CN105846549B - 一种非接触式功率传输***及控制方法 - Google Patents

一种非接触式功率传输***及控制方法 Download PDF

Info

Publication number
CN105846549B
CN105846549B CN201510015953.XA CN201510015953A CN105846549B CN 105846549 B CN105846549 B CN 105846549B CN 201510015953 A CN201510015953 A CN 201510015953A CN 105846549 B CN105846549 B CN 105846549B
Authority
CN
China
Prior art keywords
frequency
rectifier
power
transmission system
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510015953.XA
Other languages
English (en)
Other versions
CN105846549A (zh
Inventor
王广柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201520021827.0U priority Critical patent/CN204316199U/zh
Priority to CN201510015953.XA priority patent/CN105846549B/zh
Publication of CN105846549A publication Critical patent/CN105846549A/zh
Application granted granted Critical
Publication of CN105846549B publication Critical patent/CN105846549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种非接触式功率传输***及控制方法,***包括送电端、受电端和控制单元,控制单元包括一个电流控制器和开关信号发生器,电流控制器的反馈输入端接收经滤波后的高频逆变器的直流侧电流检测信号,电流控制器的给定输入端接收所述交流供电电源的电压检测信号经绝对值变换和乘以系数G后的信号,所述电流控制器的输出连接所述开关信号发生器的输入端,所述开关信号发生器的输出连接高频逆变器/高频整流器功率开关控制端。本发明无需PFC电路即可实现交流供电电源的单位功率因数,降低了***的复杂性、体积和成本。

Description

一种非接触式功率传输***及控制方法
技术领域
本发明涉及一种非接触式功率传输***及控制方法。
背景技术
非接触式(或无线)功率传输技术使得送电端与受电端之间不通过导线及插头(插座)连接,具有用电安全、可靠、方便等一系列优点,特别适合于移动设备充电、电动汽车充电(供电)以及易燃(爆)及腐蚀性环境场合的设备供电。
非接触式功率传输***由送电端***和受电端***组成,其中送电端一般由工频整流器、大容量滤波电容器、高频逆变器、送电线圈及补偿单元、以及相应控制单元等组成;受电端一般由高频整流器、滤波电容器、受电线圈及补偿单元、以及相应控制单元等等组成,如图1所示。上述技术方案送电端工频整流器后采用大容量电容器滤波,使得功率因数较低。为了提高送电端功率因数,现有技术一般在送电端高频逆变器之前增加一级功率因数校正(Power Factor Correction,PFC)电路,如图1a所示。但这会增加***的复杂性和成本,降低可靠性和功率传输效率。
发明内容
本发明为了解决上述问题,提出了一种非接触式功率传输***及控制方法,本***无需PFC校正电路,具有电路简单和单位功率因数等优点。
为了实现上述目的,本发明采用如下技术方案:
一种非接触式功率传输***,包括送电端、受电端和控制单元,其中,送电端与受电端进行电能传输,控制单元控制送电端与受电端;
所述送电端包括依次相连的交流供电电源、低通滤波器、工频整流器、高频逆变器、补偿单元I和送电线圈,所述工频整流器直流侧直接与高频逆变器直流侧相连,二者之间无功率因数校正电路;
所述受电端包括依次相连的受电线圈、补偿单元II、高频整流器和负载;
所述控制单元包括一个电流控制器和开关信号发生器,电流控制器的反馈输入端接收经滤波后的高频逆变器的直流侧电流检测信号,电流控制器的给定输入端接收所述交流供电电源的电压检测信号经绝对值变换和乘以系数G后的信号,所述电流控制器的输出连接所述开关信号发生器的输入端,所述开关信号发生器的输出连接高频逆变器和高频整流器功率开关控制端。
所述工频整流器和高频整流器为无源整流器,为四个二极管组成的单相全桥整流器电路,用于单向非接触式功率传输***,即功率由所述送电端向所述受电端的负载传输。
所述工频整流器和高频整流器为有源H桥整流器,为四个带反并联二极管的功率开关管组成的H桥变换电路,用于双向非接触式功率传输***,即功率可在所述送电端与所述受电端之间双向传输。
所述工频整流器设有同步整流控制单元,同步整流控制单元包括比较器和反相器,通过比较器实现对输入交流电压的比较,反相器实现逻辑反相;当输入交流电压大于0时,所述比较器输出逻辑“1”,所述反相器输出为逻辑“0”。
所述高频逆变器为有源H桥逆变器,为四个带反并联二极管的功率开关管组成的H桥变换电路。
所述高频逆变器为有源半桥逆变器,为两个带反并联二极管的功率开关管组成的半桥变换电路。
一种基于上述***的控制方法,包括以下步骤:
(1)检测送电端高频逆变器的直流侧电流,经滤波处理后得到电流反馈信号送到控制单元电流控制器的反馈输入端;
(2)检测送电端交流供电电源电压,经绝对值变换和乘以系数G后得到给定指令电流信号送到控制单元电流控制器的给定输入端;
(3)电流控制器对给定输入信号和电流反馈信号进行处理输出控制信号至开关信号发生器的输入端,然后由开关信号发生器控制高频逆变器和高频整流器的功率开关管,使电流反馈信号跟踪给定输入信号。
所述步骤(2)中,系数G可由所述受电端负载电压/电流/功率的闭环控制得到。
所述步骤(3)中,当功率由所述送电端向受电端传输时,开关信号发生器控制高频逆变器的功率开关管。
所述步骤(3)中,当功率由所述受电端向送电端传输时,开关信号发生器控制高频整流器的功率开关管。
本发明的有益效果为:
(1)提供了一种非接触式功率传输***及控制方法,无需PFC电路即可实现交流供电电源的单位功率因数,降低了***的复杂性、体积和成本;
(2)省略了PFC电路,使***减少了一级高频变换环节,降低了开关损耗,提高了***变换效率和可靠性;
(3)可用于各种由交流电源供电的非接触式功率传输***,如电动汽车非接触式充/放电等。
附图说明
图1为现有的不带PFC电路的非接触式功率传输***;
图1a为现有的带PFC电路的非接触式功率传输***;
图2为本发明的非接触式功率传输***;
图3为一种工频无源整流器拓扑结构;
图3a为一种工频H桥有源整流器拓扑结构;
图4为图3a的工频H桥有源整流器的同步整流控制单元;
图5为一种高频无源整流器拓扑结构;
图5a为一种高频H桥有源整流器拓扑结构;
图6为一种高频H桥逆变器拓扑结构;
图6a为一种高频半桥逆变器拓扑结构;
其中,1、低通滤波器,2、工频整流器,3、高频逆变器,4、高频整流器,5、补偿单元I,6、补偿单元II,7、送电线圈,8、受电线圈,9、负载,10、交流供电电源,11、送电端,12、受电端,13、控制单元,14、电流控制器,15、开关信号发生器,16、滤波电路,17、绝对值变换器,18、乘法器,19、比较器,20、反相器,21、同步整流控制单元。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
如图2所示,本发明的非接触式功率传输***图,它包括送电端11、受电端12和控制单元13,其中送电端11包括交流供电电源10、低通滤波器1、工频整流器2、高频逆变器3、送电线圈7及补偿单元I 5;受电端包括高频整流器4、受电线圈8及补偿单元II 6、负载9等。其特征是,所述工频整流器2直流侧直接与高频逆变器直流侧相连,二者之间无功率因数校正电路。所述控制单元13至少包括一个电流控制器14和开关信号发生器15,所述高频逆变器3的直流侧电流检测信号id经滤波电路16滤波后得到连接所述电流控制器14的反馈输入端,所述交流供电电源10电压检测信号us经绝对值变换器17变换后得|us|,乘以系数G后得到给定指令电流信号连接所述电流控制器14的给定输入端,所述电流控制器14的输出F连接所述开关信号发生器15的输入端,开关信号发生器15的输出K连接所述高频逆变器3/高频整流器4的功率开关控制端。
图3给出了一种工频整流器2的工频无源整流器电路结构图,包括四个二极管Z1~Z4,组成公知的单相全桥整流器电路。
图3a给出了一种工频整流器2的工频有源H桥整流器电路结构图,包括四个带反并联二极管的功率开关管Q1~Q4,组成公知的H桥变换电路。
图4给出了的工频有源H桥整流器2的同步整流控制单元21,通过比较器19实现对输入交流电压的比较,反相器20实现逻辑反相。当输入交流电压us大于0时,所述比较器19输出逻辑“1”,所述反相器20输出为逻辑“0”,控制图3a所示的有源H桥整流器的开关管Q1和Q4导通,Q2和Q3截止,反之,当输入交流电压us小于0时,所述比较器19输出逻辑“0”,所述反相器20输出为逻辑“1”,控制图3a所示的有源H桥整流器的开关管Q2和Q3导通,Q1和Q4截止。
图5给出了一种高频整流器4的高频无源整流器电路结构图,包括四个二极管Z5~Z8,组成公知的单相全桥整流器电路。
图5a给出了一种高频整流器4的高频有源H桥整流器电路结构图,包括四个带反并联二极管的功率开关管Q5~Q8,组成公知的H桥变换电路。
图6给出了一种高频逆变器3的H桥逆变器电路结构图,包括四个带反并联二极管的功率开关管S1~S4,组成公知的H桥变换电路。
图6a给出了一种高频逆变器3的半桥逆变器电路结构图,包括两个带反并联二极管的功率开关管S1~S2,组成公知的半桥变换电路。
实施例1:
图2中的工频整流器2由图3实现,高频逆变器3由图6所示的H桥逆变器实现,高频整流器4由图5实现,就构成一种单向非接触式功率传输***主电路拓扑,功率只能进行正向传输,即功率由送电端11的交流供电电源10向受电端12的负载9传输(或者图2中功率由左侧向右侧传输),所述开关信号发生器15的输出K连接图6所述高频逆变器3的功率开关管S1~S4的控制端。
实施例2:
将实施例1中的高频逆变器3改由图6a所示的半桥逆变器实现,就构成另一种单向非接触式功率传输***主电路拓扑,所述开关信号发生器15的输出K连接图6a所述高频逆变器3的功率开关管S1~S2的控制端。
实施例3:
图2中的工频整流器2由图3a实现,高频逆变器3由图6所示的H桥逆变器实现,高频整流器4由图5a实现,就构成一种双向非接触式功率传输***主电路拓扑,功率可进行正向和反向传输。当进行正向功率传输时,功率由送电端11的交流供电电源10向受电端12的负载9传输(或者图2中功率由左侧向右侧传输),此时,所述开关信号发生器15的输出K连接图6所述高频逆变器3的功率开关管S1~S4的控制端,工频整流器2和高频整流器4都工作在整流状态(即功率开关管处于截止状态),高频逆变器3处于高频逆变状态。当进行反向功率传输时,功率由受电端12的负载9向送电端11的交流供电电源10传输(或者图2中功率由右侧向左侧传输),此时,所述开关信号发生器15的输出K连接图5所述高频整流器4的功率开关管Q5~Q8的控制端,高频整流器4工作在高频逆变状态,工频整流器2处于同步整流状态,其功率开关管Q1~Q4由图4的同步整流控制单元21控制,高频逆变器3处于高频整流状态(即功率开关管S1~S4处于截止状态)。
上述实施例中,所述电流控制器14的作用最终是控制所述交流供电电源10的输出电流is为与电源电压us同频、同/反相、同形状的交流电流或为与电源电压us同频、同/反相的正弦电流,使所述非接触式功率传输***保持单位功率因数。
上述实施例中,控制单元13的系数G可由电位器进行调节,也可由所述受电端11负载9的电压/电流/功率的闭环控制得到。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (9)

1.一种非接触式功率传输***,包括送电端、受电端和控制单元,其中,送电端与受电端进行电能传输,控制单元控制送电端与受电端;
所述送电端包括依次相连的交流供电电源、低通滤波器、工频整流器、高频逆变器、补偿单元I和送电线圈,所述工频整流器直流侧直接与高频逆变器直流侧相连,二者之间无功率因数校正电路;
所述受电端包括依次相连的受电线圈、补偿单元II、高频整流器和负载;
其特征是:所述控制单元包括一个电流控制器和开关信号发生器,电流控制器的反馈输入端接收经滤波后的高频逆变器的直流侧电流检测信号,电流控制器的给定输入端接收所述交流供电电源的电压检测信号经绝对值变换和乘以系数G后的信号,所述电流控制器的输出连接所述开关信号发生器的输入端,所述开关信号发生器的输出连接高频逆变器和高频整流器功率开关控制端;
所述电流控制器用于控制所述交流供电电源的输出电流为与电源电压同频、同/反相、同形状的交流电流或为与电源电压同频、同/反相的正弦电流,使所述非接触式功率传输***保持单位功率因数。
2.如权利要求1所述的一种非接触式功率传输***,其特征是:所述工频整流器和高频整流器为无源整流器,为四个二极管组成的单相全桥整流器电路,用于单向非接触式功率传输***,即功率由所述送电端向所述受电端的负载传输。
3.如权利要求1所述的一种非接触式功率传输***,其特征是:所述工频整流器和高频整流器为有源H桥整流器,为四个带反并联二极管的功率开关管组成的H桥变换电路,用于双向非接触式功率传输***,即功率可在所述送电端与所述受电端之间双向传输。
4.如权利要求1所述的一种非接触式功率传输***,其特征是:所述工频整流器设有同步整流控制单元,同步整流控制单元包括比较器和反相器,通过比较器实现对输入交流电压的比较,反相器实现逻辑反相;当输入交流电压大于0时,所述比较器输出逻辑“1”,所述反相器输出为逻辑“0”。
5.如权利要求1所述的一种非接触式功率传输***,其特征是:所述高频逆变器为有源H桥逆变器,为四个带反并联二极管的功率开关管组成的H桥变换电路。
6.如权利要求1所述的一种非接触式功率传输***,其特征是:所述高频逆变器为有源半桥逆变器,为两个带反并联二极管的功率开关管组成的半桥变换电路。
7.一种基于如权利要求1-6中任一项所述的非接触式功率传输***的控制方法,其特征是:包括以下步骤:
(1)检测送电端高频逆变器的直流侧电流,经滤波处理后得到电流反馈信号送到控制单元电流控制器的反馈输入端;
(2)检测送电端交流供电电源电压,经绝对值变换和乘以系数G后得到给定指令电流信号送到控制单元电流控制器的给定输入端;
(3)电流控制器对给定输入信号和电流反馈信号进行处理输出控制信号至开关信号发生器的输入端,然后由开关信号发生器控制高频逆变器和高频整流器的功率开关管,使电流反馈信号跟踪给定输入信号。
8.如权利要求7所述的控制方法,其特征是:所述步骤(2)中,系数G可由所述受电端负载电压/电流/功率的闭环控制得到。
9.如权利要求7所述的控制方法,其特征是:所述步骤(3)中,当功率由所述送电端向受电端传输时,开关信号发生器控制高频逆变器的功率开关管;
所述步骤(3)中,当功率由所述受电端向送电端传输时,开关信号发生器控制高频整流器的功率开关管。
CN201510015953.XA 2015-01-13 2015-01-13 一种非接触式功率传输***及控制方法 Active CN105846549B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201520021827.0U CN204316199U (zh) 2015-01-13 2015-01-13 一种非接触式功率传输***
CN201510015953.XA CN105846549B (zh) 2015-01-13 2015-01-13 一种非接触式功率传输***及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510015953.XA CN105846549B (zh) 2015-01-13 2015-01-13 一种非接触式功率传输***及控制方法

Publications (2)

Publication Number Publication Date
CN105846549A CN105846549A (zh) 2016-08-10
CN105846549B true CN105846549B (zh) 2018-09-21

Family

ID=57177986

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510015953.XA Active CN105846549B (zh) 2015-01-13 2015-01-13 一种非接触式功率传输***及控制方法
CN201520021827.0U Expired - Fee Related CN204316199U (zh) 2015-01-13 2015-01-13 一种非接触式功率传输***

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201520021827.0U Expired - Fee Related CN204316199U (zh) 2015-01-13 2015-01-13 一种非接触式功率传输***

Country Status (1)

Country Link
CN (2) CN105846549B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846549B (zh) * 2015-01-13 2018-09-21 山东大学 一种非接触式功率传输***及控制方法
US10046660B2 (en) * 2015-06-19 2018-08-14 Qualcomm Incorporated Devices, systems, and methods using reactive power injection for active tuning electric vehicle charging systems
CN106059364B (zh) * 2016-08-11 2018-11-23 重庆大学 一种用于无线电能传输***的高频发射源
CN106899091B (zh) * 2017-04-20 2020-03-10 武汉大学 一种无线能量传输***的远程控制装置及方法
CN109995240A (zh) 2018-01-02 2019-07-09 通用电气公司 电源转换器及电源转换方法
CN111416443A (zh) * 2019-01-07 2020-07-14 哈尔滨工业大学(威海) 一种能够实现无线电能传输稳压输出的装置
CN110061570B (zh) * 2019-05-28 2020-10-02 浙江大学 通过副边调制实现pfc的无线电能传输***
CN111740505B (zh) * 2020-07-03 2022-02-08 浙江大学 一种仅通过原边移相控制实现pfc的方法
CN114172166A (zh) * 2021-12-07 2022-03-11 阳光电源股份有限公司 一种电压发生装置及其高频发生控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986344A (zh) * 2014-05-30 2014-08-13 山东大学 单位功率因数单级ac-dc变换器的控制***及控制方法
CN104079076A (zh) * 2013-03-29 2014-10-01 河南工程学院 采用变频软开关驱动技术的非接触供电***及其驱动方法
CN203967994U (zh) * 2014-05-30 2014-11-26 山东大学 单位功率因数单级ac-dc变换器
CN104218640A (zh) * 2014-08-29 2014-12-17 中国科学院电工研究所 具有多负载频率适应性的无线充电***
CN204316199U (zh) * 2015-01-13 2015-05-06 山东大学 一种非接触式功率传输***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079076A (zh) * 2013-03-29 2014-10-01 河南工程学院 采用变频软开关驱动技术的非接触供电***及其驱动方法
CN103986344A (zh) * 2014-05-30 2014-08-13 山东大学 单位功率因数单级ac-dc变换器的控制***及控制方法
CN203967994U (zh) * 2014-05-30 2014-11-26 山东大学 单位功率因数单级ac-dc变换器
CN104218640A (zh) * 2014-08-29 2014-12-17 中国科学院电工研究所 具有多负载频率适应性的无线充电***
CN204316199U (zh) * 2015-01-13 2015-05-06 山东大学 一种非接触式功率传输***

Also Published As

Publication number Publication date
CN204316199U (zh) 2015-05-06
CN105846549A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105846549B (zh) 一种非接触式功率传输***及控制方法
CN103490419B (zh) 一种配电网柔***流直流混合供电***
CN103208855B (zh) 一种不间断电源和dc-dc变换器
CN103986344B (zh) 单位功率因数单级ac‑dc隔离变换器的控制***及控制方法
CN102790422B (zh) 一种ups充电模块装置及其控制方法
CN107517595A (zh) 双向非接触供电装置以及双向非接触供电***
CN108667036A (zh) 一种电动汽车v2g变换器控制方法
CN101345423B (zh) 用于风力发电***的五电平h桥级联背靠背变流器
CN107618388A (zh) 一种电动汽车无线充电***
CN205724952U (zh) 车载充电器和车辆
CN102075107B (zh) 一种三相四线制dc/ac变换器主电路及其控制方法
CN103762873B (zh) 基于Boost变换器的高频隔离式三电平逆变器
CN102291014A (zh) 交流斩波-全桥整流的ac-dc变换器
US10003253B2 (en) Hybrid transformation system based on three-phase PWM rectifier and multi-unit uncontrolled rectifier and control method thereof
CN103888013B (zh) 基于高频交流降压理论的微型逆变器及其数字控制装置
CN105846685B (zh) 一种级联升压式单向直流变压器
CN104638688A (zh) 一种单相不间断电源电路和三相不间断电源电路
CN205490225U (zh) 一种高频斩波隔离型双向ac/dc电路
CN104539181A (zh) 基于llc谐振变换的微型光伏并网逆变器
CN203967994U (zh) 单位功率因数单级ac-dc变换器
CN106160451B (zh) 三环控制功率因数校正器的控制方法
CN106452096B (zh) 一种电桥结构、换流电路及电力电子变压器
CN106329699B (zh) 一种不间断电源及其控制方法、控制装置
CN106685208A (zh) 一种无桥功率因数校正pfc电路、车载充电机及电动汽车
CN105429445A (zh) 一种交直流微网双向变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant