尔分数=9%+16.9695%+79.0305%=105%
(d)将近似得到的三组分混合气Fuel-O2-N2的摩尔分数进行归一化处理;
8.5714%+16.1614%+75.2671%=100%
(e)求出氮气N2与氧气O2的摩尔分数之比λ;
λ = 75.2671 % 16.1614 % = 4.6572
(f)构造单一燃料Fuel、氧气O2和氮气N2在富氧条件即当量比的非理论比通用反应 方程:
其中:
v air = 1 + 4 4 = 2
μ CO 2 = 1
μ H 2 O = 4 2 = 2
μ N 2 = λ × μ air = λ × 1 - x f 4.773 x f
μ O 2 = μ air - a - b 4 + c 2 = 1 - x f 4.773 x f - 2
(g)假设CH4在稀燃极限下的绝热燃烧温度为TAFT=1450K、环境温度为To=298K,查找CH4的燃烧焓ΔHc=802480J/mol,CO2、H2O、N2和O2的定压比热容分别为54.3J/(mol*K)、41.2J/(mol*K)、32.7J/(mol*K)和34.9J/(mol*K)。
把上述条件代入绝热燃烧温度计算公式
T AFT = T o + Δ H c Σ μ i × c p , i
1450 = 298 + 802480 1 × 54.3 + 2 × 41.2 + 34.9 × ( 1 - x f 4.773 x f - 2 ) + 32.7 × λ × 1 - x f 4.773 x f
解方程得
CH4的摩尔分数xf=5.878%
即CH4在此稀释条件下(10%CO2)的稀燃极限xL=xf=5.878%
对比定容***得到的实验数据,此时CH4稀燃极限是5.6%与本发明稀燃极限预测值5.878%吻合程度较好。
由此实施例可见本发明取得了基本准确预测燃料稀燃极限的有益效果。
同理,根据本发明的原理可以计算燃料在多组分稀释气体中的稀燃极限,只需把稀释气体中的不同组分折合为相应质量分数的N2即可。例如在内燃机燃烧过程中常采取废气再循环技术措施降低NOx,而参与再循环的废气一般是CO2、H2O和N2的混合气,因此预测燃料在多组份稀释气体中的稀燃极限十分必要。下面实施例利用本发明原理计算燃料在多组分稀释气体中的稀燃极限。
实施例2:现有含燃料混合气7%CH4+20%Inert+73%Air在容积为12L定容***内,其中稀释气体Inert由20%CO2和80%N2组成,环境温度和压力分别为25℃、1atm,求在相同稀释条件下(20%Inert)CH4的稀燃极限。
解答:
(a)确定含燃料混合气中各组分摩尔分数;
稀释气体Inert中CO2的摩尔分数=20%×20%=4%
稀释气体Inert中N2的摩尔分数=20%×80%=16%
因此该混合气含7%CH4、4%CO2、16%N2和73%Air。
(b)利用稀释气体的N2当量系数分别将稀释气体Inert中的CO2和N2根据稀释效果折合为当量的氮气N2摩尔分数;
由上述表格知CO2的N2当量系数Kk=1.5,N2的N2当量系数Kk=1
CO2的折合N2摩尔分数=4%×1.5=6%
N2的折合N2摩尔分数=16%×1=16%
(c)将含燃料混合气近似为由燃料-氧气-氮气(Fuel-O2-N2)构成的混合气;
CH4的摩尔分数=7%
混合气中O2的摩尔分数=73%×20.95%=16.9695%
混合气中N2的摩尔分数=6%+16%+73%×79.05%=79.7065%
CH4-O2-N2构成的混合气中各组分摩尔分数分别为7%Fuel+16.9695%O2+79.7065%N2
折算后混合气总摩尔分数=7%+16.9695%+79.7065%=103.676%
(d)将近似得到的三组分混合气Fuel-O2-N2的摩尔分数进行归一化处理;
6.7518%+16.3678%+76.8804%=100%
(e)求出氮气N2与氧气O2的摩尔分数之比λ;
λ = 76.8804 % 16.3678 % = 4.6971
(f)构造单一燃料Fuel、氧气O2和氮气N2在富氧条件即当量比的非理论比通用反应方程:
其中:
v air = 1 + 4 4 = 2
μ CO 2 = 1
μ H 2 O = 4 2 = 2
μ N 2 = λ × μ air = λ × 1 - x f 4.773 x f
μ O 2 = μ air - a - b 4 + c 2 = 1 - x f 4.773 x f - 2
(g)假设CH4在稀燃极限下的绝热燃烧温度为TAFT=1400K、环境温度为To=298K,查找CH4的燃烧焓ΔHc=802480J/mol,CO2、H2O、N2和O2的定压比热容分别为54.3J/(mol*K)、41.2J/(mol*K)、32.7J/(mol*K)和34.9J/(mol*K)。
把上述条件代入绝热燃烧温度计算公式
T AFT = T o + Δ H c Σ μ i * c p , i
1400 = 298 + 802480 1 × 54.3 + 2 × 41.2 + 34.9 × ( 1 - x f 4.773 x f - 2 ) + 32.7 × λ × 1 - x f 4.773 x f
解方程得
CH4的摩尔分数xf=5.649%
即CH4在此稀释条件下的稀燃极限xL=xf=5.649%
对比定容***得到的实验数据,此时CH4稀燃极限是5.4%与本发明稀燃极限预测值5.649%吻合程度较好。
由此实施例可见本发明取得了基本准确预测燃料稀燃极限的有益效果。
附图2是着火管实验得到的甲烷-空气-稀释气体在25℃,1atm下着火区域,附图3是采用本发明原理预测的稀燃极限,绝对误差均在6%以内
综合上述,在燃料着火极限问题中,本发明所提出的燃料稀燃极限理论计算方法与实验结果吻合程度较好,取得了基本准确预测燃料稀燃极限的有益效果。
以上所述本发明的实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神原则之内所作出的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。

Claims (1)

1.一种燃料稀燃极限理论计算方法,其特征在于:用于计算纯质燃料与一种或多种稀释气体构成的含燃料混合气在空气中的稀燃极限;具体包括以下步骤:
a)确定含燃料混合气中各组分摩尔分数,分别是A%Fuel+B1%Inert1+B2%Inert2+…Bj%Inertj+…+Bp%Inertp+C%Air,即包括摩尔分数为A%的燃料Fuel、摩尔分数分别为B1%、B2%…Bj%、…Bp%的p种稀释气体Inert和摩尔分数为C%的空气Air,而且A%+B1%+B2%+…Bj%+…+Bp%+C%=100%;
b)p种稀释气体根据稀释效果分别将各自的摩尔分数乘以相应的当量系数Kk,折合为当量的氮气N2摩尔分数D%,即D%=B1%×Kk1+B2%×Kk2+…Bj%×Kkj+…+Bp%×Kkp;此时含燃料混合气中各组分摩尔分数分别为A%Fuel+D%N2+C%Air;各种常用稀释气体的当量系数Kk如下表所示:
c)将含燃料混合气近似为由燃料-氧气-氮气(Fuel-O2-N2)构成的混合气,此时燃料Fuel的摩尔分数为A%,氧气O2的摩尔分数为E%=20.95%×C%,氮气N2的摩尔分数为F%=D%+79.05%×C%,此时含燃料混合气中各组分摩尔分数分别为A%Fuel+E%O2+F%N2
d)将近似得到的三组分混合气Fuel-O2-N2的摩尔分数进行归一化处理,燃料Fuel摩尔分数为G%=A%/(A%+E%+F%)%,氧气O2摩尔分数为H%=E%/(A%+E%+F%)%,氮气N2的摩尔分数为I%=F%/(A%+E%+F%)%,此时含燃料混合气中各组分摩尔分数分别为G%Fuel+H%O2+I%N2,但此时G%+H%+I%=100%;
e)求出氮气N2与氧气O2的摩尔分数之比λ=I%/H%;
f)构造单一燃料Fuel、氧气O2和氮气N2在富氧条件即当量比的非理论比通用反应方程:
C a H b O c N d + μ air ( O 2 + λN 2 ) → μ CO 2 CO 2 + μ H 2 O H 2 O + μ N 2 N 2 + μ O 2 O 2
其中:
v a i r = a + b 4 - c 2
μ CO 2 = a
μ H 2 O = b 2
μ N 2 = λ × μ a i r + d 2
μ o 2 = μ a i r - a - b 4 + c 2
g)假设燃料在稀燃极限下的绝热燃烧温度为TAFT、环境温度为To,查找燃料的燃烧焓ΔHc、所有燃烧产物的定压比热容Cp,i,根据以下绝热燃烧温度计算公式和上述非理论比通用反应方程反推此时燃料的摩尔分数xf,即得燃料在该混合气下的稀燃极限xL
T A F T = T o + ΔH c Σ μ i × c p , i
其中:
TAFT—绝热燃烧温度,单位K;
To—环境温度,单位K;
ΔHc—燃料的燃烧焓,单位J/mol;
μi—非理论比通用反应方程中第i种燃烧产物的系数;
cp,i—非理论比通用反应方程中第i种燃烧产物的定压比热容,单位J/(mol*K)。
CN201610207475.7A 2016-04-05 2016-04-05 一种燃料稀燃极限理论计算方法 Expired - Fee Related CN105868565B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610207475.7A CN105868565B (zh) 2016-04-05 2016-04-05 一种燃料稀燃极限理论计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610207475.7A CN105868565B (zh) 2016-04-05 2016-04-05 一种燃料稀燃极限理论计算方法

Publications (2)

Publication Number Publication Date
CN105868565A true CN105868565A (zh) 2016-08-17
CN105868565B CN105868565B (zh) 2018-03-30

Family

ID=56628136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610207475.7A Expired - Fee Related CN105868565B (zh) 2016-04-05 2016-04-05 一种燃料稀燃极限理论计算方法

Country Status (1)

Country Link
CN (1) CN105868565B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956693A (zh) * 2018-04-28 2018-12-07 中国科学院广州能源研究所 一种氢气火焰温度测量方法
CN110942810A (zh) * 2019-10-25 2020-03-31 东北大学 一种基于热理论的气体燃料可燃极限预测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206940B1 (en) * 1999-02-12 2001-03-27 Exxon Research And Engineering Company Fuel formulations to extend the lean limit (law770)
CN104373207A (zh) * 2014-11-04 2015-02-25 吉林大学 一种稀燃气体双燃料点燃式内燃机***及控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206940B1 (en) * 1999-02-12 2001-03-27 Exxon Research And Engineering Company Fuel formulations to extend the lean limit (law770)
CN104373207A (zh) * 2014-11-04 2015-02-25 吉林大学 一种稀燃气体双燃料点燃式内燃机***及控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAYUKI TANIGUCHI ET AL.: "Application of lean flammability limit study and large eddy simulation to burner development for an oxy-fuel combustion system", 《INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL 5S》 *
姜磊 等: "天然气/氢气混合燃料发动机的稀燃极限和排放特性试验研究", 《汽车工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956693A (zh) * 2018-04-28 2018-12-07 中国科学院广州能源研究所 一种氢气火焰温度测量方法
CN108956693B (zh) * 2018-04-28 2020-11-27 中国科学院广州能源研究所 一种氢气火焰温度测量方法
CN110942810A (zh) * 2019-10-25 2020-03-31 东北大学 一种基于热理论的气体燃料可燃极限预测方法

Also Published As

Publication number Publication date
CN105868565B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
Ismail et al. Modelling combustion reactions for gas flaring and its resulting emissions
Xiao et al. Study on reduced chemical mechanisms of ammonia/methane combustion under gas turbine conditions
Lowry et al. Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures
Capriolo et al. An experimental and kinetic study of propanal oxidation
Pregger et al. Future fuels—Analyses of the future prospects of renewable synthetic fuels
Jeong et al. Property-based quantitative risk assessment of hydrogen, ammonia, methane, and propane considering explosion, combustion, toxicity, and environmental impacts
Karan et al. Experimental study and numerical validation of oxy-ammonia combustion at elevated temperatures and pressures
Razus et al. Methane-unconventional oxidant flames. Laminar burning velocities of nitrogen-diluted methane–N2O mixtures
CN105868565A (zh) 一种燃料稀燃极限理论计算方法
Amirante et al. Analytical correlations for modeling the laminar flame speed of natural gas surrogate mixtures
Beeckmann et al. An analytical approximation for low-and high-temperature autoignition for dimethyl ether–air mixtures
Mashruk et al. Numerical analysis on the evolution of NH2 in ammonia/hydrogen swirling flames and detailed sensitivity analysis under elevated conditions
Ribert et al. A multi-zone self-similar chemistry tabulation with application to auto-ignition including cool-flames effects
Garnayak et al. Auto-ignition and numerical analysis on high-pressure combustion of premixed methane-air mixtures in highly preheated and diluted environment
Mével et al. Assessment of H2-CH4-air mixtures oxidation kinetic models used in combustion
Cassidy Emissions and total energy consumption of a multicylinder piston engine running on gasoline and a hydrogen-gasoline mixture
Bowman et al. Investigation of NO formation kinetics in combustion processes: the methane-oxygen-nitrogen reaction
Thiessen et al. The autoignition in air of some binary fuel mixtures containing hydrogen
Luo Process modelling, simulation and optimisation of natural gas combined cycle power plant integrated with carbon capture, compression and transport
Cooper et al. CH kinetics measurements and their importance for modeling prompt NOx formation in gas turbines
Brunetkin et al. Model and method of conditional formula determination of oxygen-containing hydrocarbon fuel in combustion
Giurcan et al. Numerical Study of Laminar Flame Propagation in CH4–N2O–N2 at Moderate Pressures and Temperatures
Afonina et al. Calculation of Induction Time during High-temperature Oxidation of Methane
Yoon et al. Effects of n-Heptane/Methane Blended Fuel on Ignition Delay Time in Pre-Mixed Compressed Combustion
Law Ignition of a combustible mixture by a hot particle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180330

CF01 Termination of patent right due to non-payment of annual fee