CN105849905A - 高迁移率晶体管 - Google Patents

高迁移率晶体管 Download PDF

Info

Publication number
CN105849905A
CN105849905A CN201480071542.6A CN201480071542A CN105849905A CN 105849905 A CN105849905 A CN 105849905A CN 201480071542 A CN201480071542 A CN 201480071542A CN 105849905 A CN105849905 A CN 105849905A
Authority
CN
China
Prior art keywords
fin
polarity
dielectric layer
channel
finfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480071542.6A
Other languages
English (en)
Other versions
CN105849905B (zh
Inventor
H·尼米
M·梅赫罗特拉
R·L·怀斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CN105849905A publication Critical patent/CN105849905A/zh
Application granted granted Critical
Publication of CN105849905B publication Critical patent/CN105849905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0924Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

包含n沟道finFET(106)和p沟道finFET(110)的集成电路(100)具有在硅衬底(102)上方的介电层(112)。所述finFET(106、110)的所述鳍具有半导体材料,该半导体材料具有与硅相比更高的迁移率。n沟道finFET(106)的鳍是在穿过所述衬底(102)上的所述介电层(112)的第一沟槽(114)中的第一硅锗缓冲层(118)上。p沟道finFET(110)的鳍是在穿过所述衬底(102)上的介电层(112)的第二沟槽(116)中的第二硅锗缓冲层(132)上。鳍在所述介电层(112)上方延伸至少10纳米。通过在所述介电层(112)中的所述沟槽(114、116)中的所述硅锗缓冲层(118、132)上外延生长形成所述鳍,接着通过CMP平面化,将所述鳍下降至所述介电层(112)。使所述介电层(112)凹陷以暴露所述鳍。可以同时地或单独地形成所述鳍。

Description

高迁移率晶体管
背景技术
本申请通常涉及集成电路,并且特别地涉及集成电路中的MOS晶体管。
具有鳍式场效应晶体管(finFET)的集成电路达到了高栅极密度,但是缺乏由使用高迁移率材料(诸如III-V族材料或锗)的平面晶体管提供的晶体管性能。在高密度集成电路中集成高迁移率材料一直存在问题。
发明内容
可以通过在硅衬底上方形成介电层形成包含n沟道finFET和p沟道finFET的集成电路。穿过所述介电层形成用于n沟道finFET的第一沟槽。在所述第一沟槽中的所述衬底上形成第一硅锗缓冲层,以及通过在所述第一硅锗缓冲层上外延生长形成所述n沟道finFET的所述n沟道鳍。穿过所述介电层形成用于所述p沟道finFET的p沟道鳍的第二沟槽。在所述第二沟槽中的衬底上形成第二硅锗缓冲层,以及通过在所述第二硅锗缓冲层上外延生长形成所述p沟道鳍。随后,使所述介电层凹陷以暴露所述鳍。
附图说明
图1是包含n沟道finFET和p沟道finFET的一个示例集成电路的横截面。
图2A至图2M是在示例制造顺序的连续阶段中描述的图1的集成电路的横截面。
图3A至图3G是在另一个示例制造顺序的连续阶段中描述的图1的集成电路的横截面。
具体实施方式
可以通过两个加工顺序中的任一个形成包含n沟道finFET和p沟道finFET的集成电路。在第一个顺序中,在硅衬底上方形成介电层。穿过介电层形成用于n沟道finFET的n沟道鳍的第一沟槽以暴露衬底。在第一沟槽中的衬底上形成第一硅锗缓冲层,并且在第一硅锗缓冲层上通过高电子迁移率材料的外延生长形成n沟道鳍,该n沟道鳍在介电层上方延伸。在介电层和n沟道鳍上方形成外延阻挡层。穿过覆盖层(cap layer)和介电层形成用于p沟道finFET的p沟道鳍的第二沟槽以暴露衬底。在第二沟槽中的衬底上形成第二硅锗缓冲层,并且在第二硅锗缓冲层上通过高空穴迁移率材料的外延生长形成p沟道鳍,该p沟道鳍在介电层上方延伸。n沟道鳍和p沟道鳍可以在生长期间各自被掺杂。在外延阻挡层和p沟道鳍上方形成覆盖层。CMP过程移除覆盖层和外延阻挡层,并且平坦化n沟道鳍和p沟道鳍,使其下降至介电层。随后,使介电层凹陷以暴露n沟道鳍和p沟道鳍。随后,在n沟道鳍和p沟道鳍上形成栅极介电层,并且在栅极介电层上形成栅极。
在第二顺序中,在硅衬底上方形成介电层,并且穿过介电层同时形成用于n沟道鳍的第一沟槽和用于p沟道鳍的第二沟槽,以暴露衬底。在第一沟槽和在第二沟槽中的衬底上分别同时形成第一硅锗缓冲层和第二硅锗缓冲层。通过在第一硅锗缓冲层和在第二硅锗缓冲层上外延生长高迁移率材料分别同时形成n沟道鳍和p沟道鳍,该n沟道鳍和p沟道鳍在介电层上方延伸。n沟道鳍和p沟道鳍可能在形成期间被掺杂,并且一个鳍注入掺杂剂以反掺杂原位(in-situ)掺杂剂。另选地,可以将掺杂剂注入n沟道鳍和p沟道鳍,以提供所需掺杂密度。在介电层和n沟道鳍与p沟道鳍上方形成覆盖层。CMP过程移除覆盖层,并且平坦化n沟道鳍和p沟道鳍,使其下降至介电层。随后,使介电层凹陷以暴露n沟道鳍和p沟道鳍。随后,在n沟道鳍和p沟道鳍上方形成栅极介电层,并且在栅极介电层上形成栅极。
图1是包含n沟道finFET和p沟道finFET的示例集成电路的横截面。在单晶硅衬底102上形成集成电路100,该单晶硅衬底102包括用于n沟槽finFET106的区域中的p型区104,并且该单晶硅衬底102包括用于p沟槽finFET 110的区域中的n型区108。衬底102可以是块状硅晶片,或在硅晶片上的外延层。在衬底102上方沉积介电层112。介电层112可以包括一层或更多层的二氧化硅,以及可能包括诸如氮氧化硅和/或硼磷硅酸盐玻璃(BPSG)的其它介电材料。介电层112可以是20纳米至40纳米厚。在n沟道finFET 106的区域中穿过介电层112沉积第一沟槽114。在p沟道finFET 110的区域中穿过介电层112沉积第二沟槽116。
n沟道finFET 106包括在第一沟槽114中的沉积在衬底102的p型区104上的第一硅锗缓冲层118。第一硅锗缓冲层118可以是1纳米至5纳米厚,并且可以具有分级组分,使得第一硅锗缓冲层118在衬底102处具有小于百分之20的锗原子分数以及在第一硅锗缓冲层118的顶面处具有超过百分之80的锗原子分数。n沟道finFET 106包括在第一硅锗缓冲层118上的n沟道鳍120,通过至少10纳米的暴露高度124在介电层112的顶面122上方延伸。暴露高度124可以是20纳米至40纳米。在介电层112的顶面122上方的n沟道鳍120的平均宽度126可以小于30纳米(诸如10纳米至20纳米)。n沟道鳍120大体上填充在介电层112的顶面122处的第一沟槽114。将n沟道鳍120掺杂p型以提供用于n沟道finFET 106的所需阈值电压。n沟道鳍120主要是不同于硅的半导体材料,其可能具有与比硅更高的电子迁移率。例如,半导体材料可以是III-V族化合物半导体材料,诸如可能具有铟镓比为50∶50至57∶43的砷化镓、砷化铟镓,或磷化铟。另选地,半导体材料可以是具有锗原子分数大于百分之80的锗或硅锗。利用具有比硅更高的电子迁移率的半导体材料形成n沟道鳍120有利地提供在n沟道finFET 106中的所需的开态电流。n沟道finFET 106包括在n沟道鳍120上方配置的第一栅极介电层128,并且该第一栅极介电层128沿n沟道鳍120的侧面延伸。n沟槽finFET 106包括在第一栅极介电层128上方配置的第一栅极130,该第一栅极130至少部分向下延伸至介电层112的顶面122。第一栅极130可以包括被称为多晶硅的多晶的硅,第一栅极130可以包括金属硅化物,或者第一栅极130可以是金属栅极。
p沟道finFET 110包括在第二沟槽116中的沉积在衬底102的n型区108的第二硅锗缓冲层132。第二硅锗缓冲层132还可以是1纳米至5纳米厚,并且还可以具有与第一硅锗缓冲层118相似的分级组分。p沟道finFET 110包括在第二硅锗缓冲132上的p沟道鳍134,通过至少10纳米的暴露高度136在介电层112的顶面122上部延伸。p沟道鳍134的暴露高度136可以大体上等于n沟道鳍120的暴露高度124。在介电层112的顶面122上部的p沟道鳍134的平均宽度138还可以是小于30纳米(诸如10纳米至20纳米)。p沟道鳍134大体上填充在介电层112的顶面122处的第二沟槽116。将p沟道鳍134掺杂n型以提供用于p沟道finFET 110的所需阈值电压。p沟道鳍134主要是不同于硅的半导体材料,其可能具有比硅更高的空穴迁移率。例如,半导体材料可以是诸如砷化镓的III-V族化合物半导体材料,或可以是具有锗原子分数大于百分之80的锗或硅锗。在实例示例的一个版本中,n沟道鳍120和p沟道鳍134可以主要地由相同的半导体材料形成。利用具有比硅更高的空穴迁移率的半导体材料形成p沟道鳍134有利地提供在p沟道finFET 110中的所需的开态电流。p沟道finFET 110包括在p沟道鳍134上方配置的第二栅极介电层140,并且该第二栅极介电层140沿p沟道鳍134的侧面延伸。p沟槽finFET 110包括在第二栅极介电层140上方配置的第二栅极142,该第二栅极142至少部分向下延伸至介电层112的顶面122。第二栅极142可以包括多晶硅,第二栅极142可以包括金属硅化物,或者第二栅极142可以是金属栅极。
图2A至图2M是图1的描述在示例制造顺序连续阶段中的集成电路的横截面。参照图2A,硅衬底102被提供用于形成集成电路100。在具有50纳米至100纳米的初始厚度的衬底102上方形成介电层112。在衬底102中介电层112可以由硅的热氧化形成,或者可以使用原硅酸四乙酯(还被称为四乙氧基硅烷(TEOS))由诸如等离子体增强化学气相沉积(PECVD)过程的沉积过程形成。介电层112可以包括诸如氮氧化硅或BPSG的其它介电层材料的一层或更多层。
第一沟槽掩膜144被形成在介电层112上方以便暴露用于图1的第一沟槽114的区域,并且以便覆盖用于p沟道的finFET 110的区域。第一沟槽掩膜144可以包括减反射层和通过光刻过程形成的光阻模式。
参照图2B,穿过介电层112形成第一沟槽114,以在由第一沟槽掩膜144暴露的区域中通过刻蚀介电层112暴露衬底102。可以使用反应离子刻蚀(RIE)过程刻蚀介电层112。在形成第一沟槽114之后,诸如通过灰化,接着通过湿法清洗过程移除第一沟槽掩膜144。
参照图2C,在第一沟槽114中的衬底102上形成第一硅锗缓冲层118。在形成第一硅锗缓冲层118之前可以先进行在750℃至850℃处的氢气烘焙。通过在750℃至850℃的温度处使用硅烷或二氯甲硅烷和混合氯化氢的锗烷的外延过程生长第一硅锗缓冲层118。可以变化硅烷或二氯甲硅烷与锗烷的比率,使得在衬底102处的锗的原子分数是小于百分之20,以及在第一硅锗缓冲层118的顶部处的锗的原子分数是大于百分之80,以有利地提供与衬底102匹配的良好的晶格并且以使n沟道鳍120形成。用于形成第一硅锗缓冲层118的外延过程没有在第一沟槽114的侧壁上沉积硅锗,以便显著地减小第一沟槽114的宽度。
参照图2D,可以通过气相外延过程在第一硅锗缓冲层118上形成n沟道鳍120,该n沟道鳍120延伸越过介电层112的顶面122。第一硅锗缓冲层118有利地促进n沟道鳍120的半导体材料的外延生长,其直接地生长在硅衬底102上将会是有问题的。在其中n沟道鳍120主要是砷化铟镓的实例示例的版本中,外延过程可以在150托的压强下和750℃至850℃的温度处使用三甲基铟、三甲基镓或三乙基镓、和砷化氢。可以变化三甲基铟与三甲基镓的比率,以获得n沟道鳍120中的铟与镓的所需比率。在其中n沟道鳍120主要是砷化镓的实例示例的版本中,外延过程可以使用三甲基镓或三乙基镓和砷化氢。在其中n沟道鳍120主要是磷化铟的实例示例的版本中,外延过程可以使用三甲基铟和磷化氢。在其中n沟道鳍120主要是锗的实例示例的版本中,外延过程可以使用锗烷。在其中n沟道鳍120主要是硅锗的实例示例的版本中,外延过程可以使用硅烷或二氯甲硅烷和锗烷。另选地,可以由分子束外延(MBE)过程形成n沟道鳍120。
参照图2E,在介电层112上方形成外延阻挡层146,该外延阻挡层146覆盖n沟道鳍120。外延阻挡层146可以包括20纳米至30纳米厚的氮化硅或氧氮化硅。可以通过在650℃至750℃处使用二氯甲硅烷和氨的低压化学气相沉积(LPCVD)过程形成外延阻挡层146。
参照图2F,在外延阻挡层146上方形成第二沟槽掩膜148,以便暴露用于图1的第二沟槽116的区域,并且以便覆盖用于n沟槽的finFET 106的区域。第二沟槽掩膜148可以包括减反射层和通过光刻过程形成的光阻模式。
参照图2G,穿过外延阻挡层146和介电层112形成第二沟槽116,以在由第二沟槽掩膜148暴露的区域中通过刻蚀外延阻挡层146和介电层112暴露衬底102。可以使用RIE过程刻蚀外延阻挡层146和介电层112。在形成第二沟槽116之后,诸如通过灰化,接着通过湿法清洗过程移除第二沟槽掩膜148。
参照图2H,在第二沟槽116中的衬底102上形成第二硅锗缓冲层132。形成第二硅锗缓冲层132可以使用与用于形成第一硅锗缓冲层118的相同或相似的过程。在衬底102处的锗的原子分数可以是小于百分之20,以及在第二硅锗缓冲层132的顶部处的锗的原子分数可以是大于百分之80,以有利地提供与衬底102匹配的良好的晶格并且以使p沟道鳍134形成。
参照图2I,在第二硅锗缓冲层132上形成p沟道鳍134,该p沟道鳍134延伸越过介电层112的顶面122,并且如图2H所示可能延伸越过外延阻挡层146的顶面。第二硅锗缓冲层132有利地促进p沟道鳍134的半导体材料的外延生长,其直接地生长在硅衬底102上将会是有问题的。p沟道鳍134可以主要是锗或主要是硅锗,并且可以如参照图2D描述的通过气相外延过程形成。另选地,可以通过MBE过程形成p沟道鳍134。
参照图2J,在外延阻挡层146上方形成覆盖层150,该覆盖层150覆盖p沟道鳍134。覆盖层150可以包括20纳米至30纳米厚的二氧化硅、氮化硅、和/或氧氮化硅。可以通过使用针对二氧化硅的TEOS的PECVD过程和/或针对氮化硅的双(叔丁基氨基)硅烷(BTBAS)在500℃至600℃形成覆盖层150。
参照图2K,示意性描述为CMP衬垫152的CMP过程152移除图2J的覆盖层150和外延阻挡层146,并且平坦化n沟道鳍120和p沟道鳍134,使其下降至介电层112。由于外延阻挡层146包括氮化硅或氧氮化硅,并且介电层112包括二氧化硅,所以可以通过外延阻挡层146和介电层112之间的抛光阻力方面的变化提供用于CMP过程152的端点(endpoint)。
图2L描述在完成图2K的CMP过程152之后的集成电路100。n沟道鳍120和p沟道鳍134可以是大体上与介电层112的顶面122共面。
参照图2M,在没有从n沟道鳍120和p沟道鳍134显著地移除半导体材料的情况下使介电层112凹陷,使得n沟道鳍120和p沟道鳍134在所凹陷的介电层112上部延伸至少10纳米。可以通过等离子体刻蚀使介电层112凹陷,该等离子刻蚀对相对于n沟道鳍120和p沟道鳍134的半导体材料的介电层112的介电材料(诸如二氧化硅)有选择性。另选地,可以通过诸如氢氟酸的稀释缓冲水溶液的湿法刻蚀使介电层112凹陷,该等离子刻蚀对相对于n沟道鳍120和p沟道鳍134的半导体材料的介电层112的介电材料(诸如二氧化硅)有选择性。在使介电层122凹陷之后,在n沟道鳍120和p沟道鳍134上方形成栅极介电层和栅极以提供图1的结构。还可以通过另选的示例制造顺序获得图2M的结构,其中p沟道鳍134在n沟道鳍120之前形成。
图3A至图3G是图1的描述在另一个示例的制造顺序连续阶段中的集成电路的横截面。参照图3A,硅衬底102被提供用于形成集成电路100。在具有50纳米至100纳米的初始厚度的衬底102上方形成介电层112。在介电层112上方形成沟槽掩膜154,以便暴露用于图1的第一沟槽114和第二沟槽116的区域。穿过介电层112形成第一沟槽114和第二沟槽116,以在由沟槽掩膜154暴露的区域中通过刻蚀介电层112暴露衬底102。在形成第一沟槽114和第二沟槽116之后,移除沟槽掩膜154。
参照图3B,如参照图2C和图2H所描述,第一硅锗缓冲层118和第二硅锗缓冲层132被同时地分别形成在第一沟槽114和第二沟槽116中的衬底102上。在实例示例中,第一硅锗缓冲层118和第二硅锗缓冲层132具有锗原子分数的相同组分和相同剖面。
同时在第一硅锗缓冲层118和第二硅锗缓冲层132上分别形成n沟道鳍120和p沟道鳍134,该n沟道鳍120和p沟道鳍134如参照图2D和图2I所描述延伸越过介电层112的顶面122。在实例示例中,n沟道鳍120和p沟道鳍134具有相同组分。n沟道鳍120和p沟道鳍134的半导体材料具有比硅更高的电子迁移率和更高的空穴迁移率。n沟道鳍120和p沟道鳍134的半导体材料可以大体上不掺杂或轻掺杂,可以在外延生长过程期间将n沟道鳍120和p沟道鳍134掺杂n型,或可以在外延生长过程期间将n沟道鳍120和p沟道鳍134掺杂p型。同时形成n沟道鳍120和p沟道鳍134有利地降低制造成本和集成电路100的复杂度。
参照图3C,可以在介电层112上形成可选的第一注入掩膜156,以便暴露p沟道鳍134并且覆盖n沟道鳍120。如果需要,则可以以提供用于p沟道finFET 110的所需阈值电压的剂量将诸如磷和可能的砷的n型掺杂剂158注入p沟道鳍134中。剂量将取决于所需阈值电压和取决于p沟道鳍134的高度。在注入n型掺杂剂158之后移除第一注入掩膜156。随后执行退火操作,以激活所注入的n型掺杂剂158。
参照图3D,可以在介电层112上方形成可选的第二注入掩膜160,以便暴露n沟道鳍120并且覆盖p沟道鳍134。如果需要,则可以以提供用于n沟道finFET 106的所需阈值电压的剂量将诸如硼的p型掺杂剂162注入n沟道鳍120中。剂量将取决于所需阈值电压和取决于n沟道鳍120的高度。在注入p型掺杂剂162之后移除第二注入掩膜160。随后执行退火操作,以激活所注入的p型掺杂剂162。
参照图3E,在外延阻挡层112上方形成覆盖层150,该覆盖层150覆盖n沟道鳍120和p沟道鳍134。在实例示例中,覆盖层150可以包括20纳米至30纳米厚的氮化硅,和/或氧氮化硅。可以如参照图2J所描述形成覆盖层150。
参照图3F,示意性描述为CMP衬垫152的CMP过程152移除盖层150,并且平坦化n沟道鳍120和p沟道鳍134,使其下降至介电层112。由于覆盖层150包括氮化硅或氧氮化硅,并且介电层112包括二氧化硅,所以可以通过覆盖层150和介电层112之间的抛光阻力方面的变化提供用于CMP过程152的端点。
参照图3G,如参照图2M所描述,在没有从n沟道鳍120和p沟道鳍134显著地移除半导体材料的情况下使介电层112凹陷,使得n沟道鳍120和p沟道鳍134在所凹陷的介电层112上部延伸至少10纳米。在使介电层112凹陷之后,在n沟道鳍120和p沟道鳍134上方形成栅极介电层和栅极以提供图1的结构。
在所描述的实施例中,修改是可能的,并且其它实施例在权利要求范围内是可能的。

Claims (20)

1.一种集成电路,所述集成电路包括:
衬底,所述衬底包括硅,所述衬底具有在用于n沟道鳍式场效应晶体管即finFET的区域中的p型区,和具有在用于p沟道finFET的区域中的n型区;
介电层,所述介电层在所述衬底上方配置,所述介电层具有下降至用于所述n沟道finFET的区域中的所述衬底的第一沟槽并且具有下降至用于所述p沟道finFET的区域中的所述衬底的第二沟槽;
第一硅锗缓冲层,所述第一硅锗缓冲层在所述第一沟槽中的所述衬底的所述p型区上配置;
第二硅锗缓冲层,所述第二硅锗缓冲层在所述第二沟槽中的所述衬底的所述n型区上配置;
所述n沟道finFET的n沟道鳍,所述n沟道finFET的所述n沟道鳍在所述第一硅锗缓冲层上配置,所述n沟道鳍在所述介电层的顶面上方延伸至少10纳米,所述n沟道鳍具有p型掺杂,所述n沟道鳍包括与硅不同的半导体材料;以及
所述p沟道finFET的p沟道鳍,所述p沟道finFET的所述p沟道鳍在所述第二硅锗缓冲层上配置,所述p沟道鳍在所述介电层的所述顶面上方延伸至少10纳米,所述p沟道鳍具有n型掺杂,所述p沟道鳍包括与硅不同的半导体材料。
2.根据权利要求1所述的集成电路,其中:
所述第一硅锗缓冲层具有少于百分之20的在所述衬底处的锗原子分数,并且具有超过百分之80的在所述第一硅锗缓冲层的顶面处的锗原子分数;以及
所述第二硅锗缓冲层具有少于百分之20的在所述衬底处的锗原子分数,并且具有超过百分之80的在所述第二硅锗缓冲层的顶面处的锗原子分数。
3.根据权利要求1所述的集成电路,其中,所述n沟道鳍包括砷化镓。
4.根据权利要求1所述的集成电路,其中,所述n沟道鳍包括砷化铟镓。
5.根据权利要求4所述的集成电路,其中,所述n沟道鳍具有50∶50至57∶43的铟与镓的比例。
6.根据权利要求1所述的集成电路,其中,所述n沟道鳍包括磷化铟。
7.根据权利要求1所述的集成电路,其中,所述n沟道鳍包括锗。
8.根据权利要求1所述的集成电路,其中,所述p沟道鳍包括硅锗。
9.根据权利要求1所述的集成电路,其中,所述p沟道鳍包括锗。
10.一种形成集成电路的方法,所述方法包括:
提供包括硅的衬底,所述衬底具有在用于第一极性finFET的区域中的第一导电类型的第一区和具有在用于第二相反极性finFET的区域中的第二相反导电类型的第二区;
在所述衬底上方形成50纳米至100纳米厚的介电层50;
在所述介电层中形成第一沟槽,所述第一沟槽下降至用于所述第一极性finFET的所述区域中的所述衬底;
在所述第一沟槽中的所述衬底上形成1纳米至5纳米厚的第一硅锗缓冲层;
在所述第一硅锗缓冲层上形成所述第一极性finFET的第一极性鳍,使得所述第一极性鳍在所述介电层的顶面上方延伸;
在所述介电层上方形成外延阻挡层,以便覆盖所述第一极性鳍;
在所述外延阻挡层和所述介电层中形成第二沟槽,所述第二沟槽下降至用于所述第二极性finFET的所述区域中的所述衬底;
在所述第二沟槽中的所述衬底上形成1纳米至5纳米厚的第二硅锗缓冲层;
在所述第二硅锗缓冲层上形成所述第二极性finFET的第二极性鳍,使得所述第二极性鳍在所述介电层的顶面上方延伸;
在所述外延阻挡层上方形成介电材料的覆盖层,以便覆盖所述第二极性鳍;
通过化学机械抛光即CMP过程移除所述覆盖层和所述外延阻挡层,以便平坦化所述第一极性鳍和所述第二极性鳍,使所述第一极性鳍和所述第二极性鳍下降至所述介电层;以及
使所述介电层凹陷,使得所述第一极性鳍和所述第二极性鳍在所述介电层上方延伸至少10纳米。
11.根据权利要求10所述的方法,其中:
形成所述第一硅锗缓冲层,以具有少于百分之20的在所述衬底处的锗原子分数,和超过百分之80的在所述第一硅锗缓冲层的顶面处的锗原子分数;以及
形成所述第二硅锗缓冲层,以具有少于百分之20的在所述衬底处的锗原子分数,和超过百分之80的在所述第二硅锗缓冲层的顶面处的锗原子分数。
12.根据权利要求10所述的方法,其中,所述n沟道鳍包括砷化镓。
13.根据权利要求10所述的方法,其中,所述n沟道鳍包括砷化铟镓。
14.根据权利要求13所述的方法,其中,所述n沟道鳍具有50∶50至57∶43的铟与镓的比例。
15.根据权利要求10所述的方法,其中,所述n沟道鳍包括磷化铟。
16.根据权利要求10所述的方法,其中,所述n沟道鳍包括锗。
17.根据权利要求10所述的方法,其中,所述p沟道鳍包括锗。
18.一种形成集成电路的方法,所述方法包括:
提供包括硅的衬底,所述衬底具有在用于第一极性finFET的区域中的第一导电类型的第一区和具有在用于第二相反极性finFET的区域中的第二相反导电类型的第二区;
形成在所述衬底上方的50纳米至100纳米厚的介电层;
同时形成在所述介电层中的下降至用于所述第一极性finFET的所述区域中的所述衬底的第一沟槽和在所述介电层中的下降至用于所述第二极性finFET的所述区域中的所述衬底的第二沟槽;
同时形成在所述第一沟槽中的所述衬底上的1纳米至5纳米厚的第一硅锗缓冲层和在所述第二沟槽中的所述衬底上的1纳米至5纳米厚的第二硅锗缓冲层;
同时形成在所述第一硅锗缓冲层上的所述第一极性finFET的第一极性鳍和在所述第二硅锗缓冲层上的所述第二极性finFET的第二极性鳍,使得所述第一极性鳍和所述第二极性鳍在所述介电层的顶面上方延伸;
在所述介电层上方形成介电材料的覆盖层,以便覆盖所述第一极性鳍和所述第二极性鳍;
通过CMP过程移除所述覆盖层,以便平坦化所述第一极性鳍和所述第二极性鳍,使所述第一极性鳍和所述第二极性鳍下降至所述介电层;以及
使所述介电层凹陷,使得所述第一极性鳍和所述第二极性鳍在所述介电层上方延伸至少10纳米。
19.根据权利要求18所述的方法,其中,形成所述第一硅锗缓冲层和所述第二硅锗缓冲层,以具有少于百分之20的在所述衬底处的硅原子分数,和超过百分之80的在所述第一硅锗缓冲层和所述第二硅锗缓冲层的顶面处的锗原子分数。
20.根据权利要求18所述的方法,其中,所述第一极性鳍和所述第二极性鳍包括锗。
CN201480071542.6A 2013-12-28 2014-12-29 高迁移率晶体管 Active CN105849905B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361921453P 2013-12-28 2013-12-28
US61/921,453 2013-12-28
US14/573,021 2014-12-17
US14/573,021 US9324717B2 (en) 2013-12-28 2014-12-17 High mobility transistors
PCT/US2014/072585 WO2015100456A1 (en) 2013-12-28 2014-12-29 High mobility transistors

Publications (2)

Publication Number Publication Date
CN105849905A true CN105849905A (zh) 2016-08-10
CN105849905B CN105849905B (zh) 2019-10-25

Family

ID=53479727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480071542.6A Active CN105849905B (zh) 2013-12-28 2014-12-29 高迁移率晶体管

Country Status (5)

Country Link
US (3) US9324717B2 (zh)
EP (1) EP3087603A4 (zh)
JP (1) JP6644707B2 (zh)
CN (1) CN105849905B (zh)
WO (1) WO2015100456A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821336B (zh) * 2015-04-20 2017-12-12 上海华力微电子有限公司 用于使用保形填充层改善器件表面均匀性的方法和***
CN107636834B (zh) * 2015-06-16 2021-11-09 英特尔公司 具有子鳍状物层的晶体管
WO2017044117A1 (en) * 2015-09-11 2017-03-16 Intel Corporation Aluminum indium phosphide subfin germanium channel transistors
CN106611787A (zh) * 2015-10-26 2017-05-03 联华电子股份有限公司 半导体结构及其制作方法
KR102532202B1 (ko) 2016-01-22 2023-05-12 삼성전자 주식회사 반도체 소자
US9768303B2 (en) * 2016-01-27 2017-09-19 Taiwan Semiconductor Manufacturing Co., Ltd. Method and structure for FinFET device
EP3472867A4 (en) 2016-06-17 2020-12-02 INTEL Corporation SELF-ALIGNED GATE ELECTRODE FIELD-EFFECT TRANSISTORS ON A SEMICONDUCTOR FIN
US9922983B1 (en) * 2016-09-22 2018-03-20 International Business Machines Corporation Threshold voltage modulation through channel length adjustment
US10468310B2 (en) * 2016-10-26 2019-11-05 Globalfoundries Inc. Spacer integration scheme for FNET and PFET devices
US10840350B2 (en) * 2016-10-31 2020-11-17 Taiwan Semiconductor Manufacturing Co., Ltd. Nanolaminate structure, semiconductor device and method of forming nanolaminate structure
US10424663B2 (en) * 2017-05-23 2019-09-24 International Business Machines Corporation Super long channel device within VFET architecture
US11054748B2 (en) 2018-09-21 2021-07-06 Taiwan Semiconductor Manufacturing Co., Ltd. Dummy insertion for improving throughput of electron beam lithography
US11094597B2 (en) * 2018-09-28 2021-08-17 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of semiconductor device with fin structures
US11923436B2 (en) * 2020-08-07 2024-03-05 Taiwan Semiconductor Manufacturing Co., Ltd. Source/drain structure for semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221956A1 (en) * 2006-03-23 2007-09-27 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
CN103187418A (zh) * 2011-12-30 2013-07-03 台湾积体电路制造股份有限公司 一种CMOS FinFET器件及其形成方法
CN103426882A (zh) * 2012-05-16 2013-12-04 台湾积体电路制造股份有限公司 Cmos器件及其形成方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508031B2 (en) * 2005-07-01 2009-03-24 Synopsys, Inc. Enhanced segmented channel MOS transistor with narrowed base regions
US7799592B2 (en) * 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
US9484462B2 (en) * 2009-09-24 2016-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of fin field effect transistor
US9245805B2 (en) * 2009-09-24 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs with metal gates and stressors
US8278173B2 (en) * 2010-06-30 2012-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating gate structures
US9761666B2 (en) * 2011-06-16 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel field effect transistor
US20130011984A1 (en) * 2011-07-07 2013-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Using Hexachlorodisilane as a Silicon Precursor for Source/Drain Epitaxy
US8624326B2 (en) * 2011-10-20 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET device and method of manufacturing same
US8629038B2 (en) * 2012-01-05 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs with vertical fins and methods for forming the same
US9129827B2 (en) * 2012-04-13 2015-09-08 Intel Corporation Conversion of strain-inducing buffer to electrical insulator
US8729634B2 (en) * 2012-06-15 2014-05-20 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with high mobility and strain channel
EP2682983B1 (en) * 2012-07-03 2016-08-31 Imec CMOS device comprising silicon and germanium and method for manufacturing thereof
US8497171B1 (en) 2012-07-05 2013-07-30 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET method and structure with embedded underlying anti-punch through layer
US8673718B2 (en) * 2012-07-09 2014-03-18 Globalfoundries Inc. Methods of forming FinFET devices with alternative channel materials
US8841188B2 (en) * 2012-09-06 2014-09-23 International Business Machines Corporation Bulk finFET with controlled fin height and high-K liner
US20140353767A1 (en) * 2013-05-31 2014-12-04 Stmicroelectronics, Inc. Method for the formation of fin structures for finfet devices
EP3050092A4 (en) * 2013-09-27 2017-05-03 Intel Corporation Non-silicon device heterolayers on patterned silicon substrate for cmos by combination of selective and conformal epitaxy
US9023705B1 (en) * 2013-11-01 2015-05-05 Globalfoundries Inc. Methods of forming stressed multilayer FinFET devices with alternative channel materials
US9136332B2 (en) * 2013-12-10 2015-09-15 Taiwan Semiconductor Manufacturing Company Limited Method for forming a nanowire field effect transistor device having a replacement gate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221956A1 (en) * 2006-03-23 2007-09-27 Kabushiki Kaisha Toshiba Semiconductor device and method of fabricating the same
CN103187418A (zh) * 2011-12-30 2013-07-03 台湾积体电路制造股份有限公司 一种CMOS FinFET器件及其形成方法
CN103426882A (zh) * 2012-05-16 2013-12-04 台湾积体电路制造股份有限公司 Cmos器件及其形成方法

Also Published As

Publication number Publication date
US20150187773A1 (en) 2015-07-02
WO2015100456A1 (en) 2015-07-02
JP2017507498A (ja) 2017-03-16
US20160204198A1 (en) 2016-07-14
US20160225673A1 (en) 2016-08-04
JP6644707B2 (ja) 2020-02-12
EP3087603A1 (en) 2016-11-02
US9805986B2 (en) 2017-10-31
CN105849905B (zh) 2019-10-25
EP3087603A4 (en) 2017-08-30
US9324717B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
CN105849905A (zh) 高迁移率晶体管
US10971406B2 (en) Method of forming source/drain regions of transistors
KR101748920B1 (ko) FinFET을 형성하는 방법
US9704883B2 (en) FETS and methods of forming FETS
US10243060B2 (en) Uniform low-k inner spacer module in gate-all-around (GAA) transistors
US8786019B2 (en) CMOS FinFET device
US10340369B2 (en) Tunneling field effect transistor
US9543419B1 (en) FinFET structures and methods of forming the same
US9401373B2 (en) Multi-fin finFETs with merged-fin source/drains and replacement gates
US20160099352A1 (en) Fets and methods of forming fets
JP7018963B2 (ja) Vfetアーキテクチャ内の超長チャネル・デバイス
CN105932060A (zh) 无轻掺杂漏极的半导体结构及其制造方法
US10930758B2 (en) Space deposition between source/drain and sacrificial layers
US10269647B2 (en) Self-aligned EPI contact flow
US20230360974A1 (en) Silicon Phosphide Semiconductor Device
US20230317791A1 (en) Semiconductor device and manufacturing method thereof
US11990511B2 (en) Source/drain device and method of forming thereof
US11804487B2 (en) Source/drain regions of semiconductor devices and methods of forming the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant