CN105807254B - 一种基于移动设备自身信息的无线定位方法 - Google Patents

一种基于移动设备自身信息的无线定位方法 Download PDF

Info

Publication number
CN105807254B
CN105807254B CN201610120483.8A CN201610120483A CN105807254B CN 105807254 B CN105807254 B CN 105807254B CN 201610120483 A CN201610120483 A CN 201610120483A CN 105807254 B CN105807254 B CN 105807254B
Authority
CN
China
Prior art keywords
mobile device
moment
anchor point
distance
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610120483.8A
Other languages
English (en)
Other versions
CN105807254A (zh
Inventor
王田
王文华
陈永红
田晖
蔡奕侨
王成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201610120483.8A priority Critical patent/CN105807254B/zh
Publication of CN105807254A publication Critical patent/CN105807254A/zh
Application granted granted Critical
Publication of CN105807254B publication Critical patent/CN105807254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明涉及一种基于移动设备自身信息的无线定位方法,以已定位的移动设备作为全部锚点或者部分锚点,对待定位的移动设备进行测距定位。将已经定位出的移动设备作为“移动锚点”来定位其他移动设备。由于已定位的用户均能充当“移动锚点”,大大增加了环境中锚点的数量,防止了因固定锚点数量过少而不能定位等情况的出现,大大提高移动设备的定位率。本发明引入扩展了卡尔曼滤波,降低环境中多径效应和测距误差等的影响,进一步提高定位精度。本发明只需要一般的定位节点即可,对定位硬件无过多的要求,并且算法的计算复杂度较低。与传统定位方案相比,克服了了节点的硬件要求较高、定位算法过于复杂、增加了定位成本和计算复杂度等不足。

Description

一种基于移动设备自身信息的无线定位方法
技术领域
本发明涉及无线定位技术领域,更具体地说,涉及一种基于移动设备自身信息的无线定位方法。
背景技术
近年来,无线定位技术在诸如紧急救援、移动电子商务、军事、工业、无线传感器等领域的应用越来越广泛。在这些领域中,对移动中的用户进行定位是一个重要的应用。例如,在香港每年建筑业中的安全事故占安全事故的五分之一。安全管理***若能够不断地监控这些移动着的工人的位置并在其接近危险区域时发出警告信息,这将极大地减少安全事故的发生。这对传统的定位技术提出了更高的要求,一方面对于移动中的用户只能通过无线定位的方式,然而无线定位的信号不稳定、易受环境干扰,导致定位精度不高。另一方面,在室内等环境中,传统GPS信号不可到达,由于障碍物遮挡等原因,全球定位***GPS表现出了很大缺陷,特别是在室内环境中,其对移动设备的定位率和定位精度已经远远不能满足人们的需求。固定锚点的信号也易受障碍物遮挡,导致传统定位方法失效。
无线定位主要分为基于测距和非基于测距两种方法。
由于非基于测距方法的定位精度较低,不能满足需要,因此基于测距的定位方法成为人们研究的重点。
传统的基于测距的定位方法的主要过程是通过测量信号从移动设备到位置已知的固定锚点的信号到达时间(TOA)、信号到达时间差(TDOA)、信号到达角度(AOA)以及信号强度指示(RSSI)等信息得到移动设备和锚点之间的距离或角度信息,再通过三边定位法、最小二乘法等定位算法得到移动设备的位置信息。
但是这种方法存在如下不足:
一是当环境中固定锚点较少时很难实现对用户的定位,例如障碍物遮挡了锚点的信号,移动设备无法同时获取3个以上锚点的信号则无法用传统定位方法定位;
二是在室内环境中存在诸如多径效应,无线信号干扰等的影响使得定位精度较低。因此传统对移动设备进行定位的方法存在许多弊端。
发明内容
本发明的目的在于克服现有技术的不足,提供一种低成本、高定位率、高精度的基于移动设备自身信息的无线定位方法。
本发明的技术方案如下:
一种基于移动设备自身信息的无线定位方法,以已定位的移动设备作为全部锚点或者部分锚点,对待定位的移动设备进行测距定位。
作为优选,已定位的移动设备广播携带自身ID与时间戳的信号,接收到该信号的固定锚点或移动设备均计算与该已定位的移动设备的距离,根据计算获得的距离信息,对待移动设备进行定位。
作为优选,待定位的移动设备通过移动设备进行定位时,根据时间接收的信息中的时间戳,获得当前时刻的距离,然后进行定位。
作为优选,具体步骤如下:
1)初始化移动设备的初始位置向量Pre_X、误差协方差Pre_p、过程噪声Q及测量噪声R;
2)根据信号传播时间计算锚点与移动设备之间,以及移动设备与移动设备之间的距离Dij
3)根据t-1时刻的最优状态,预测t时刻的状态向量X_p(t/t-1)估计协方差P_p(t/t-1);
4)根据预测的t时刻的状态向量X_p(t/t-1)计算预测的距离向量h_Xp,并根据预测的距离向量h_Xp和实际测量值Dij计算测量残差
5)计算卡尔曼增益K(t)=P_p(t/t-1)*H*(H*P_p(t/t-1)*HT)-1,其中,H为测量***的参数;
6)根据预测的t时刻的状态向量X_p(t/t-1)和卡尔曼增益K(t)更新移动设备t时刻的最优状态X_p(t)=X_p(t/t-1)+K(t)*Y_e;
7)更新估计协方差P_p(t)=[eye(length(X_p))]*P_p(t/t-1);
8)重复步骤2)至步骤7),进行t+1时刻的定位。
作为优选,单个移动设备在t时刻的状态以状态向量表示如下:
x(t)=[Lx(t),Ly(t),Vx(t),Vy(t)];
其中,Lx(t)、Ly(t)分别表示移动设备的x轴和y轴坐标,Vx(t)、Vy(t)分别表示移动设备在x轴和y轴方向上的速度;
则n个移动设备的状态方程表示如下:
X(t)=[x1(t),x2(t),…,xn(t)]T
其中,xi(t)表示第i个移动用户的状态向量,T是转置运算符。
作为优选,移动设备在t-1时刻通过如下公式预测出t时刻的状态:
X(t/t-1)=FX(t-1)+W(t-1);
其中,W(t-1)~N(0,Q)为过程噪声,F表示状态转移矩阵。
作为优选,移动设备在t时刻的真实状态X(t)测量的状态向量Z(t)满足下式:
Z(t)=f(X(t))+V(t);
其中, ΔT表示时间更新间隔,V(t)~N(0,R)表示测量噪声,Z(t)表示移动设备在t时刻和固定锚点以及任意移动设备之间的距离向量。
作为优选,取距离的平方组成测量向量,则
其中,表示固定锚点i和移动设备j之间距离的平方(i=1,2,…,m;j=1,2,…,n),Aix和Aiy分别表示固定锚点i的x轴和y轴坐标(i=1,2,…,m);
表示移动设备j和移动设备k之间距离的平方(j,k=1,2,…,4,且j≠k),Ljx(t)和Ljy(t)分别表示移动设备j在t时刻的x轴和y轴坐标(j=1,2,…,n)。
本发明的有益效果如下:
本发明所述的方法,利用已经定位的移动设备的位置信息来对其他移动设备进行定位,即将已经定位出的移动设备作为“移动锚点”来定位其他移动设备。由于已定位的用户均能充当“移动锚点”,大大增加了环境中锚点的数量,防止了因固定锚点数量过少而不能定位等情况的出现,大大提高移动设备的定位率。本发明引入扩展了卡尔曼滤波,降低环境中多径效应和测距误差等的影响,进一步提高定位精度。
本发明只需要一般的定位节点即可,对定位硬件无过多的要求,并且算法的计算复杂度较低。与传统定位方案相比,克服了了节点的硬件要求较高、定位算法过于复杂、增加了定位成本和计算复杂度等不足。
附图说明
图1是本发明的原理示意图。
具体实施方式
以下结合附图及实施例对本发明进行进一步的详细说明。
本发明为了解决现有技术存在的定位概率低、定位精度差、定位算法复杂等不足,提供一种基于移动设备自身信息的无线定位方法,以已定位的移动设备作为全部锚点或者部分锚点,对待定位的移动设备进行测距定位。
本发明中,待定位的移动设备同时利用固定锚点和已定位的其他移动设备作为参考节点来进行定位。假设环境区域内有少量位置已知的固定锚点和位置未知的移动设备,移动设备与固定锚点可以进行通信,并测量相互之间的距离,同样移动设备之间也可以进行无线通信及测距,可基于TOA,RSSI,TDOA等技术手段进行实现。
具体过程是:已定位的移动设备广播携带自身ID与时间戳的信号,接收到该信号的固定锚点或移动设备均计算与该已定位的移动设备的距离,根据计算获得的距离信息,对待移动设备进行定位。待定位的移动设备通过移动设备进行定位时,根据时间接收的信息中的时间戳,获得当前时刻的距离,然后进行定位。
如图1所示,对于移动设备MS1和移动设备MS3,他们可以分别与固定锚点BS1,、BS2、BS3和固定锚点BS1、BS4、BS5通信,进而根据公式di=(ti-t0)*C(i=1,2,3)求得移动设备MS1和移动设备MS3与这些固定锚点之间的距离,然后求得移动设备MS1和移动设备MS3的位置。而对于移动设备MS2,其只能和固定锚点BS4直接通信,所以传统方法很难对其进行定位。本发明中,利用已经定位的移动设备MS1和移动设备MS3充当移动设备MS2的“移动锚点”,大大增加移动设备MS2的可参考锚点数量,提高其定位率和定位精度。
本发明改入扩展卡尔曼滤波对移动设备进行定位,则状态模型和测量模型如下:
单个移动设备在t时刻的状态以状态向量表示如下:
x(t)=[Lx(t),Ly(t),Vx(t),Vy(t)];
其中,Lx(t)、Ly(t)分别表示移动设备的x轴和y轴坐标,Vx(t)、Vy(t)分别表示移动设备在x轴和y轴方向上的速度;
则n个移动设备的状态方程表示如下:
X(t)=[x1(t),x2(t),…,xn(t)]T
其中,xi(t)表示第i个移动用户的状态向量,T是转置运算符。
移动设备在t-1时刻通过如下公式预测出t时刻的状态:
X(t/t-1)=FX(t-1)+W(t-1);
其中,W(t-1)~N(0,Q)为过程噪声,表示***的不确定性,并假定其是高斯白噪声,F表示状态转移矩阵,其将状态从t-1时刻转换到t时刻。
移动设备在t时刻的真实状态X(t)测量的状态向量Z(t)满足下式:
Z(t)=f(X(t))+V(t);
其中, ΔT表示时间更新间隔,V(t)~N(0,R)表示测量噪声,同样假设其为高斯白噪声,Z(t)表示移动设备在t时刻和固定锚点以及任意移动设备之间的距离向量。
为了保证测量方程是一个线性方程,本发明中,取距离的平方组成测量向量,则
其中,表示固定锚点i和移动设备j之间距离的平方(i=1,2,…,m;j=1,2,…,n),Aix和Aiy分别表示固定锚点i的x轴和y轴坐标(i=1,2,…,m);
表示移动设备j和移动设备k之间距离的平方(j,k=1,2,…,4,且j≠k),Ljx(t)和Ljy(t)分别表示移动设备j在t时刻的x轴和y轴坐标(j=1,2,…,n)。
基于上述的状态模型和测量模型,本发明的具体步骤如下:
1)初始化移动设备的初始位置向量Pre_X、误差协方差Pre_p、过程噪声Q及测量噪声R;
2)根据信号传播时间计算锚点与移动设备之间,以及移动设备与移动设备之间的距离Dij
3)通过公式X(t/t-1)=FX(t-1)+W(t-1)和t-1时刻的最优状态,预测t时刻的状态向量X_p(t/t-1),估计协方差P_p(t/t-1)=F*P_p(t-1)*FT+Q(t-1),其中F为状态转移矩阵,Q(t-1)为t-1时刻的估计误差;
4)根据预测的t时刻的状态向量X_p(t/t-1)计算预测的距离向量h_Xp,并根据预测的距离向量h_Xp和实际测量值Dij计算测量残差即预测量和实际测量值之间的差值;
5)计算卡尔曼增益K(t)=P_p(t/t-1)*H*(H*P_p(t/t-1)*HT)-1,其中,H为测量***的参数;
6)根据预测的t时刻的状态向量X_p(t/t-1)和卡尔曼增益K(t)更新移动设备t时刻的最优状态X_p(t)=X_p(t/t-1)+K(t)*Y_e;
7)更新估计协方差P_p(t)=[eye(length(X_p))]*P_p(t/t-1);
8)重复步骤2)至步骤7),进行t+1时刻的定位。
上述实施例仅是用来说明本发明,而并非用作对本发明的限定。只要是依据本发明的技术实质,对上述实施例进行变化、变型等都将落在本发明的权利要求的范围内。

Claims (6)

1.一种基于移动设备自身信息的无线定位方法,其特征在于,以已定位的移动设备作为全部锚点或者部分锚点,已定位的移动设备广播携带自身ID与时间戳的信号,接收到该信号的固定锚点或移动设备均计算与该已定位的移动设备的距离,根据计算获得的距离信息,对待定位的移动设备进行测距定位;待定位的移动设备通过移动设备进行定位时,根据时间接收的信息中的时间戳,获得当前时刻的距离,然后进行定位。
2.根据权利要求1所述的基于移动设备自身信息的无线定位方法,其特征在于,具体步骤如下:
1)初始化移动设备的初始位置向量Pre_X、误差协方差Pre_p、过程噪声Q及测量噪声R;
2)根据信号传播时间计算锚点与移动设备之间,以及移动设备与移动设备之间的距离Dij
3)根据t-1时刻的最优状态,预测t时刻的状态向量X_p(t/t-1),估计协方差P_p(t/t-1);
4)根据预测的t时刻的状态向量X_p(t/t-1)计算预测的距离向量h_Xp,并根据预测的距离向量h_Xp和移动设备与移动设备之间的距离Dij计算测量残差
5)计算卡尔曼增益K(t)=P_p(t/t-1)*H*(H*P_p(t/t-1)*HT)-1,其中,H为测量***的参数;
6)根据预测的t时刻的状态向量X_p(t/t-1)和卡尔曼增益K(t)更新移动设备t时刻的最优状态X_p(t)=X_p(t/t-1)+K(t)*Y_e;
7)更新估计协方差P_p(t)=[eye(length(X_p))]*P_p(t/t-1);
8)重复步骤2)至步骤7),进行t+1时刻的定位。
3.根据权利要求2所述的基于移动设备自身信息的无线定位方法,其特征在于,单个移动设备在t时刻的状态以状态向量表示如下:
x(t)=[Lx(t),Ly(t),Vx(t),Vy(t)];
其中,Lx(t)、Ly(t)分别表示移动设备的x轴和y轴坐标,Vx(t)、Vy(t)分别表示移动设备在x轴和y轴方向上的速度;
则n个移动设备的状态方程表示如下:
X(t)=[x1(t),x2(t),…,xn(t)]T
其中,xi(t)表示第i个移动设备的状态向量,T是转置运算符。
4.根据权利要求3所述的基于移动设备自身信息的无线定位方法,其特征在于,步骤3)中,移动设备在t-1时刻通过如下公式预测出t时刻的状态:
X(t/t-1)=FX(t-1)+W(t-1);
其中,W(t-1)~N(0,Q)为过程噪声,F表示状态转移矩阵。
5.根据权利要求4所述的基于移动设备自身信息的无线定位方法,其特征在于,移动设备在t时刻的真实状态X(t)测量的状态向量Z(t)满足下式:
Z(t)=f(X(t))+V(t);
其中,ΔT表示时间更新间隔,V(t)~N(0,R)表示测量噪声,Z(t)表示移动设备在t时刻和固定锚点以及任意移动设备之间的状态向量。
6.根据权利要求5所述的基于移动设备自身信息的无线定位方法,其特征在于,取距离的平方组成所述的状态向量Z(t),则
其中,表示固定锚点i和移动设备j之间距离的平方(i=1,2,…,m;j=1,2,…,n),Aix和Aiy分别表示固定锚点i的x轴和y轴坐标(i=1,2,…,m);
表示移动设备j和移动设备k之间距离的平方(j,k=1,2,…,4,且j≠k),Ljx(t)和Ljy(t)分别表示移动设备j在t时刻的x轴和y轴坐标(j=1,2,…,n)。
CN201610120483.8A 2016-03-03 2016-03-03 一种基于移动设备自身信息的无线定位方法 Active CN105807254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610120483.8A CN105807254B (zh) 2016-03-03 2016-03-03 一种基于移动设备自身信息的无线定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610120483.8A CN105807254B (zh) 2016-03-03 2016-03-03 一种基于移动设备自身信息的无线定位方法

Publications (2)

Publication Number Publication Date
CN105807254A CN105807254A (zh) 2016-07-27
CN105807254B true CN105807254B (zh) 2019-02-26

Family

ID=56466084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610120483.8A Active CN105807254B (zh) 2016-03-03 2016-03-03 一种基于移动设备自身信息的无线定位方法

Country Status (1)

Country Link
CN (1) CN105807254B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413085A (zh) * 2016-09-09 2017-02-15 华侨大学 一种基于分布式选举的移动锚点定位方法
CN110493740B (zh) * 2018-05-14 2021-01-15 ***通信有限公司研究院 一种室内定位方法及定位服务器
CN109188351A (zh) * 2018-08-16 2019-01-11 佛山科学技术学院 一种无线抗干扰定位方法及装置
CN113891245B (zh) * 2021-11-17 2024-04-26 西安邮电大学 一种火场消防员协同接力定位方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1834500B1 (fr) * 2005-01-03 2008-05-14 France Télécom Procede de mesure d'une distance entre deux equipements de radiocommunication, et equipement adapte pour mettre en oeuvre un tel procede
CN101819267A (zh) * 2010-04-02 2010-09-01 上海交通大学 基于接收信号能量指示测量的目标跟踪方法
CN101873692A (zh) * 2010-06-23 2010-10-27 电子科技大学 基于时间反演的无线传感器网络节点定位方法
CN102088769A (zh) * 2010-12-23 2011-06-08 南京师范大学 直接估计和消除非视距误差的无线定位方法
CN104519566A (zh) * 2013-09-26 2015-04-15 中兴通讯股份有限公司 一种终端辅助无线定位方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1834500B1 (fr) * 2005-01-03 2008-05-14 France Télécom Procede de mesure d'une distance entre deux equipements de radiocommunication, et equipement adapte pour mettre en oeuvre un tel procede
CN101819267A (zh) * 2010-04-02 2010-09-01 上海交通大学 基于接收信号能量指示测量的目标跟踪方法
CN101873692A (zh) * 2010-06-23 2010-10-27 电子科技大学 基于时间反演的无线传感器网络节点定位方法
CN102088769A (zh) * 2010-12-23 2011-06-08 南京师范大学 直接估计和消除非视距误差的无线定位方法
CN104519566A (zh) * 2013-09-26 2015-04-15 中兴通讯股份有限公司 一种终端辅助无线定位方法及装置

Also Published As

Publication number Publication date
CN105807254A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN105807254B (zh) 一种基于移动设备自身信息的无线定位方法
Cao et al. Combined weighted method for TDOA-based localization
CN106550451B (zh) 一种多用户超宽带室内定位***
CN107071732B (zh) 一种基于rssi的mle-pso室内定位方法
CN109548141A (zh) 基于卡尔曼滤波算法的室内环境基站坐标位置标定方法
CN110045324A (zh) 一种基于uwb和蓝牙技术的室内定位融合方法
CN103471586B (zh) 一种传感器辅助的终端组合定位方法及装置
CN106226732B (zh) 基于tof及迭代无迹滤波的室内无线定位跟踪方法
CN104869637B (zh) 用户站定位方法及装置
US9223006B2 (en) Method and device for localizing objects
Lategahn et al. Tdoa and rss based extended kalman filter for indoor person localization
Dehghan et al. Aerial localization of an RF source in NLOS condition
CN109655786A (zh) 移动自组网协作相对定位方法及装置
Li et al. Self-localization of autonomous underwater vehicles with accurate sound travel time solution
CN104053234A (zh) 一种基于rssi的坐标误差补偿定位***和方法
Si et al. An adaptive weighted Wi-Fi FTM-based positioning method in an NLOS environment
Lou et al. High-accuracy positioning algorithm based on UWB
Lategahn et al. Robust pedestrian localization in indoor environments with an IMU aided TDoA system
Lategahn et al. Extended Kalman filter for a low cost TDoA/IMU pedestrian localization system
TW200838217A (en) Wireless communication system for automatically generating received signal strength distribution map
Shchekotov et al. Indoor navigation ontology for smartphone semi-automatic self-calibration scenario
CN110187306A (zh) 一种应用于复杂室内空间的tdoa-pdr-map融合定位方法
Gazzah et al. Selective Hybrid RSS/AOA Approximate Maximum Likelihood Mobile intra cell Localization.
Zhao et al. Application of differential time synchronization in indoor positioning
CN116419147A (zh) 一种基于距离差分的非视距环境下室内uwb定位解算方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant