CN105865089B - 一种针肋壁面微通道换热器 - Google Patents

一种针肋壁面微通道换热器 Download PDF

Info

Publication number
CN105865089B
CN105865089B CN201610245384.2A CN201610245384A CN105865089B CN 105865089 B CN105865089 B CN 105865089B CN 201610245384 A CN201610245384 A CN 201610245384A CN 105865089 B CN105865089 B CN 105865089B
Authority
CN
China
Prior art keywords
pin rib
heat exchanger
wall surface
pin
silicon chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610245384.2A
Other languages
English (en)
Other versions
CN105865089A (zh
Inventor
徐进良
余雄江
金武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201610245384.2A priority Critical patent/CN105865089B/zh
Publication of CN105865089A publication Critical patent/CN105865089A/zh
Application granted granted Critical
Publication of CN105865089B publication Critical patent/CN105865089B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0241Evaporators with refrigerant in a vessel in which is situated a heat exchanger having plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/042Details of condensers of pcm condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开了属于微尺度相变传热技术领域中的一种针肋壁面微通道换热器。所述热交换器包括键合在一起的第一硅基片和第二硅基片,第二硅基片上加工有热交换器入口和热交换器出口,表面加工有针肋壁面微通道,且针肋壁面微通道位于热交换器入口和热交换器出口之间;针肋壁面微通道由11条梯级针肋壁隔开成12个光通道,梯级针肋壁由大量单个针肋柱组成,包括针肋密集区和针肋疏松区,针肋疏松区位于针肋密集区的两侧。该热交换器克服了传统微通道相变传热时不稳定流动的问题,两相换热时具有超稳定运行壁温,且集蒸发器与冷凝器功能于一身,在产品商业化中具有天然优势。

