CN105841629A - 一种文物建筑倾斜、沉降监测的摄影测量监测***及其使用方法 - Google Patents

一种文物建筑倾斜、沉降监测的摄影测量监测***及其使用方法 Download PDF

Info

Publication number
CN105841629A
CN105841629A CN201610349025.1A CN201610349025A CN105841629A CN 105841629 A CN105841629 A CN 105841629A CN 201610349025 A CN201610349025 A CN 201610349025A CN 105841629 A CN105841629 A CN 105841629A
Authority
CN
China
Prior art keywords
monitoring
video camera
inclination
monitoring system
landmark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610349025.1A
Other languages
English (en)
Inventor
李晓武
郭伟民
高凤
付焕平
刘超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI JIANWEI BUILDING RENOVATION ENGINEERING Co Ltd
Original Assignee
SHANGHAI JIANWEI BUILDING RENOVATION ENGINEERING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI JIANWEI BUILDING RENOVATION ENGINEERING Co Ltd filed Critical SHANGHAI JIANWEI BUILDING RENOVATION ENGINEERING Co Ltd
Priority to CN201610349025.1A priority Critical patent/CN105841629A/zh
Publication of CN105841629A publication Critical patent/CN105841629A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)

Abstract

本发明涉及文物监测领域,具体涉及倾斜、沉降检测领域。一种文物建筑倾斜、沉降监测的摄影测量监测***,包括一监测***,其特征在于,所述监测***包括至少一台摄像机,所述至少一台摄像机连接一工控机,所述工控机连接一计算机***;所述摄像机的摄像口朝向一设置在被测建筑物上的检测识别物。本发明通过实时监测设备对文物建筑的倾斜沉降情况进行监测,使遗产保护管理者能够随时查看文物建筑保存状态,并在问题出现的第一时间就能够采取措施保护遗产的安全。

Description

一种文物建筑倾斜、沉降监测的摄影测量监测***及其使用方法
技术领域
本发明涉及文物监测领域,具体涉及倾斜、沉降检测领域。
背景技术
历史建筑在保存过程中,会因为地基沉降,地震、振动、受力构件的损坏等原因而倾斜、沉降。严重情况下,倾斜沉降的发生、发展会导致建筑物的毁坏。
对于历史建筑物倾斜、沉降状况的检测,目前的常用做法是利用全站型电子测距仪人工定期测量其距离、角度和高程来获取被测目标点在不同时段的变形数据。这种做法精度较高,但不能及时发现历史建筑的倾斜沉降状况,测量工作费工、费时、费力。并且文物保护管理机构需要委托专业机构来实施测量工作。测量的结果则需要在测量结束后再利用相关软件分析计算来得出。对于文物保护需要而言,这种监测方法无法实现对文物建筑倾斜、沉降变化状态的及时掌握,不能在发生问题的开始阶段就发现文物建筑面临的风险,实现文物保护的“防患于未然”。
发明内容
本发明提供了一种文物建筑倾斜、沉降监测的摄影测量监测***;
本发明还在于,提供了一种用于文物建筑倾斜、沉降的摄影测量监测方法。以解决上述至少一个问题。
本发明所解决的技术问题可以采用以下技术方案来实现:
一种文物建筑倾斜、沉降监测的摄影测量监测***,包括一监测***,其特征在于,所述监测***包括至少一台摄像机,所述至少一台摄像机连接一工控机,所述工控机连接一计算机***;
所述摄像机的摄像口朝向一设置在被测建筑物上的检测识别物。
本发明通过实时监测设备对文物建筑的倾斜沉降情况进行监测,使遗产保护管理者能够随时查看文物建筑保存状态,并在问题出现的第一时间就能够采取措施保护遗产的安全。测量时不用接触测点,测量过程更加便捷、省力。
所述监测***还包括一支架,所述至少一台摄像机安装在所述支架上部。固定摄像机。所述工控机与所述摄像机安装在同一支架上。简化***。设备简单,仅仅需要一至数台较高分辨率的数值相机及相应的附属配件。
所述工控机内设有一无线信号发射模块,所述计算机***内设有一无线信号接收模块。所述工控机可以通过无线连接所述计算机***实现远程连接,方便用户使用,也可以通过光纤连接。
所述至少一台摄像机采用像素百万以上的的面阵相机。清晰度高,检测效果好。
所述计算机***内还设有一用于警示用户的预警模块。在测得文物建筑倾斜、沉降突然变化时,起到警示,例如在计算机***的显示端调出弹窗,能让用户在第一时间得知。
作为一种方案,所述至少一台摄像机监测文物建筑倾斜沉降状况时设置成连续摄像模式;拍摄完成后,所述至少一台摄像机自动会将图像数据通过数据线反馈给所述工控机缓存;计算机分析***通过无线或光纤网络与工控机连接,并在缓存里读取相关图像数据;通过对图像数据的处理,计算机分析***得到文物建筑的倾斜、沉降状况。图像数据获取迅速,监测频率可根据需要灵活设定;测量图像数据通过物联网技术与计算机分析***远程连接,计算机分析***可以实时获取测量数据进行分析处理;图像数据及测量结果由计算机处理完成,自动化程度高,操作简单,并在设定变形阈值的条件下自动预警;人为因素对测量结果影响小,测量精度高。
优选,所述检测识别物安装在建筑物上作为监测控制点,所述至少一台摄像机安装在支柱上对被测建筑物进行连续拍摄,获取建筑物同一特征部位至少两张同一角度的或不同角度的图像;所述工控机安装在所述支柱上,缓存摄像机拍摄的图像数据;所述计算机***通过无线或光纤网络与工控机远程连接,并由工控机中获得摄像机拍摄的图像数据并进行分析处理,得到监测点的三维坐标,计算后得到变形量;设定相机的拍摄频率,重复拍摄图像,通过计算机图像处理程序,连续摄影测量和数据解析,得到不同周期的建筑物倾斜、沉降数据,获得被测建筑物的倾斜、沉降趋势;给定倾斜、沉降临界阈值,计算机***得出倾斜、沉降变量后与临界阈值进行对比,自动判定是否预警。
所述给定倾斜临界阈值在0.5°~1°之间,沉降临界阈值在5mm~10mm之间。当计算机得出倾斜、沉降变量的超过给定倾斜、沉降临界阈值,即为文物建筑发生较大变动,及时预警。
作为一种方案,摄像机为三台,两台所述摄像机为第一摄像机、第二摄像机、第三摄像机,所述第一摄像机至被所述检测识别物之间为第一直线,所述第二摄像机至被所述检测识别物之间为第二直线,所述第三摄像机至被所述检测识别物之间为第三直线,所述第一直线与所述第二直线之间的夹角角度在0°~180°之间,所述第一直线与所述第三直线之间的夹角角度在0°~180°之间,所述第二直线与所述第三直线之间的夹角角度在0°~180°之间。根据被测建筑物所在地形布置三台摄像机,从而立体的观测到被测建筑物的各个位置的状况,也可以通过计算机***得到更易观测的三维立体图。优选,所述第一直线与所述第二直线之间的夹角角度在119°~121°之间,所述第一直线与所述第三直线之间的夹角角度在119°~121°之间,所述第二直线与所述第三直线之间的夹角角度在119°~121°之间。即三台所述摄像机均匀分布在所述检测识别物的***。
所述监测***还设有一电源***,所述电源***包括一蓄电池、一太阳能电板,所述蓄电池连接所述太阳能电板,所述太阳能电板布置在所述支架上。利用太阳能电板将电力存储到蓄电池之后,通过蓄电池给监测***供电,由于本发明的实时检测性,通过太阳能电板可以节省大量资源,同时省去了重新铺设电线的步骤。
所述太阳能电板设置在所述支架表面,所述支架上设有一凹槽,所述工控机嵌入到所述凹槽内。优化结构,防止工控机影响布置,无需单独设置太阳能电板,只需将其设置在支架表面。
所述支架设有一中空腔,所述蓄电池位于所述中空腔内。优化结构。
一种用于文物建筑倾斜、沉降的摄影测量监测方法包括以下步骤;
步骤一:安装监测点标识;
步骤二:测量被测建筑物的高度,确定摄像机的安装位置;
步骤三:拍摄图像;
步骤四:图像处理;
步骤五:变量分析;
步骤六:变形分析。
所述步骤一中,在被测建筑物上根据测量需要安装适量的监测识别物,作为测量控制点。
所述步骤二中,图像识别摄像机的根据实际需要可设多台同时从不同角度进行监测。
所述步骤三中,图像识别摄像机根据设定的拍摄频率,自动拍摄图像,并将图像缓存在嵌入式工控机中。
所述步骤四中,计算机监测***自动从嵌入式工控机中获取图像数据,解析后获得所测建筑物监测点的三维坐标。
所述步骤五中,计算机监测***将最新的监测数据根据设定的算法,与初始监测数据进行对比,获得各监测点的的变形数据。
所述步骤六中,计算机监测***将不同时期的变形量进行分析对比,获得被测文物建筑的倾斜、沉降趋势。
本发明的检测***具有监测精度高,能够连续监测、自动预警的显著特点。
附图说明
图1为本发明的部分结构示意图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示进一步阐述本发明。
参照图1,一种文物建筑倾斜、沉降监测的摄影测量监测***,包括一监测***,监测***包括至少一台摄像机2,至少一台摄像机2连接一工控机3,工控机3连接一计算机***4;
摄像机的摄像口朝向一设置在被测建筑物上的检测识别物1。
本发明通过实时监测设备对文物建筑的倾斜沉降情况进行监测,使遗产保护管理者能够随时查看文物建筑保存状态,并在问题出现的第一时间就能够采取措施保护遗产的安全。测量时不用接触测点,测量过程更加便捷、省力。
监测***还包括一支架5,至少一台摄像机2安装在支架5上部。固定摄像机。工控机3与摄像机安装在同一支架5上。简化***。设备简单,仅仅需要一至数台较高分辨率的数值相机及相应的附属配件。
工控机3内设有一无线信号发射模块,计算机***4内设有一无线信号接收模块。工控机3可以通过无线连接计算机***4实现远程连接,方便用户使用,也可以通过光纤连接。
至少一台摄像机2采用像素百万以上的的面阵相机。清晰度高,检测效果好。
计算机***4内还设有一用于警示用户的预警模块。在测得文物建筑倾斜、沉降突然变化时,起到警示,例如在计算机***4的显示端调出弹窗,能让用户在第一时间得知。
作为一种方案,至少一台摄像机2监测文物建筑倾斜沉降状况时设置成连续摄像模式;拍摄完成后,至少一台摄像机2自动会将图像数据通过数据线反馈给工控机3缓存;计算机分析***通过无线或光纤网络与工控机3连接,并在缓存里读取相关图像数据;通过对图像数据的处理,计算机分析***得到文物建筑的倾斜、沉降状况。图像数据获取迅速,监测频率可根据需要灵活设定;测量图像数据通过物联网技术与计算机***远程连接,计算机分析***可以实时获取测量数据进行分析处理;图像数据及测量结果由计算机处理完成,自动化程度高,操作简单,并在设定变形阈值的条件下自动预警;人为因素对测量结果影响小,测量精度高。
优选,检测识别物1安装在建筑物上作为监测控制点,至少一台摄像机2安装在支柱上对被测建筑物进行连续拍摄,获取建筑物同一特征部位至少两张同一角度的或不同角度的图像;工控机3安装在支柱上,缓存摄像机拍摄的图像数据;计算机***4通过无线或光纤网络与工控机3远程连接,并由工控机3中获得摄像机拍摄的图像数据并进行分析处理,得到监测点的三维坐标,计算后得到变形量;设定相机的拍摄频率,重复拍摄图像,通过计算机图像处理程序,连续摄影测量和数据解析,得到不同周期的建筑物倾斜、沉降数据,获得被测建筑物的倾斜、沉降趋势;给定倾斜、沉降临界阈值,计算机***4得出倾斜、沉降变量后与临界阈值进行对比,自动判定是否预警。
给定倾斜临界阈值在0.5°~1°之间,沉降临界阈值在5mm~10mm之间。当计算机得出倾斜、沉降变量的超过给定倾斜、沉降临界阈值,即为文物建筑发生较大变动,及时预警。
作为一种方案,摄像机为三台,两台摄像机为第一摄像机、第二摄像机、第三摄像机,第一摄像机至被检测识别物1之间为第一直线,第二摄像机至被检测识别物1之间为第二直线,第三摄像机至被检测识别物1之间为第三直线,第一直线与第二直线之间的夹角角度在0°~180°之间,第一直线与第三直线之间的夹角角度在0°~180°之间,第二直线与第三直线之间的夹角角度在0°~180°之间。根据被测建筑物所在地形布置三台摄像机,从而立体的观测到被测建筑物的各个位置的状况,也可以通过计算机***4得到更易观测的三维立体图。优选,第一直线与第二直线之间的夹角角度在119°~121°之间,第一直线与第三直线之间的夹角角度在119°~121°之间,第二直线与第三直线之间的夹角角度在119°~121°之间。即三台摄像机均匀分布在检测识别物1的***。
监测***还设有一电源***,电源***包括一蓄电池、一太阳能电板,蓄电池连接太阳能电板,太阳能电板布置在支架5上。利用太阳能电板将电力存储到蓄电池之后,通过蓄电池给监测***供电,由于本发明的实时检测性,通过太阳能电板可以节省大量资源,同时省去了重新铺设电线的步骤。
太阳能电板设置在支架5表面,支架5上设有一凹槽,工控机3嵌入到凹槽内。优化结构,防止工控机3影响布置,无需单独设置太阳能电板,只需将其设置在支架5表面。
支架5设有一中空腔,蓄电池位于中空腔内。优化结构。
计算机***内还设有一对比模块,将至少一台摄像机拍摄到的被测建筑与被测建筑周围的建筑数据缓存到工控机内,计算机***读取被测建筑与被测建筑周围的建筑数据后,将被测建筑的数据与被测建筑周围的建筑数据进行对比。借以判断被测建筑沉降或倾斜的原因,判断是否为整片建筑区域的沉降、倾斜,判断是否只为被测建筑下方的区域的沉降、倾斜、也可以判断出沉降、倾斜区域的中心位置。
计算机***内设有一倾斜、沉降模式静态数据库,静态数据库内存储有不同的倾斜、沉降数据及与其相对应的倾斜、沉降数据的数值范围,不同的倾斜、沉降数据及与其相对应的倾斜、沉降数据的数值范围构成判断规则,计算机***依据判断规则对工控机内缓存的的数据进行判断,识别被测建筑为倾斜或沉降,同时记录下被测建筑的倾斜、沉降数据。方便以后检测,观察。
计算机***内设有一动态数据库,计算机***对被测建筑的倾斜、沉降的数据进行记录,并存入动态数据库,动态数据库在使用过程中得以扩展,构成一具有自主学习模式的动态数据库。计算机***依据动态数据库内不断学习得到的一定变化量内的判断规则对工控机内缓存的倾斜、沉降的数据进行分析,区分倾斜或沉降现象,当倾斜、沉降的数据变化量超出原有的判断规则的变化量时,启动预警模块。
一种用于文物建筑倾斜、沉降的摄影测量监测方法包括以下步骤;
步骤一:安装监测点标识;
步骤二:测量被测建筑物的高度,确定摄像机的安装位置;
步骤三:拍摄图像;
步骤四:图像处理;
步骤五:变量分析;
步骤六:变形分析。
步骤一中,在被测建筑物上根据测量需要安装适量的监测识别物,作为测量控制点。
步骤二中,图像识别摄像机的根据实际需要可设多台同时从不同角度进行监测。
步骤三中,图像识别摄像机根据设定的拍摄频率,自动拍摄图像,并将图像缓存在嵌入式工控机3中。
步骤四中,计算机监测***自动从嵌入式工控机3中获取图像数据,解析后获得所测建筑物监测点的三维坐标。
步骤五中,计算机监测***将最新的监测数据根据设定的算法,与初始监测数据进行对比,获得各监测点的的变形数据。
步骤六中,计算机监测***将不同时期的变形量进行分析对比,获得被测文物建筑的倾斜、沉降趋势。
本发明的检测***具有监测精度高,能够连续监测、自动预警的显著特点。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

1.一种文物建筑倾斜、沉降监测的摄影测量监测***,包括一监测***,其特征在于,所述监测***包括至少一台摄像机,所述至少一台摄像机连接一工控机,所述工控机连接一计算机***;
所述摄像机的摄像口朝向一设置在被测建筑物上的检测识别物。
2.根据权利要求1所述的一种文物建筑倾斜、沉降监测的摄影测量监测***,其特征在于:所述监测***还包括一支架,所述至少一台摄像机安装在所述支架上部,所述工控机与所述摄像机安装在同一支架上。
3.根据权利要求1所述的一种文物建筑倾斜、沉降监测的摄影测量监测***,其特征在于:所述至少一台摄像机采用像素百万以上的的面阵相机。
4.根据权利要求1所述的一种文物建筑倾斜、沉降监测的摄影测量监测***,其特征在于:所述计算机***内还设有一用于警示用户的预警模块。
5.根据权利要求1所述的一种文物建筑倾斜、沉降监测的摄影测量监测***,其特征在于:所述检测识别物安装在建筑物上作为监测控制点,所述至少一台摄像机安装在支柱上对被测建筑物进行连续拍摄,获取建筑物同一特征部位至少两张同一角度的或不同角度的图像;所述工控机安装在所述支柱上,缓存摄像机拍摄的图像数据;所述计算机***通过无线或光纤网络与工控机远程连接,并由工控机中获得摄像机拍摄的图像数据并进行分析处理,得到监测点的三维坐标,计算后得到变形量;设定相机的拍摄频率,重复拍摄图像,通过计算机图像处理程序,连续摄影测量和数据解析,得到不同周期的建筑物倾斜、沉降数据,获得被测建筑物的倾斜、沉降趋势;给定倾斜、沉降临界阈值,计算机***得出倾斜、沉降变量后与临界阈值进行对比,自动判定是否预警。
6.根据权利要求5所述的一种文物建筑倾斜、沉降监测的摄影测量监测***,其特征在于:所述给定倾斜临界阈值在0.5°~1°之间,沉降临界阈值在5mm~10mm之间。
7.根据权利要求1所述的一种文物建筑倾斜、沉降监测的摄影测量监测***,其特征在于:摄像机为三台,两台所述摄像机为第一摄像机、第二摄像机、第三摄像机,所述第一摄像机至被所述检测识别物之间为第一直线,所述第二摄像机至被所述检测识别物之间为第二直线,所述第三摄像机至被所述检测识别物之间为第三直线,所述第一直线与所述第二直线之间的夹角角度在0°~180°之间,所述第一直线与所述第三直线之间的夹角角度在0°~180°之间,所述第二直线与所述第三直线之间的夹角角度在0°~180°之间。
8.根据权利要求1所述的一种文物建筑倾斜、沉降监测的摄影测量监测***,其特征在于:所述监测***还设有一电源***,所述电源***包括一蓄电池、一太阳能电板,所述蓄电池连接所述太阳能电板,所述太阳能电板布置在所述支架上;
所述太阳能电板设置在所述支架表面,所述支架上设有一凹槽,所述工控机嵌入到所述凹槽内;
所述支架设有一中空腔,所述蓄电池位于所述中空腔内。
9.一种用于文物建筑倾斜、沉降的摄影测量监测方法包括以下步骤;
步骤一:安装监测点标识;
步骤二:测量被测建筑物的高度,确定摄像机的安装位置;
步骤三:拍摄图像;
步骤四:图像处理;
步骤五:变量分析;
步骤六:变形分析。
10.根据权利要求9所述的一种用于文物建筑倾斜、沉降的摄影测量监测方法,其特征在于:所述步骤一中,在被测建筑物上根据测量需要安装适量的监测识别物,作为测量控制点;
所述步骤二中,图像识别摄像机的根据实际需要可设多台同时从不同角度进行监测;
所述步骤三中,图像识别摄像机根据设定的拍摄频率,自动拍摄图像,并将图像缓存在嵌入式工控机中;
所述步骤四中,计算机监测***自动从嵌入式工控机中获取图像数据,解析后获得所测建筑物监测点的三维坐标;
所述步骤五中,计算机监测***将最新的监测数据根据设定的算法,与初始监测数据进行对比,获得各监测点的的变形数据;
所述步骤六中,计算机监测***将不同时期的变形量进行分析对比,获得被测文物建筑的倾斜、沉降趋势。
CN201610349025.1A 2016-05-24 2016-05-24 一种文物建筑倾斜、沉降监测的摄影测量监测***及其使用方法 Pending CN105841629A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610349025.1A CN105841629A (zh) 2016-05-24 2016-05-24 一种文物建筑倾斜、沉降监测的摄影测量监测***及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610349025.1A CN105841629A (zh) 2016-05-24 2016-05-24 一种文物建筑倾斜、沉降监测的摄影测量监测***及其使用方法

Publications (1)

Publication Number Publication Date
CN105841629A true CN105841629A (zh) 2016-08-10

Family

ID=56594050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610349025.1A Pending CN105841629A (zh) 2016-05-24 2016-05-24 一种文物建筑倾斜、沉降监测的摄影测量监测***及其使用方法

Country Status (1)

Country Link
CN (1) CN105841629A (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106056863A (zh) * 2016-08-16 2016-10-26 上海建为历保工程科技股份有限公司 基于物联网的古塔监测预警***
CN106482646A (zh) * 2016-10-10 2017-03-08 河海大学 基于单反相机测量目标物宽度的方法
CN106949879A (zh) * 2017-02-27 2017-07-14 上海建为历保科技股份有限公司 基于摄影测量原理的物联网建筑三维实时监测分析方法
CN107101621A (zh) * 2017-03-20 2017-08-29 广州珠江工程建设监理有限公司 一种超高层建筑工程测量的监理控制方法
CN107101610A (zh) * 2017-05-25 2017-08-29 公安部四川消防研究所 可用于建筑结构形变监测的位移监测***
CN107289916A (zh) * 2017-06-30 2017-10-24 公安部四川消防研究所 一种在火灾时利用激光定位监测建筑结构变形的方法
CN109163698A (zh) * 2018-08-06 2019-01-08 百度在线网络技术(北京)有限公司 建筑物沉降测量方法、装置及存储介质
CN109726936A (zh) * 2019-01-24 2019-05-07 辽宁工业大学 一种用于倾斜砖石古塔纠偏的监视方法
CN109781009A (zh) * 2019-01-11 2019-05-21 杨润琴 居民楼数据报警机构
CN110258673A (zh) * 2019-07-20 2019-09-20 东莞市建安桩基础工程有限公司 一种建筑地基基础沉降监测***
CN110823175A (zh) * 2019-11-07 2020-02-21 河海大学 一种基于多点逆向识别技术的位移高频观测装置及方法
CN111256654A (zh) * 2020-03-25 2020-06-09 中国华能集团清洁能源技术研究院有限公司 一种风机基础沉降观测***及方法
CN111322988A (zh) * 2020-03-12 2020-06-23 黄成驰 一种基于物联网平台的通信铁塔远程监控***及方法
CN111501718A (zh) * 2020-04-21 2020-08-07 华侨大学 一种适用于无人机的建筑物地基沉降监测预警装置
CN111504260A (zh) * 2019-01-11 2020-08-07 杨润琴 居民楼数据报警方法
CN112017180A (zh) * 2020-10-06 2020-12-01 广州云莫凡信息科技有限公司 一种基于大数据的建筑物沉降测量方法、***及存储介质
CN114543875A (zh) * 2022-01-13 2022-05-27 中国民用航空飞行学院 一种北斗抗干扰卫星导航设备检测***
CN116697922A (zh) * 2023-08-04 2023-09-05 沂水华辰房地产测绘有限公司 一种基于大数据的工程测量用监测***及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657003A (en) * 1996-02-26 1997-08-12 Fuentes; Alfredo Structure movement monitoring and emergency alarm system
CN201757642U (zh) * 2010-07-29 2011-03-09 同济大学 一种基于数字照相技术的变形远程监控***
CN202793376U (zh) * 2012-07-16 2013-03-13 兰海青 基于视觉的物体倾斜位移沉降变形监测***
CN103821126A (zh) * 2014-02-12 2014-05-28 广州市恒盛建设工程有限公司 一种基坑三维变形的监测方法
CN103940356A (zh) * 2014-02-27 2014-07-23 山东交通学院 一种基于三维激光扫描技术的建筑物整体变形监测方法
CN104697495A (zh) * 2015-03-03 2015-06-10 江西飞尚科技有限公司 一种用于建筑物施工及运营期沉降和收敛的在线监测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657003A (en) * 1996-02-26 1997-08-12 Fuentes; Alfredo Structure movement monitoring and emergency alarm system
CN201757642U (zh) * 2010-07-29 2011-03-09 同济大学 一种基于数字照相技术的变形远程监控***
CN202793376U (zh) * 2012-07-16 2013-03-13 兰海青 基于视觉的物体倾斜位移沉降变形监测***
CN103821126A (zh) * 2014-02-12 2014-05-28 广州市恒盛建设工程有限公司 一种基坑三维变形的监测方法
CN103940356A (zh) * 2014-02-27 2014-07-23 山东交通学院 一种基于三维激光扫描技术的建筑物整体变形监测方法
CN104697495A (zh) * 2015-03-03 2015-06-10 江西飞尚科技有限公司 一种用于建筑物施工及运营期沉降和收敛的在线监测方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106056863B (zh) * 2016-08-16 2019-03-08 上海建为历保科技股份有限公司 基于物联网的古塔监测预警***
CN106056863A (zh) * 2016-08-16 2016-10-26 上海建为历保工程科技股份有限公司 基于物联网的古塔监测预警***
CN106482646A (zh) * 2016-10-10 2017-03-08 河海大学 基于单反相机测量目标物宽度的方法
CN106482646B (zh) * 2016-10-10 2018-12-28 河海大学 基于单反相机测量目标物宽度的方法
CN106949879B (zh) * 2017-02-27 2019-05-14 上海建为历保科技股份有限公司 基于摄影测量原理的物联网建筑三维实时监测分析方法
CN106949879A (zh) * 2017-02-27 2017-07-14 上海建为历保科技股份有限公司 基于摄影测量原理的物联网建筑三维实时监测分析方法
CN107101621A (zh) * 2017-03-20 2017-08-29 广州珠江工程建设监理有限公司 一种超高层建筑工程测量的监理控制方法
CN107101610A (zh) * 2017-05-25 2017-08-29 公安部四川消防研究所 可用于建筑结构形变监测的位移监测***
CN107289916A (zh) * 2017-06-30 2017-10-24 公安部四川消防研究所 一种在火灾时利用激光定位监测建筑结构变形的方法
CN109163698A (zh) * 2018-08-06 2019-01-08 百度在线网络技术(北京)有限公司 建筑物沉降测量方法、装置及存储介质
CN111504260A (zh) * 2019-01-11 2020-08-07 杨润琴 居民楼数据报警方法
CN109781009A (zh) * 2019-01-11 2019-05-21 杨润琴 居民楼数据报警机构
CN109726936A (zh) * 2019-01-24 2019-05-07 辽宁工业大学 一种用于倾斜砖石古塔纠偏的监视方法
CN109726936B (zh) * 2019-01-24 2020-06-30 辽宁工业大学 一种用于倾斜砖石古塔纠偏的监视方法
CN110258673A (zh) * 2019-07-20 2019-09-20 东莞市建安桩基础工程有限公司 一种建筑地基基础沉降监测***
CN110258673B (zh) * 2019-07-20 2020-12-08 东莞市建安桩基础工程有限公司 一种建筑地基基础沉降监测***
CN110823175A (zh) * 2019-11-07 2020-02-21 河海大学 一种基于多点逆向识别技术的位移高频观测装置及方法
CN111322988A (zh) * 2020-03-12 2020-06-23 黄成驰 一种基于物联网平台的通信铁塔远程监控***及方法
CN111256654A (zh) * 2020-03-25 2020-06-09 中国华能集团清洁能源技术研究院有限公司 一种风机基础沉降观测***及方法
CN111501718A (zh) * 2020-04-21 2020-08-07 华侨大学 一种适用于无人机的建筑物地基沉降监测预警装置
CN112017180A (zh) * 2020-10-06 2020-12-01 广州云莫凡信息科技有限公司 一种基于大数据的建筑物沉降测量方法、***及存储介质
CN112017180B (zh) * 2020-10-06 2021-10-26 上海湘建南粤项目管理有限公司 一种基于大数据的建筑物沉降测量方法、***及存储介质
CN114543875A (zh) * 2022-01-13 2022-05-27 中国民用航空飞行学院 一种北斗抗干扰卫星导航设备检测***
CN116697922A (zh) * 2023-08-04 2023-09-05 沂水华辰房地产测绘有限公司 一种基于大数据的工程测量用监测***及其使用方法
CN116697922B (zh) * 2023-08-04 2023-12-12 沂水华辰房地产测绘有限公司 一种基于大数据的工程测量用监测***及其使用方法

Similar Documents

Publication Publication Date Title
CN105841629A (zh) 一种文物建筑倾斜、沉降监测的摄影测量监测***及其使用方法
CN105136115B (zh) 一种自动测量隧道断面变形的方法与装置
CN105865365B (zh) 土体变形分布式光纤监测标定与试验方法及其装置
CN100394147C (zh) 数字视频水位计
JP6028119B1 (ja) 建物健康管理装置及びこの建物健康管理装置を用いた建物健康管理方法
CN106895788B (zh) 一种水库坝体变形自动监测方法和***
WO2008034144A2 (en) Manhole modeler
CN105865349B (zh) 一种大型建筑物位移监测方法
CN111608731B (zh) 一种盾构隧道安全状态监测预警装置及其监测预警方法
CN106949879A (zh) 基于摄影测量原理的物联网建筑三维实时监测分析方法
CN103940344B (zh) 一种高精度远程位移传感器
CN111174961A (zh) 一种基于模态分析的索力光学测量方法及其测量***
CN105741278A (zh) 一种基于计算机视觉的拉索分布应力在线监测方法
CN109211137A (zh) 一种快速识别隧道掌子面岩性的装置及方法
JPH0765152A (ja) 監視装置および監視方法
KR100935898B1 (ko) 자동 변위 검출 장치 및 방법 그리고 이를 이용한 사면 유지 관리 시스템 및 방법
Belloni et al. Tack project: tunnel and bridge automatic crack monitoring using deep learning and photogrammetry
CN102121999B (zh) 使用光传感器的无接触落石检测方法
JP7285174B2 (ja) 壁面のひび割れ測定機および測定方法
CN114910011A (zh) 深基坑开挖深度自动监测装置以及***
CN104931021B (zh) 一种基于近景摄影测量的裂缝多参数观测装置
CN106153004A (zh) 一种建筑物倾斜检测方法和装置
KR102036881B1 (ko) 지표변위 열화상 계측장비
CN112101450A (zh) 一种基于深度学习和多传感融合的无接触测振设备和方法
CN108444663A (zh) 一种桥梁振幅实时监测仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160810