CN105844542A - 基于wams的电网单一大扰动在线检测方法 - Google Patents

基于wams的电网单一大扰动在线检测方法 Download PDF

Info

Publication number
CN105844542A
CN105844542A CN201610207363.1A CN201610207363A CN105844542A CN 105844542 A CN105844542 A CN 105844542A CN 201610207363 A CN201610207363 A CN 201610207363A CN 105844542 A CN105844542 A CN 105844542A
Authority
CN
China
Prior art keywords
disturbance
information
electrical network
wams
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610207363.1A
Other languages
English (en)
Other versions
CN105844542B (zh
Inventor
高金兰
李宏玉
徐建军
闫丽梅
任爽
刘超
黄雨晴
陈永康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Han Primary School
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201610207363.1A priority Critical patent/CN105844542B/zh
Publication of CN105844542A publication Critical patent/CN105844542A/zh
Application granted granted Critical
Publication of CN105844542B publication Critical patent/CN105844542B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Business, Economics & Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Biology (AREA)
  • Mathematical Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Mathematics (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Primary Health Care (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Water Supply & Treatment (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开基于WAMS的电网单一大扰动在线检测方法,包括以下步骤:步骤1)、获取信息;步骤2)、扰动检测;步骤3)、信息融合;步骤4)、诊断决策。本发明扰动检测的方法的算法简便,检测速度此较快,精确度此较高,尤其是利用了PMU提供的精确的相角信息,对扰动是否发生进行了检测,解决了单一大扰动是否发生的判定问题。同时针对上传信息具有一定的错误概率,结合WAMS和SCADA上传的数据,利用数据融合理论对扰动是否真的发生进行验证,解决了由于错误上传信息引起大扰动发生判断结果错误的问题。

Description

基于WAMS的电网单一大扰动在线检测方法
技术领域
本发明涉及电网故障检测技术领域,尤其涉及一种基于WAMS的电网单一大扰动在线检测方法。
背景技术
西电东送、全国联网”工程的大力建设,让我国的电网建设迈入了蓬勃发展的新阶段。“十二五”期间,国家电网准备投入5000亿元到智能电网的初步建设中,智能电网(smartpower grids)就是指将电网智能化,它是以高速双向的通信网络为基础进行建设的,利用先进的设备、测量方法、传感技术、控制方法与决策***等技术,使电网的运行更加地安全可靠、经济环保,智能电网还有着可以抵抗供给、保证用户的用电需求、可以接入多种形式的发电,并且能让电力市场可以高效化地运行等优点。以我国目前的建设情况来看,在2015年就能够基本完成信息化并且自动化的智能电网的初步建设,电网的跨区互联使电网中的资源配置得到优化,运行效率得到提高,更加智能化。
在现如今的大规模复杂电力***中,各种类型的扰动无处不在。电力***中的扰动就是指因为***运行中的某些运行条件突然发生变动而引起的电压、电流、频率、功率等的波动。智能电网中所存在的扰动由影响程度可分为电网大扰动以及小扰动。电网小扰动即电气量变化幅度不大且持续时间较长的扰动,通常小扰动的产生是因为个别的发电机以及负荷的加入与切除或者是发电机转速发生了小的变化。电网大扰动是指电气量变化幅度较大但持续时间短暂,在很大程度上会影响电网的运行的扰动。通常大扰动的产生是由大容量的发电机或负荷等电力***主要元件的加入与切除引起的,也可能是短路故障造成的。由于电力系 统是一个庞大且繁杂的动态***。通常个别发电机或负荷的加入与切除对电力***稳定性造成的影响相对较小,因此本文不对小干扰进行具体研究。而当电力***有大扰动出现时,整个***将不可避免的出现很大程度的状态偏移和振荡,而且大扰动是无时不在,并且出现关联现象,只要有一个地点产生某种大扰动,就很有可能会将波动传递到周边区域,引起电力***产生新的波动,致使其他区域也发生大扰动。如此,电网大扰动的影响范围就会不断增大,如若不第一时间采取正确的措施去抑制扰动,就很有可能导致区域内全部停电的严重后果。
当电网中有扰动发生时,电力***保护装置就会发出信号告知调度人员,相关工作人员就可以及时解决故障问题,快速还原,保障***平稳运行。尽管如此,近几年来,大区域范围内停电事件时有发生,为居民的生活带来了严重的不便,造成这种结果的原因有很多,主要原因是电力***保护装置不够完善,含有一定的缺陷。相关资料显示:世界范围内近7成的大面停电事件是由电力***保护装置的操作不当所引起,本应成为电力***运行维护者的保护装置,却因为装置的不完善给电力***的稳定运行带来了威胁。当电网发生大扰动时,如果保护装置不够完善,没有及时做出正确的动作,必将引发电力***发生连锁反应,并快速蔓延最终导致电网崩溃[15],给智能电网带来严重性的后果。
分析国内外停电事故的典型案例,虽然有保护***不够完善、保护装置做出错误动作等不利因素,但在电网发生大扰动前后,缺少一个对全局统一的电网状态分析方式,导致电力维护人员不能第一时间发现电网中出现扰动,更不能够迅速做出正确有效的对策来抑制扰动更进一步蔓延。准确判断出电网是否有扰动发生,并当扰动发生时发出报警信息,就可以提醒电力维护人员,迅速采取相应手段进行控制,以抑制事故范围更深一步蔓延,这对电力***安全平稳运行起到非常重要的作用。第一时间发现电力***中有扰动发生,同时在源头处将扰动点控 制住,这种方法会极大的提升电网的平稳运行性能。综上,通过对电网信息进行实时监控来判断电网中是否有扰动发生对维护电力***平稳运行具有很重要的意义。
对智能电网中出现的大扰动进行检测,其包括判断扰动是否发生以及确定扰动发生的精准时刻两部分。因为电网扰动的类型较多,影响电网的安全可靠运行的程度也各不相同,所以,在对电网中发生的扰动进行检测时可以将研究重点放在对电网影响较大且影响范围较大的大扰动上。传统的扰动检测方法大体上的思路是对一些变化的电气量进行数学分析,找出突变点,从而确定扰动的发生和发生的时刻。但是现有的方法大多耗时长、满足不了在线进行检测的要求。随着广域测量***(Wide Area Measurement System)的逐步建设,有学者提出了充分利用广域测量***上传的信息对电网大扰动进行在线检测的设想。扰动发生时,WAMS的控制中心可以通过分布于全网的PMU测量信息获得扰动前后的***状态量、电气量等相关信息以及各种报警提示。这些看似复杂的信息能够实时的反映出电网运行的状态,由于PMU上传的所有数据都带有严格意义上的统一时标(精确到毫秒),能够反映同一时间点上的断面信息,可依据发生扰动期间电网中电压、电流、功率等电气量突变信息直接推断,其简单、快捷的特点满足了在线检测的需求,从而为在线检测电力***中是否有扰动找到了突破口。因为广域测量***上传的数据所用时间是所有信息源中最短的(时间在毫秒级),这使它能在电网发生扰动的初期最先将电网中的信息传递给电网维护人员,从而实现扰动的在线检测。综上,利用WAMS采集的信息来完成电网扰动的在线检测有着深远的实际意义的。
因为电网的规模在日益壮大,通过全网的数据和信息去进行电网大扰动的研究是现在的一个研究趋势。因为技术、理论等各项条件的约束,目前对这方面技 术的研究还处于起步阶段。所谓电网大扰动在线检测就是通过一定的工具来监视某些电网中的信息数据,比如电气量(电压、电流、功角以及频率等),观察数据是否发生变化,以及发生变化所对应的时间。以便于工作人员快速地采取措施从而降低大扰动对电网的安全运行所带来的不利影响。综上所述智能电网的在线检测的主要工作就是检测扰动是否发生以及扰动发生精确时间。
近几年来,各位学者在扰动检测方面做出了大量的研究,并取得了一定的进展,所提出的扰动检测方案大体可分为两类:基于时频分析的方法和基于非时频分析的方法,具体是以下几种;
(1)傅里叶变换法
(2)小波变换法
(3)时域分析法
(4)数理统计的方法
(5)人工智能方法
(6)基于WAMS的扰动检测方法
国家电网在2006年制定了《电力***实时动态监测***技术规范》,推动了广域测量***的发展。随着广域测量***在国家电网中的迅速发展,加上其可以对电网动态进行实时监测,因此在广域测量***的基础上对电网扰动进行检测是一个新的研究方向。关于电网大扰动检测的研究起步比较晚,现有的大部分研究方法,编程困难、计算强度大,所选扰动判据物理量单一,容易造成误判,无法满足实际需求。目前,对扰动检测的研究大多停留在理论部分,还没有做到充分考虑实际运行的需求,也没有充分地利用所采集到的信息。所以,综合利用全网上传的信息来对电网扰动进行研究,进而提出一种可行有效的基于广域测量***的电网扰动的检测方法,对电网安全稳定地运行具有极大的实际应用意义。
发明内容
本发明正是基于以上一个或多个问题,提供一种基于WAMS的电网单一大扰动在线检测方法。
本发明通过下述技术方案解决上述技术问题:
基于WAMS的电网单一大扰动在线检测方法,包括以下步骤:
步骤1)、获取信息:
从WAMS***的中实时提取各个监测点可以表征电网运行状态的相量信息;
从SCADA***提取开关量信息;
所述电气量信息包括电压幅值和电压相角;
所述开关量信息包括开关是否动作和开关电流是否变化至零;
步骤2)、扰动检测:
采用支持向量机的方法进行基于电气量变化的扰动检测方法对电网中是否有扰动进行检测;
基于开关量的检测方法对电网中是否有扰动进行检测;
步骤3)、信息融合:
采用D-S证据理论对步骤2)两种检测方法的检测结果进行信息融合;
步骤4)、诊断决策:
对信息融合结果进行分析,最后判定电网是否有扰动发生。
进一步的,
步骤2)中采用支持向量机的方法进行基于电气量变化的扰动检测方法包括以下步骤:
步骤2.1.1:采用基于小波分析理论中mallat算法对采集到的相量信息进行 去噪预处理;
步骤2.1.2:把预处理后得到的数据分为正常运行时的数据,和发生扰动后的数据,输入到支持向量机算法中进行训练,通过训练得到支持向量机扰动检测模型,训练后将数据分为两类:电网正常运行时的信息,判定值设置为1;正常运行以外的信息,判定值设置为-1;
步骤2.1.3:把要检测的数据输入到支持向量机扰动检测模型中,判断扰动是否发生,并显示扰动发生时的扰动发生时间,其中,当输入数据在正常运行范围内,判定值输出为1,即电网中无扰动发生;当输入数据不在正常运行范围内,判定值输出为-1,即电网中有扰动发生。
进一步的,
步骤2)中基于开关量的检测方法是,依据遥信类信息和遥测类信息对开关量动作判定表进行查询判定。
进一步的,
所述步骤3)中的信息融合的方法是:
设定基于WAMS上传的电气量的检测结果的可信度为0.9,基于SCADA上传的开关量变化情况的检测结果的可信度为0.8;
F的基础概率分配为:
m ( F ) = Σ ∩ X j i = F Π j = 1 M m j ( X j i ) 1 - Σ ∩ X j i = φ Π j = 1 M m j ( X j i )
的基础概率分配为:
m ( F ‾ ) = Σ ∩ X j i = F ‾ Π j = 1 M m j ( X j i ) 1 - Σ ∩ X j i = φ Π j = 1 M m j ( X j i )
其中Xji=F,或j=1,....,M,i=1,2。
进一步的,
所述步骤4)中对信息融合结果进行分析进行扰动检测结果判决的准则为:
本发明实施例提供的基于WAMS的电网大扰动识别方法,相较于现有技术,具有如下有益效果:
1.由于PMU可以提供电气量的相角信息,利用采集到的相角信息,结合幅值信息,能够很容易的实现大扰动是否发生的判定。
2.结合扰动前后幅值和相角所发生的变化情况,把支持向量机算法引入到扰动检测中,可以对大扰动是否发生迅速判断。
3.针对实际电网中,由PMU上传的数据可能会是错误信息,如果对上传的错误数据进行检测,就会得出错误的结论。同时,在目前的电网中PMU测点一般情况下只是安装在220KV及其以上的电压等级的母线和重要线路中,测点较少,电网信息表征地不全面这类问题,本申请采用多源信息融合方法中D-S证据理论方法结合SCADA上传的开关量进行检测,最终判定电网中是否有扰动发生,减少错判和误判的概率。
4扰动检测的方法的算法简便,检测速度比较快,精确度比较高,尤其是利用了PMU提供的精确的相角信息,对扰动是否发生进行了检测,解决了单一大扰动是否发生的判定问题。同时针对上传信息具有一定的错误概率,结合WAMS和SCADA上传的数据,利用数据融合理论对扰动是否真的发生进行验证,解决了由于错误上传信息引起大扰动发生判断结果错误的问题。
附图说明
图1是本发明基于WAMS的电网单一大扰动在线检测方法流程图;
图2是本发明基于WAMS的电网单一大扰动在线检测方法的扰动检测具体流程图;
图3是实施例1中3及9节点保护***图;
图4是实施例1中PMU采集到的幅值的变化;
图5是实施例1中PMU采集到的相角的变化;
图6是实施例2中PMU采集到的幅值的变化;
图7是实施例2中PMU采集到的相角的变化;
图8是实施例3中继电保护线路图;
图9是实施例3中PMU采集到的幅值的变化;
图10是实施例3中PMU采集到的相角的变化。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。
实施例1:短路仿真
以3机9节点***的扰动算例,3机9节点***如图3所示。利用MATLAB软件选取3机9节点***的几种扰动的典型算例作为输入数据进行仿真。在基于支持向量机的算法中继续选择BUS1母线的电压幅值和相角作为扰动检测的监视母。
设置线路Line1发生短路扰动,Bus5母线侧主保护动作,母线Bus4侧保护未动,断路器CB4没有断开,相邻线路line2第二后备保护工作,断路器CB1断开。同时,图4、5由PMU上传的电压幅值和相角的变化情况,此时SCADA上传的信息如表3。采用信息融合的方法对电网中是否发生扰动进行判定得表1。
表1SCADA采集到的信息
基于电气量的检测过程为表2所示。
表2扰动检测过程
检测结果为***在3.71时发生扰动报警,报警显示时间为3.71S。
基于开关量的检测结果为:通过表3开关量信息智能判别查询表,得出的结论为Bus5母线侧主保护,Line2第二后备保护,CB1的保护动作是有效的,电网中有扰动发生。
表3开关量信息智能判别查询表
对两种扰动检测方法的结果,采用多源信息融合理论进行信息融合:
表4信息融合数据
表4融合结果表明:检测结果为3.71秒,电网中确实发生扰动。
实施例2:PMU上传错误的信息
假设从PMU上传的数据是包含一定错误信息,从PMU,SCADA上传的数据如图6、7,得表5,采用信息融合的方法对电网中是否发生扰动进行判定。
表5SCADA采集到的信息
基于电气量的检测过程如表6所示。
表6扰动检测过程
基于电气量的检测结果为***在2.15时发生扰动报警,报警显示时间为2.15S。
基于开关量的检测方法的结果为:在2.15秒内,保护元件没有发生动作,电网中没有扰动发生。
对两种扰动检测方法的结果,采用多源信息融合理论进行信息融合后的结果如表7所示。
表7信息融合数据
融合结果表明:检测结果为2.15秒,电网中没有扰动发生,PMU上传了错误信息。
实施例3:油田电网单一大扰动检测
某油田内的变电站以及输电电压等级比较复杂,某油田电网的电压等级有110kV、66kV和35kV等几个电压等级。由于油田电网的庞大性及复杂性,在对其进行仿真验证前先对某油田电网某变区进行点线式线路简化,如图8给出了某油田的保护线路图。
某火炬变经由双回线为风云变以及星火变供电,风云变下面带北五变,北十变,北十九变,北III-2变,北二十变,北七变,星火变下面带中五变,北十一变,北十七变,中十三变,中九变,中一变,中十七变,北II-4变,其中供给北II-4变的输电线路为备用线,各变电站往下继续带负荷,一般是其他变电站的备用电。
设置在风云变和星火变处安装PMU,对整个油田电网某变区进行监测,通 过对实际电网基础参数的采集,计算得到某油田电网某变区正常运行是的电压数据。
本实施例选取风云变到火炬变甲线的电压幅值和相角作为扰动检测的监测对象。分别对电压幅值和电压相角的数据进行训练,建立扰动检测模型,训练过程如表8所示。
表8扰动数据训练过程
扰动检测模型建立后,为了验证本文所提出的方法对不同类型的扰动都有很好的检测效果,在不同地点做不同扰动的仿真,并对扰动前后的数据进行检测, 验证本方法的有效性。
首先以北十变处为例,对北十变处发生切机扰动时,PMU采集到的电压幅值和相角的变化情况如图9、10所示,此时SCADA上传的信息如表9所示。
表9SCADA采集到的信息
基于电气量的检测过程如表10所示。
表10扰动检测过程
检测结果为***在19:41:07时发生扰动报警,报警显示时间为19:41:07。
基于开关量的检测结果为:通过表3开关量信息智能判别查询表,得出的结论为北十处主保护,风云处主保护,线路风云到火炬远后备保护,断路器CB3、CB4动作有效。
对两种扰动检测方法的结果,采用多源信息融合理论进行信息融合后的结果见表11所示。
表11信息融合数据
融合结果表明:电网中确实发生扰动。
检测结果为:当19:41:07时,所监视线路的电压幅值和电压相角发生突变,同时保护装置的动作时有效的。即电网中确实发生大扰动,检测出发生扰动后***自动报警,并显示扰动开始时间为19:41:07。
通过上述实施例的测试可以看出基于开关量和电气量的多源信息融合的扰动检测器在实际电网的应用中是可以对电网大扰动进行检测。从仿真验证的结果来看,本申请所提出的扰动检测方法对电网扰动检测是有效的、可行的。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

1.基于WAMS的电网单一大扰动在线检测方法,包括以下步骤:
步骤1)、获取信息:
从WAMS***的中实时提取各个监测点可以表征电网运行状态的电气量的相量信息;
从SCADA***提取开关量信息;
所述电气量信息包括电压幅值和电压相角;
所述开关量信息包括开关是否动作和开关电流是否变化至零;
步骤2)、扰动检测:
采用支持向量机的方法进行基于电气量变化的扰动检测方法对电网中是否有扰动进行检测;
基于开关量的检测方法对电网中是否有扰动进行检测;
步骤3)、信息融合:
采用D-S证据理论对步骤2)两种检测方法的检测结果进行信息融合;
步骤4)、诊断决策:
对信息融合结果进行分析,最后判定电网是否有扰动发生。
2.如权利要求1所述的基于WAMS的电网单一大扰动在线检测方法,其特征是:
步骤2)中采用支持向量机的方法进行基于电气量变化的扰动检测方法包括以下步骤:
步骤2.1.1:采用基于小波分析理论中mallat算法对采集到的相量信息进行去噪预处理;
步骤2.1.2:把预处理后得到的数据分为正常运行时的数据,和发生扰动后的数据,输入到支持向量机算法中进行训练,通过训练得到支持向量机扰动检测模型,训练后将数据分为两类:电网正常运行时的信息,判定值设置为1;正常运行以外的信息,判定值设置为-1;
步骤2.1.3:把要检测的相量数据输入到支持向量机扰动检测模型中,判断扰动是否发生,并显示扰动发生时的扰动发生时间,其中,当输入数据在正常运行范围内,判定值输出为1,即电网中无扰动发生;当输入数据不在正常运行范围内,判定值输出为-1,即电网中有扰动发生。
3.如权利要求1所述的基于WAMS的电网单一大扰动在线检测方法,其特征是:
步骤2)中基于开关量的检测方法是,依据遥信类信息和遥测类信息对开关量动作判定表进行查询判定。
4.如权利要求1-3任一权利要求所述的基于WAMS的电网单一大扰动在线检测方法,其特征是:所述步骤3)中的信息融合的方法是:
设定基于WAMS上传的电气量的检测结果的可信度为0.9,基于SCADA上传的开关量变化情况的检测结果的可信度为0.8;
F的基础概率分配为:
m ( F ) = Σ ∩ X j i = F Π j = 1 M m j ( X j i ) 1 - Σ ∩ X j i = φ Π j = 1 M m j ( X j i )
的基础概率分配为:
m ( F ‾ ) = Σ ∩ X j i = F ‾ Π j = 1 M m j ( X j i ) 1 - Σ ∩ X j i = φ Π j = 1 M m j ( X j i )
其中Xji=F,或j=1,....,M,i=1,2。
5.如权利要求4所述的基于WAMS的电网单一大扰动在线检测方法,其特征是:所述步骤4)中对信息融合结果进行分析进行扰动检测结果判决的准则为:
CN201610207363.1A 2016-03-30 2016-03-30 基于wams的电网单一大扰动在线检测方法 Active CN105844542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610207363.1A CN105844542B (zh) 2016-03-30 2016-03-30 基于wams的电网单一大扰动在线检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610207363.1A CN105844542B (zh) 2016-03-30 2016-03-30 基于wams的电网单一大扰动在线检测方法

Publications (2)

Publication Number Publication Date
CN105844542A true CN105844542A (zh) 2016-08-10
CN105844542B CN105844542B (zh) 2020-04-14

Family

ID=56597903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610207363.1A Active CN105844542B (zh) 2016-03-30 2016-03-30 基于wams的电网单一大扰动在线检测方法

Country Status (1)

Country Link
CN (1) CN105844542B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964049A (zh) * 2018-08-24 2018-12-07 国网河北省电力有限公司电力科学研究院 电力***小干扰稳定评估方法及装置
CN112905958A (zh) * 2021-01-27 2021-06-04 南京国电南自电网自动化有限公司 基于测控装置的短时数据窗遥测数据状态辨识方法及***
CN114115191A (zh) * 2021-11-23 2022-03-01 国网冀北电力有限公司电力科学研究院 柔直新能源场站功率控制***的硬件在环测试方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242462A (zh) * 2014-10-08 2014-12-24 中国南方电网有限责任公司 一种基于wams和scada综合数据的电网强迫振荡源定位方法
CN104297637A (zh) * 2014-10-31 2015-01-21 国家电网公司 综合利用电气量和时序信息的电力***故障诊断方法
CN105093033A (zh) * 2015-09-01 2015-11-25 华中电网有限公司 一种基于电网多源信息的故障综合分析***及分析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242462A (zh) * 2014-10-08 2014-12-24 中国南方电网有限责任公司 一种基于wams和scada综合数据的电网强迫振荡源定位方法
CN104297637A (zh) * 2014-10-31 2015-01-21 国家电网公司 综合利用电气量和时序信息的电力***故障诊断方法
CN105093033A (zh) * 2015-09-01 2015-11-25 华中电网有限公司 一种基于电网多源信息的故障综合分析***及分析方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964049A (zh) * 2018-08-24 2018-12-07 国网河北省电力有限公司电力科学研究院 电力***小干扰稳定评估方法及装置
CN112905958A (zh) * 2021-01-27 2021-06-04 南京国电南自电网自动化有限公司 基于测控装置的短时数据窗遥测数据状态辨识方法及***
CN112905958B (zh) * 2021-01-27 2024-04-19 南京国电南自电网自动化有限公司 基于测控装置的短时数据窗遥测数据状态辨识方法及***
CN114115191A (zh) * 2021-11-23 2022-03-01 国网冀北电力有限公司电力科学研究院 柔直新能源场站功率控制***的硬件在环测试方法及装置

Also Published As

Publication number Publication date
CN105844542B (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
CN102035202B (zh) 一种网络重构***
CN104865489B (zh) 架空线路故障定位监测***及方法
CN103812131B (zh) 一种基于多智能体的城市电网孤岛黑启动***及方法
JP2018061425A (ja) 送電網システムの高度妨害管理
CN102142716B (zh) 一种基于三态数据多维协同处理的电网在线故障诊断方法
CN102195354B (zh) 一种大电网失步广域协调控制方法
CN106501656A (zh) 一种配电线路故障波形的在线采集***
CN104753178A (zh) 一种电网故障处理***
CN105245185A (zh) 一种接入配电网的区域分布式光伏故障诊断***及方法
CN103400302A (zh) 一种风电基地连锁故障风险感知预警方法及其***
CN102403798A (zh) 基于gis的智能台区自动化监控方法及***
CN205880119U (zh) 基于零序电流检测技术的配电网故障定位***
CN108983043A (zh) 配电网中低压侧运行监测主站管理***
CN104502753A (zh) 电力故障录波装置联网在线实时分析***及其应用
CN104297616A (zh) 一种基于多***信息交互的10kV配电线路断线侦测方法
CN209676004U (zh) 一种输配电线路安全运行的无线监控探测器及***
CN102255309A (zh) 一种集中式配电网自愈控制方法
CN105930608B (zh) 计及信息不确定性的改进隐性故障检测方法
CN105844542A (zh) 基于wams的电网单一大扰动在线检测方法
Xue Some viewpoints and experiences on wide area measurement systems and wide area control systems
Tang et al. Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies
CN109980782A (zh) 一种输配电线路安全运行的无线监控探测器及***
CN201708587U (zh) 智能数字自动化配网***
CN116169778A (zh) 一种基于配电网异常分析的处理方法及***
CN105184657A (zh) 一种面向电力***的供电风险评估方法及***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201231

Address after: 246001 Lingang Economic Development Zone, Yingjiang District, Anqing City, Anhui Province

Patentee after: Han Primary School

Address before: 163318 College of electrical information engineering, Northeast Petroleum University, Daqing City, Heilongjiang Province

Patentee before: NORTHEAST PETROLEUM University