Description

一种针肋壁面微通道换热器
技术领域
本发明属于微尺度相变传热技术领域,具体涉及一种针肋壁面微通道换热器。
背景技术
传统微通道换热器内流体受热发生相变时,由于通道水利直径微小,气泡产生后只能在流动方向上向上游或下游膨胀,这就是微通道内发生两相传热过程普遍遇到的“受限气泡”现象。即减小的通道尺寸削弱了通道的3D效应,使产生的气泡十分容易堵塞通道,造成单通道内严重的流动不稳定性。另外,具有应用价值的微通道换热器往往采用并联通道的形式,同一驱动压头下并联通道之间本身就存在多种流量解,加上“受限气泡”的影响,使得微通道内两相流动变得极为不稳定。
同一热流负载下,流动的不稳定直接导致了冷却壁温的不稳定波动。当面对精密实验过程需要的精确控温条件时,传统微通道无法提供稳定的壁温。为了开发高性能稳定的微冷却***,亟需研发一种能够实现精确稳定控温的微通道换热器。
发明内容
本发明的目的在于提供一种针肋壁面调控两相流型达到精确控温效果的微通道热交换器,采取的技术方案如下:
一种针肋壁面微通道热交换器,所述热交换器包括第一硅基片1和第二硅基片2,第一硅基片1和第二硅基片2采用高压静电场键合技术键合在一起;
所述第二硅基片2上通过干法刻蚀法加工有热交换器入口4和热交换器出口6,表面通过MEMS技术加工有针肋壁面微通道,且针肋壁面微通道位于热交换器入口4和热交换器出口6之间;所述针肋壁面微通道由11条梯级针肋壁3隔开成12个光通道9;所述梯级针肋壁3由大量单个针肋柱5组成,包括针肋密集区7和针肋疏松区8,针肋疏松区8位于针肋密集区7的两侧;所述针肋柱5高75μm,横截面为正方形,截面边长为15μm。
所述梯级针肋壁3宽336μm,高75μm;针肋密集区7相邻两个针肋柱5之间的距离为5μm,总宽度116μm,针肋疏松区8相邻两个针肋柱5之间的距离为15μm,总宽度为220μm。
所述光通道9宽164μm,深75μm。
所述第二硅基片2的厚度为400μm。
所述热交换器实现超稳定运行壁温的原理为:针肋壁面具有大量的棱角,为通道内流体的核化沸腾提供大量核化穴,产生的气泡由于毛细力的牵引从梯级针肋壁的针肋密集区自动游向某一光通道。该光通道内由于气泡扩张致使其压力轻微上升,使梯级针肋壁的流体流向相邻的光通道,改变了气泡的排散方向,如此形成了相邻光通道内气泡的交替涨缩。
在流动沸腾传热中,传热系数与两相传热面积相关,气泡的交替涨缩意味着等效两相传热面积交替变化,使得相邻光通道的局部传热效果围绕平衡点做微小的浮动,壁温随着光通道局部传热系数的浮动而微小波动,实现壁温的超稳定运行。
本发明的有益效果为:
1、所述热交换器克服了传统微通道相变传热时“受限气泡”堵塞通道造成强烈不稳定流动的问题,进而减少了常规实心壁面并联通道之间由于存在多流量解,而在出入口产生流量的交混造成并联通道的不稳定性;光通道中气液两相界面呈现“高频波动”特征,使两相换热时通道壁面温度波动幅度小于0.1℃,具有超稳定运行壁温,为抑制不稳定流动提供了新方向;
2、针肋壁面微通道中流体的交混促使了强化传热,为高效换热器的设计提供了新思路;
3、所述热交换器集蒸发器与冷凝器功能于一身,在工业生产中非常利于批量生产与产品调换,在产品商业化中具有天然优势。
附图说明
图1为所述热交换器的外观示意图。
图2为所述热交换器的内部结构示意图。
图3为梯级针肋壁的结构示意图。
图4为沸腾换热过程中气泡从针肋密集区生长并向外侧排散的示意图。
图5为光通道中气液两相流型图;其中,Pg,i,Pf,i分别是第i个光通道中气泡内饱和气体压力与气泡外液体压力,Pg,i+1,Pf,i+1分别是第i+1个光通道中气泡内饱和气体压力与气泡外液体压力。
图中标号分别为:1-第一硅基片、2-第二硅基片、3-梯级针肋壁、4-换热器入口、5-针肋柱、6-换热器出口、7-针肋密集区、8-针肋疏松区、9-光通道。
具体实施方式
下面结合附图和实施例对本发明作进一步描述,但本发明的保护范围不限于此。
实施例
一种针肋壁面微通道热交换器,所述热交换器包括第一硅基片1和第二硅基片2,第一硅基片1和第二硅基片2采用高压静电场键合技术键合在一起;
所述第二硅基片2上通过干法刻蚀法加工有热交换器入口4和热交换器出口6,表面通过MEMS技术加工有针肋壁面微通道,且针肋壁面微通道位于热交换器入口4和热交换器出口6之间;所述针肋壁面微通道由11条梯级针肋壁3隔开成12个光通道9;所述梯级针肋壁3由大量单个针肋柱5组成,包括针肋密集区7和针肋疏松区8,针肋疏松区8位于针肋密集区7的两侧;所述针肋柱5高75μm,横截面为正方形,截面边长为15μm。
所述梯级针肋壁3宽336μm,高75μm;针肋密集区7相邻两个针肋柱5之间的距离为5μm,总宽度116μm,针肋疏松区8相邻两个针肋柱5之间的距离为15μm,总宽度为220μm。
所述光通道9宽164μm,深75μm。
所述第二硅基片2的厚度为400μm。
所述热交换器对气液两相流动与传热耦合调节及稳定性调节的步骤包括:
(1)热交换器入口处的制冷剂在接受足够热源散发的热量后进行相变传热,梯形针肋壁针肋密集区大量的棱角为制冷剂提供了大量的沸腾核化穴,气泡从沸腾核化穴产生和长大,在毛细牵引力和蒸发动量力的作用下,针肋密集区的气泡在长大的过程中不断向两侧的光通道排散。气泡排散过程如图4所示,首先气泡在针肋密集区某处的沸腾核化穴产生,吸收来自梯级针肋壁面的热量后气泡开始逐渐长大;气泡在长大过程中一方面受到沿流动方向上游流体的冲击力,一方面受到针肋壁小空间向大空间的毛细牵引力,使气泡从梯级针肋壁的针肋密集区排散至光通道,完成热交换器内两相流型的非能动调控。
(2)气泡向某一侧光通道排散后,基于薄膜对流传热机理,气泡在蒸发动量力的作用下迅速增大,增大的气泡一方面使该光通道内的流体温度升高、饱和压力升高,另一方面使该光通道内液体所占的截面面积减小,液体流动的有效水利直径减小,导致液相阻力增加;这两个方面的合力作用使该光通道内流体跨过梯形针肋壁流向相邻的光通道,增加了针肋区流体的交混作用,强化了换热,同时平衡了相邻光通道之间的压差,使相邻光通道截面含气量随时间呈现反向性。图5为光通道中气液两相流型图,气相集聚于光通道中,根据压力平衡有Pg,i+Pf,i=Pg,i+1+Pf,i+1;按照理想气体状态方程,假设气体密度不变,饱和气体压力是饱和温度的单值函数,同一截面处的饱和温度相当,故相邻光通道内气泡内的饱和气体压力Pg,i和Pg,i+1相等;同时,第i个光通道中气泡外液体压力式中μf-液体动力粘度,L-气泡长度,mf-流体质量流速,Deff-有效流动直径;当i光通道中气泡宽度增加时,该光通道内液体的有效流通直径Deff减小,阻力增大,导致Pf,i>Pf,i+1,使液体从第i个光通道流向第i+1个光通道,相邻光通道中实现压力与液体的交混,液体径向的交混增大两相传热系数的同时大大加强了热交换器运行的稳定性。
(3)当某光通道截面含气量增多时,局部换热系数增加,壁温下降,当截面含气量减少时,局部传热系数减小,壁温上升;即同一光通道内含气量与壁温随时间呈反向变化,使同一光通道的壁温和界面含气量随时间的变化呈现反向性;相邻光通道截面含气量随时间呈现反向性、同一光通道的壁温和截面含气量随时间的变化呈现反向性以及光通道内两相界面的高频波动共同完成了流动与传热耦合调节和运行壁温的极高稳定性。

Claims (4)

1.一种针肋壁面微通道热交换器,包括第二硅基片(2)和由大量横截面为正方形的单个针肋柱(5)组成的梯级针肋壁(3),其中第二硅基片(2)上设置有热交换器入口(4)、热交换器出口(6)和针肋壁面微通道,针肋壁面微通道位于热交换器入口(4)和热交换器出口(6)之间,其特征在于,所述微通道热交换器还包括第一硅基片(1),第一硅基片(1)和第二硅基片(2)采用高压静电场键合技术键合在一起;
所述针肋壁面微通道由11条梯级针肋壁(3)隔开成12个光通道(9);包括针肋密集区(7)和针肋疏松区(8),针肋疏松区(8)位于针肋密集区(7)的两侧;所述针肋柱(5)高75μm,截面边长为15μm。
2.根据权利要求1所述的一种针肋壁面微通道热交换器,其特征在于,所述梯级针肋壁(3)宽336μm,高75μm;针肋密集区(7)相邻两个针肋柱(5)之间的距离为5μm,总宽度116μm,针肋疏松区(8)相邻两个针肋柱(5)之间的距离为15μm,总宽度为220μm。
3.根据权利要求1所述的一种针肋壁面微通道热交换器,其特征在于,所述光通道(9)宽164μm,深75μm。
4.根据权利要求1所述的一种针肋壁面微通道热交换器,其特征在于,所述第二硅基片(2)的厚度为400μm。
CN201610245384.2A 2016-04-19 2016-04-19 一种针肋壁面微通道换热器 Active CN105865089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610245384.2A CN105865089B (zh) 2016-04-19 2016-04-19 一种针肋壁面微通道换热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610245384.2A CN105865089B (zh) 2016-04-19 2016-04-19 一种针肋壁面微通道换热器

Publications (2)

Publication Number Publication Date
CN105865089A CN105865089A (zh) 2016-08-17
CN105865089B true CN105865089B (zh) 2018-05-25

Family

ID=56633404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610245384.2A Active CN105865089B (zh) 2016-04-19 2016-04-19 一种针肋壁面微通道换热器

Country Status (1)

Country Link
CN (1) CN105865089B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3669120A1 (en) 2017-08-18 2020-06-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Method and system for heat recovery
CN107702566A (zh) * 2017-09-14 2018-02-16 华北电力大学 一种点阵式换热器
CN108225079B (zh) * 2017-12-26 2020-04-28 华北电力大学 一种顶部联通的非均匀润湿性硅基微通道相变换热器
CN108521745A (zh) * 2018-03-12 2018-09-11 上海卫星工程研究所 适应脉冲式大热量散热的高效相变储能热沉
CN108562067B (zh) * 2018-04-17 2023-12-05 华南理工大学 基于针状电极的电场强化制冷剂沸腾传热微通道换热器
TWM618807U (zh) 2021-01-08 2021-11-01 瑞領科技股份有限公司 具有溝槽結構之雙相浸泡式沸騰器
CN115451750B (zh) * 2022-09-22 2024-06-28 安徽工业大学 一种用于强化沸腾传热的被动式格栅微结构
CN115474415B (zh) * 2022-10-14 2024-01-19 苏州浪潮智能科技有限公司 散热器和服务器

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244331B1 (en) * 1999-10-22 2001-06-12 Intel Corporation Heatsink with integrated blower for improved heat transfer
CN2521755Y (zh) * 2001-11-22 2002-11-20 成都希望电子研究所 一种组合式散热器
US6591897B1 (en) * 2002-02-20 2003-07-15 Delphi Technologies, Inc. High performance pin fin heat sink for electronics cooling
US6817405B2 (en) * 2002-06-03 2004-11-16 International Business Machines Corporation Apparatus having forced fluid cooling and pin-fin heat sink
CN1558448A (zh) * 2004-02-06 2004-12-29 中国科学院广州能源研究所 硅基微通道热交换器
WO2005064668A1 (en) * 2003-12-30 2005-07-14 Agency For Science, Technology And Research Wafer level super stretch solder
US7215545B1 (en) * 2003-05-01 2007-05-08 Saeed Moghaddam Liquid cooled diamond bearing heat sink
CN101026948A (zh) * 2007-03-26 2007-08-29 山东省科学院能源研究所 单相超高热流微柱群换热器
US7301770B2 (en) * 2004-12-10 2007-11-27 International Business Machines Corporation Cooling apparatus, cooled electronic module, and methods of fabrication thereof employing thermally conductive, wire-bonded pin fins
CN101500394A (zh) * 2008-01-30 2009-08-05 中国科学院工程热物理研究所 直肋热扩展强化结构微细尺度复合相变取热方法及装置
CN101541159A (zh) * 2009-04-16 2009-09-23 西安交通大学 一种电子元器件用沸腾换热装置
US7731079B2 (en) * 2008-06-20 2010-06-08 International Business Machines Corporation Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled
CN102683305A (zh) * 2012-05-14 2012-09-19 西安交通大学 一种多孔微柱变曲率型面的芯片强化沸腾换热结构
CN103335549A (zh) * 2013-07-11 2013-10-02 华北电力大学 一种相分离微通道冷凝器
CN103668367A (zh) * 2013-12-06 2014-03-26 宁波微极电子科技有限公司 微纳结构阵列散热片的制造方法
CN104112736A (zh) * 2014-07-08 2014-10-22 北京工业大学 带有层间复杂微通道流体冷却的3d-ic
CN104658992A (zh) * 2015-02-13 2015-05-27 西安电子科技大学 一种新型微针肋阵列热沉
CN105070696A (zh) * 2015-08-05 2015-11-18 沈阳理工大学 一种柱状叶序排布展开结构的微型散热器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765793B2 (en) * 2002-08-30 2004-07-20 Themis Corporation Ruggedized electronics enclosure
US20040170806A1 (en) * 2003-02-28 2004-09-02 University Of Colorado Research Foundation Tile structures having phase change material (PCM) component for use in flooring and ceilings

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244331B1 (en) * 1999-10-22 2001-06-12 Intel Corporation Heatsink with integrated blower for improved heat transfer
CN2521755Y (zh) * 2001-11-22 2002-11-20 成都希望电子研究所 一种组合式散热器
US6591897B1 (en) * 2002-02-20 2003-07-15 Delphi Technologies, Inc. High performance pin fin heat sink for electronics cooling
US6817405B2 (en) * 2002-06-03 2004-11-16 International Business Machines Corporation Apparatus having forced fluid cooling and pin-fin heat sink
US7215545B1 (en) * 2003-05-01 2007-05-08 Saeed Moghaddam Liquid cooled diamond bearing heat sink
WO2005064668A1 (en) * 2003-12-30 2005-07-14 Agency For Science, Technology And Research Wafer level super stretch solder
CN1558448A (zh) * 2004-02-06 2004-12-29 中国科学院广州能源研究所 硅基微通道热交换器
US7301770B2 (en) * 2004-12-10 2007-11-27 International Business Machines Corporation Cooling apparatus, cooled electronic module, and methods of fabrication thereof employing thermally conductive, wire-bonded pin fins
CN101026948A (zh) * 2007-03-26 2007-08-29 山东省科学院能源研究所 单相超高热流微柱群换热器
CN101500394A (zh) * 2008-01-30 2009-08-05 中国科学院工程热物理研究所 直肋热扩展强化结构微细尺度复合相变取热方法及装置
US7731079B2 (en) * 2008-06-20 2010-06-08 International Business Machines Corporation Cooling apparatus and method of fabrication thereof with a cold plate formed in situ on a surface to be cooled
CN101541159A (zh) * 2009-04-16 2009-09-23 西安交通大学 一种电子元器件用沸腾换热装置
CN102683305A (zh) * 2012-05-14 2012-09-19 西安交通大学 一种多孔微柱变曲率型面的芯片强化沸腾换热结构
CN103335549A (zh) * 2013-07-11 2013-10-02 华北电力大学 一种相分离微通道冷凝器
CN103668367A (zh) * 2013-12-06 2014-03-26 宁波微极电子科技有限公司 微纳结构阵列散热片的制造方法
CN104112736A (zh) * 2014-07-08 2014-10-22 北京工业大学 带有层间复杂微通道流体冷却的3d-ic
CN104658992A (zh) * 2015-02-13 2015-05-27 西安电子科技大学 一种新型微针肋阵列热沉
CN105070696A (zh) * 2015-08-05 2015-11-18 沈阳理工大学 一种柱状叶序排布展开结构的微型散热器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
流体横掠方形微针肋阵列热沉的传热特性;夏国栋,李宴君,孔凡金;《工程热物理学报》;20080430;第29卷(第4期);628-630 *

Also Published As

Publication number Publication date
CN105865089A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN105865089B (zh) 一种针肋壁面微通道换热器
Sadique et al. Heat transfer augmentation in microchannel heat sink using secondary flows: A review
Li et al. Experimental investigation of flow boiling performance in microchannels with and without triangular cavities–A comparative study
Xia et al. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure
Li et al. Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins
Kandlikar et al. Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds
US9097470B2 (en) Internal liquid separating hood-type condensation heat exchange tube
Chen et al. Improvement of flow and heat transfer performance of manifold microchannel with porous fins
Kandlikar Mechanistic considerations for enhancing flow boiling heat transfer in microchannels
CN109671688B (zh) 一种冷媒相变冷板
Jiang et al. Experimental study on heat transfer performance of a novel compact spray cooling module
Markal et al. Experimental investigation and force analysis of flat-plate type pulsating heat pipes having ternary mixtures
Mao et al. A critical review on measures to suppress flow boiling instabilities in microchannels
Markal et al. Experimental investigation of flow boiling in single minichannels with low mass velocities
Zhang et al. Enhanced flow boiling in an interconnected microchannel net at different inlet subcooling
Cui et al. Enhanced flow boiling of HFE-7100 in picosecond laser fabricated copper microchannel heat sink
Tang et al. Effects of structural parameter on flow boiling performance of interconnected microchannel net
Recinella et al. Enhanced flow boiling using radial open microchannels with manifold and offset strip fins
Rui et al. Experimental research on flow boiling thermal-hydraulic characteristics in novel microchannels
Tan et al. Enhancement of flow boiling in the microchannel with a bionic gradient wetting surface
Wei et al. Effect of spoiler columns on heat transfer performance of aluminum nitride-based microchannel heat sink
Hu et al. Role of trapped liquid in flow boiling inside micro-porous structures: pore-scale visualization and heat transfer enhancement
Tang et al. Study on the flow and heat transfer of a nanofluid hybrid jet impinging on a corrugated microchannel heat sink
Qi et al. Thermo-hydraulic performance of nanofluids in a bionic fractal microchannel heat sink with traveling-wave fins
Yu et al. A critical review on geometric improvements for heat transfer augmentation of microchannels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant