CN105826413A - 一种基于复合衬底的石墨烯光电探测器 - Google Patents

一种基于复合衬底的石墨烯光电探测器 Download PDF

Info

Publication number
CN105826413A
CN105826413A CN201610393938.3A CN201610393938A CN105826413A CN 105826413 A CN105826413 A CN 105826413A CN 201610393938 A CN201610393938 A CN 201610393938A CN 105826413 A CN105826413 A CN 105826413A
Authority
CN
China
Prior art keywords
graphene
layer
response
insulating medium
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610393938.3A
Other languages
English (en)
Inventor
丁荣
倪振华
梁铮
梁贺君
郭喜涛
王文辉
严春伟
孟凡
聂禄君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIZHOU SUNANO ENERGY CO Ltd
Original Assignee
TAIZHOU SUNANO ENERGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIZHOU SUNANO ENERGY CO Ltd filed Critical TAIZHOU SUNANO ENERGY CO Ltd
Priority to CN201610393938.3A priority Critical patent/CN105826413A/zh
Publication of CN105826413A publication Critical patent/CN105826413A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于复合衬底的石墨烯光电探测器,源极和漏极连接外部电源,单层石墨烯电子传输层设置在绝缘介质层之上;绝缘介质层下方设置栅电极层;所述漏极和栅电极层通过栅电源连接;所述栅电极层采用电导率为1‑10Ωcm的轻掺杂硅。该探测器在光功率<1nW的情况下,响应度可达1000A W‑1,且响应时间短至400ns,响应波长为400‑1200nm。该探测器可实现在弱光信号下的快速光电响应,成功地填补了石墨烯光电器件在超高速与超灵敏度响应二者之间的空白,且与现今成熟的硅工艺完全兼容,在高速弱光探测领域将拥有巨大的前景。

Description

一种基于复合衬底的石墨烯光电探测器
技术领域
本发明涉及光电探测技术领域,具体而言,涉及一种基于石墨烯薄膜的光电探测器。
背景技术
2004年,石墨烯由曼彻斯特大学Andre Geim教授领导的研究小组最先发现。它是目前已知最薄的一种材料(只有单个原子层厚,~0.34nm),并且具有极高的比表面积(2630m2g-1)、超强的导电性(本征迁移率200,000cm2v-1s-1,是硅的100倍)、导热性(~5300Wm-1K-1,是铜铝等金属的数十倍)、优良的透光性能(可见光97.7%的透光率)、机械强度(杨氏模量~1.0TPa,是钢的100倍)和柔韧性(可拉伸折叠)等优点,已经引起了科学及工业界的浓厚兴趣。石墨烯在多个领域都有极其广泛的应用,是未来纳米器件的理想材料,如可用于制备高性能场效应晶体管等微电子器件,太阳能电池、光电探测器等光电器件等。
近年来,基于不同结构设计和理论机制的石墨烯光电探测器不断被开发,且在不同应用方向显示出了优异的性能。在超快速光探测一方,受益于石墨烯优异的电子传输性能(高迁移率和超快的载流子电动力学),本征石墨烯的光电二极管显示了飞秒级的光响应速率;而以超灵敏探测而言,采用photo-gating机制,杂化或异质结石墨烯光电导探测器表现出超高的光增益(108)。然而,这两种机制之间存在的巨大差距,就像一枚硬币的两面:飞秒级的探测速率却仅有mA/W级别的响应度;皮瓦级别的光信号检测,其探测的响应速率却只在毫秒,乃至到秒级别。而许多的应用领域,如光学定位、遥感、生物医学成像、都亟需快速和高灵敏度兼具的光电探测性能。这二者之间的差距受限于当前的理论机制。快速光探测依赖于本征石墨烯的高载流子迁移率,却同时受到石墨烯无带隙和电子空穴对分离效率较低的局限;而采用photo-gating机制的石墨烯光电探测器,其瓶颈则是在毫秒、甚至秒以上缓慢的电荷转移和/或电荷捕获过程,导致响应速率低。因此,研发出兼具快速响应和高灵敏度的石墨烯光电探测器,同时满足各个领域的应用需求变得极为紧迫,也具有巨大的应用前景。
发明内容
针对以上问题,本发明提供一种基于复合衬底的石墨烯光电探测器,与现今的硅技术完全兼容,而且相比于以往本征或杂化的石墨烯光电探测器,同时兼具了快速和高灵敏度的光电响应,且宽波段响应,成功地填补了响应速率和灵敏度二者性能之间的巨大鸿沟。
一种基于复合衬底的石墨烯光电探测器,其中源极和漏极连接外部电源,单层石墨烯电子传输层设置在绝缘介质层之上;绝缘介质层下方设置栅电极层;所述漏极和栅电极层通过栅电源连接;所述栅电极层采用电导率为1-10Ωcm的轻掺杂硅。
优选地,源极和漏极采用由50nm厚的金层与5nm厚的镍层组成的复合电极。
优选地,绝缘介质层选用50-350nm的SiO2,Al2O3或HfO2
优选地,所述栅电极层采用电导率为5-8Ωcm的轻掺杂硅。
优选地,所述石墨烯光电探测器响应波长为200-1200nm,光电响应度达到1000A/W,响应时间最快达400ns。
本发明通过采用轻掺杂硅-绝缘介质层界面的photo-gating机制,其制备得到的石墨烯光电探测器响应时间快至400ns,同时在低光功率下,光电响应度达到1000A W-1。与传统的石墨烯场效应晶体管以及杂化的石墨烯光电探测器,该石墨烯光电探测器同时实现了超快光响应和很高的光电探测效率。此外,该探测器还显示从可见至近红外的宽波段响应。更重要的是,该石墨烯光电探测器不需要复杂的制备工艺,且与现今成熟的硅工艺完全匹配,在快速弱光探测领域有重要的应用前景。
附图说明
图1为本发明的石墨烯光电探测器结构示意图;
图2为实施例1在不同功率514nm激光下的光响应图;
图3为实施例1在不同波长激光下的光响应图;
图4为实施例1在不同功率514nm激光下的光探测率图;
图5为实施例1在不同功率514nm激光下的光探测率;
其中,1-漏极,2-石墨烯电子传输层,3-源极,4-绝缘介质层,5-半导体纳米结构层,6-栅电极层,7-栅电源,8-外部电源,9-电流表,10-电子,11-空穴,12-激光。
具体实施方式
如图1所示,一种基于复合衬底的石墨烯光电探测器,其中源极和漏极连接外部电源,单层石墨烯电子传输层设置在绝缘介质层之上;绝缘介质层下方设置栅电极层;所述漏极和栅电极层通过栅电源连接;所述栅电极层采用电导率为1-10Ωcm的轻掺杂硅。源极和漏极采用由50nm厚的金层与5nm厚的镍层组成的复合电极。绝缘介质层选用50-350nm的SiO2,Al2O3或HfO2;优选采用300nm的SiO2
利用轻掺杂硅-绝缘介质层界面存在的表面态,在界面处形成一个内建电场,方向由界面指向硅内部。当光入射在该探测器上时,硅衬底吸收光子,产生光生电子和空穴。在界面处内建电场的作用下,并由于轻掺杂硅中长寿命的光生载流子,光生电子将在硅-氧界面处堆积。这些堆积的光生电子充当了一个额外的负的栅电压,降低了石墨烯的费米面,调制了石墨烯通道中的载流子浓度,从而产生高的光电流。
为便于对本发明的目的、形状、构造装置特征及其功效,做更进一步的认识与了解,兹举实例配合附图,来详细说明本发明实施例的结构。
实施例1
一种基于复合衬底的石墨烯光电探测器,该探测器主要结构包括单层石墨烯(撕胶带法制备);300nm二氧化硅作为绝缘介质层,通过热蒸镀沉积;导电率为5-8Ωcm的轻掺杂硅作为栅电极;其中轻掺杂硅和二氧化硅分别作为栅电极和绝缘层,50nm/5nm的金/镍作为源极和漏极,通过电子束光刻和热蒸镀进行沉积。
在实际应用中,首先利用轻掺杂硅-二氧化硅存在的界面态,在界面形成一个内建电场,方向由界面指向硅内部。当光入射在该石墨烯探测器上时,硅衬底吸收光子,产生光生载流子。由于界面处内建电场的存在以及轻掺杂硅中长寿命的光生载流子,光生电子在硅-氧界面堆积。这些堆积的光生电子充当了一个额外的负的栅电压,降低了石墨烯的费米面,调制了石墨烯通道中的载流子浓度,从而产生高的光电流。
如图2-5所示,该实施例的基于复合衬底的石墨烯光电探测器在不同功率的光照射下都有较高的光电响应,响应波长范围在200-1200nm之间。在低光功率下(1nW以下),光电响应度最高可达到1000A W-1。另外,器件响应时间快至400ns。
实施例2
一种基于复合衬底的石墨烯光电探测器,该探测器主要结构包括单层石墨烯(化学气相沉积法制备);280nm Al2O3作为绝缘介质层,通过热蒸镀沉积;导电率为1-10Ωcm的轻掺杂硅作为栅电极;其中轻掺杂硅和二氧化硅分别作为栅电极和绝缘层,50nm/5nm的金/镍作为源极和漏极,通过电子束光刻和热蒸镀进行沉积。经测试,该实施例的基于复合衬底的石墨烯光电探测器在不同功率的光照射下都有较高的光电响应,响应波长范围在500-1200nm之间。在低光功率下(1nW以下),光电响应度最高可达到500A W-1。另外,器件响应时间快至880ns。
以上对本发明所提供的一种基于复合衬底的石墨烯光电探测器进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (5)

1.一种基于复合衬底的石墨烯光电探测器,其特征在于,源极和漏极连接外部电源,单层石墨烯电子传输层设置在绝缘介质层之上;绝缘介质层下方设置栅电极层;所述漏极和栅电极层通过栅电源连接;所述栅电极层采用电导率为1-10Ωcm的轻掺杂硅。
2.根据权利要求1所述的石墨烯光电探测器,其特征在于,源极和漏极采用由50nm厚的金层与5nm厚的镍层组成的复合电极。
3.根据权利要求1所述的石墨烯光电探测器,其特征在于,绝缘介质层选用50-350nm的SiO2,Al2O3或HfO2
4.根据权利要求1-3所述的石墨烯光电探测器,其特征在于,所述栅电极层采用电导率为5-8Ωcm的轻掺杂硅。
5.根据权利要求1-4所述的一种石墨烯光电探测器,其特征在于,所述石墨烯光电探测器响应波长为200-1200nm,光电响应度达到1000A/W,响应时间最快达400ns。
CN201610393938.3A 2016-06-03 2016-06-03 一种基于复合衬底的石墨烯光电探测器 Pending CN105826413A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610393938.3A CN105826413A (zh) 2016-06-03 2016-06-03 一种基于复合衬底的石墨烯光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610393938.3A CN105826413A (zh) 2016-06-03 2016-06-03 一种基于复合衬底的石墨烯光电探测器

Publications (1)

Publication Number Publication Date
CN105826413A true CN105826413A (zh) 2016-08-03

Family

ID=56532693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610393938.3A Pending CN105826413A (zh) 2016-06-03 2016-06-03 一种基于复合衬底的石墨烯光电探测器

Country Status (1)

Country Link
CN (1) CN105826413A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684199A (zh) * 2017-02-13 2017-05-17 中北大学 金属微纳超结构表面等离激元超快探测结构
CN108281483A (zh) * 2018-01-29 2018-07-13 杭州紫元科技有限公司 一种基于二维半导体薄膜/绝缘层/半导体结构的电荷耦合器件
CN112420768A (zh) * 2020-11-09 2021-02-26 电子科技大学 一种可切换红外光电记忆与探测功能的晶体管及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042650A1 (en) * 2009-08-24 2011-02-24 International Business Machines Corporation Single and few-layer graphene based photodetecting devices
CN102185004A (zh) * 2011-04-02 2011-09-14 复旦大学 具有光电导效应的石墨烯场效应晶体管以及红外探测器
CN105280749A (zh) * 2015-11-24 2016-01-27 中国科学院重庆绿色智能技术研究院 基于石墨烯薄膜的光电探测器及其制备方法
CN205680693U (zh) * 2016-06-03 2016-11-09 泰州巨纳新能源有限公司 一种基于复合衬底的石墨烯光电探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042650A1 (en) * 2009-08-24 2011-02-24 International Business Machines Corporation Single and few-layer graphene based photodetecting devices
CN102185004A (zh) * 2011-04-02 2011-09-14 复旦大学 具有光电导效应的石墨烯场效应晶体管以及红外探测器
CN105280749A (zh) * 2015-11-24 2016-01-27 中国科学院重庆绿色智能技术研究院 基于石墨烯薄膜的光电探测器及其制备方法
CN205680693U (zh) * 2016-06-03 2016-11-09 泰州巨纳新能源有限公司 一种基于复合衬底的石墨烯光电探测器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684199A (zh) * 2017-02-13 2017-05-17 中北大学 金属微纳超结构表面等离激元超快探测结构
CN108281483A (zh) * 2018-01-29 2018-07-13 杭州紫元科技有限公司 一种基于二维半导体薄膜/绝缘层/半导体结构的电荷耦合器件
CN112420768A (zh) * 2020-11-09 2021-02-26 电子科技大学 一种可切换红外光电记忆与探测功能的晶体管及制备方法

Similar Documents

Publication Publication Date Title
Long et al. Progress, challenges, and opportunities for 2D material based photodetectors
Ezhilmaran et al. Recent developments in the photodetector applications of Schottky diodes based on 2D materials
Wang et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers
Wang et al. Design strategies for two‐dimensional material photodetectors to enhance device performance
Li et al. High detectivity graphene‐silicon heterojunction photodetector
Liu et al. Band alignment engineering in two‐dimensional transition metal dichalcogenide‐based heterostructures for photodetectors
Ye et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure
Fang et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire
Das et al. Single Si nanowire (diameter≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity
CN102201483B (zh) 硅纳米线光栅谐振增强型光电探测器及其制作方法
Sun et al. Recent advances in two‐dimensional heterostructures: From band alignment engineering to advanced optoelectronic applications
Liu et al. Bi 2 O 2 Se/BP van der Waals heterojunction for high performance broadband photodetector
TWI220790B (en) Infrared photodetector
CN105895729A (zh) 石墨烯光电探测器
Mukherjee et al. Enhanced quantum efficiency in vertical mixed-thickness n-ReS2/p-Si heterojunction photodiodes
Mondal et al. A review on device architecture engineering on various 2-D materials toward high-performance photodetectors
CN105826413A (zh) 一种基于复合衬底的石墨烯光电探测器
CN108389874B (zh) 一种局域场增强型宽光谱高响应的光电探测器
Liu et al. Fowler-Nordheim tunneling mechanism for performance improvement in graphene 2D/GaN 3D heterojunction ultraviolet photodetector
Ba et al. Advances in solution-processed quantum dots based hybrid structures for infrared photodetector
Park et al. Plasmonic nanoparticles on graphene absorber for broadband high responsivity 2D/3D photodiode
CN205680693U (zh) 一种基于复合衬底的石墨烯光电探测器
Zhang et al. Vertical Schottky ultraviolet photodetector based on graphene and top–down fabricated GaN nanorod arrays
Yue et al. High performance DUV-visible 4H-SiC-based multilayered SnS 2 dual-mode photodetectors
Gupta et al. Photodetection properties of graphene/silicon van der Waals heterojunction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160803

RJ01 Rejection of invention patent application after publication