CN105787481A - 一种基于目标性潜在区域分析的目标检测算法及其应用 - Google Patents

一种基于目标性潜在区域分析的目标检测算法及其应用 Download PDF

Info

Publication number
CN105787481A
CN105787481A CN201610205681.4A CN201610205681A CN105787481A CN 105787481 A CN105787481 A CN 105787481A CN 201610205681 A CN201610205681 A CN 201610205681A CN 105787481 A CN105787481 A CN 105787481A
Authority
CN
China
Prior art keywords
super
pixel
score
compactness
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610205681.4A
Other languages
English (en)
Other versions
CN105787481B (zh
Inventor
方智文
李婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Humanities Science and Technology
Original Assignee
Hunan University of Humanities Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Humanities Science and Technology filed Critical Hunan University of Humanities Science and Technology
Priority to CN201610205681.4A priority Critical patent/CN105787481B/zh
Publication of CN105787481A publication Critical patent/CN105787481A/zh
Application granted granted Critical
Publication of CN105787481B publication Critical patent/CN105787481B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开一种基于目标性潜在区域分析的目标检测算法,通过摄像头获取图像数据后对图像进行超像素分割并快速提取超像素分割图的边缘图,获取超像素的大小及其外接矩形,然后对分割得到的超像素块进行合并获得初始区域集合,并取这些区域的外接矩形为初始矩形集合;然后计算局部矩形区域内的超像素集合的紧密性得分、最优轮廓的轮廓性得分以及计算轮廓内显著超像素集合的紧凑度得分;通过数据驱动的方法对紧密性得分、轮廓性得分和紧凑度得分进行融合,得到最终评价区域目标性的得分值;最后通过得分值对初始矩形集合进行降序排序,选出高概率区域进行目标检测。本发明所述的算法可应用于机器人视觉导航上和汽车辅助驾驶上。

Description

一种基于目标性潜在区域分析的目标检测算法及其应用
技术领域
本发明涉及机器视觉技术,具体涉及一种基于目标性潜在区域分析的目标检测算法及其应用。
背景技术
目标检测是机器视觉中重要的技术之一,广泛用于目标识别、目标跟踪和场景分析等领域。但是传统的目标检测方法都是采用复杂特征结合多尺度金字塔搜索的方式,算法效率比较低。为了提升目标检测算法的效率,目标潜在区域提取方法作为目标检测的预处理算法被引入代替传统的搜索方式。该方法以简单高效的方法快速提取少量目标潜在区域输送给目标检测算法,大大减少目标检测算法需要分析的区域数量。目标性评价方法作为对区域中存在目标可能性的量化过程,评价机制的好坏将直接影响最终的区域目标性排序以及最终输出的潜在区域的数量,评价机制越好,所需要的潜在区域的数量越少。
目前主流的方法有SelectiveSearch(J.Uijlings,K.vandeSande,T.Gevers,A.Smeulders,Selectivesearchforobjectrecognition,InternationalJournalofComputerVision104(2013).154-171),BING(M.-M.Cheng,Z.Zhang,W.-Y.Lin,P.Torr,Bing:Binarizednormedgradientsforobjectnessestimationat300fps,in:IEEEConferenceonComputerVisionandPatternRecognition,2014,pp.3286-3293.),EdgeBoxes(C.Zitnick,P.Dollr,Edgeboxes:Locatingobjectproposalsfromedges,in:EuropeanConferenceonComputerVision,volume8693,2014,pp.391-405.)等。
SelectiveSearch是通过超像素分割方法获得三种不同尺度的图像超像素集合,并设计了四种合并的策略:颜色相似性、纹理相似性、小区域优先和包含优先。通过合并的方式对图像的超像素集合中的区域进行融合等到不同大小和位置的目标潜在区域。但该方法中目标性评价方法采用的是随机排序的方式,所以不能有效的对候选区域进行目标性强弱排序。
BING将简单的梯度特征和简单的线性分类器相结合,对目标潜在区域进行快速的提取,达了300帧/秒的处理速度。该方法中的目标性评价方法采用分类器的响应值,由于该方法采用的是非常简单的特征表达,因此分类器的响应值不能准确的表达目标存在性。
EdgeBoxes快速获取图像的边缘信息,将边缘进行聚类获得特性相似的小边缘段,通过分析区域内边缘段的得分来计算该区域的目标性得分进行打分。但该方法的目标性没有考虑边缘的闭合特性,因此在评价目标存在性时会引入较多的虚景。
以上方法都通常都只考虑以某一种特征进行区域的目标性评价,往往不能有效的评价目标性的得分,导致在最终的区域排序时不能有效的用较少数量推荐包含目标的区域。
发明内容
为克服上述问题不足,本发明提供一种基于目标性潜在区域分析的目标检测算法,该算法结合超像素的内部一致性和超像素的保边特性,联合评估区域中目标存在的可能性,以目标性得分值的形式给出量化的结果,依据该量化的结果,能有效的对高目标性区域进行优先推荐,进一步减少后期对目标检测识别所需要的候选区域数量,提升目标检测算法的效率。
为实现上述目的,本发明采用如下技术方案:、一种基于目标性潜在区域分析的目标检测算法,其特征在于,具体包括如下步骤:
S1:通过摄像头获取可见光下的彩色图像数据;
S2:对图像进行超像素分割;
S3:快速提取超像素分割图的边缘图,并获取超像素的大小及其外接矩形;
S4:对分割得到的超像素块进行合并,将合并得到的所有区域合成为初始区域集合,并取这些区域的外接矩形为初始矩形集合
S5:基于每一个局部矩形区域,计算区域内的超像素集合的紧密性得分
S6:基于局部矩形区域内超像素边缘,计算区域内的最优轮廓的轮廓性得分
S7:基于局部矩形区域内最优轮廓,计算轮廓内显著超像素集合的紧凑度得分
S8:通过数据驱动的方法对紧密性得分、轮廓性得分和紧凑度得分进行融合,得到最终评价区域目标性的得分值
S9:通过得分值对初始矩形集合进行降序排序,选出高概率区域进行目标检测。
较佳的:在步骤S4中采用颜色相似性、纹理相似性、小区域优先和包含优先四种合并逻辑对分割得到的超像素块进行合并获得初始区域集合,并取这些区域的外接矩形为初始矩形集合,其中:
颜色相似性度量,其中分别代表两个超像素,为超像素的第k维颜色直方图统计数值;
纹理相似性度量,其中分别代表两个超像素,为超像素的第k维LBP(LocalBinaryPattern,局部二值模式)纹理直方图统计数值。
小区域优先,其中分别代表超像素和原始图像的面积;
包含优先,其中为包含超像素的最小外接矩形。
较佳的:所述步骤S5具体包括:
S501:基于每一个局部矩形区域,计算区域内每个超像素与矩形区域的重叠度,其中为超像素和矩形区域的面积;
S502:找到的所有超像素,定义为矩形区域的内部超像素子集;
S503:通过内部超像素子集的面积和与矩形区域的面积比计算紧密性
较佳的:所述步骤S6具体包括:
S601:采用颜色直方图相交距离计算局部矩形区域内超像素之间的边缘强度,其中,分别代表两个两两相邻的超像素,为超像素的第k维颜色直方图统计数值,两两相邻超像素边缘上的像素点具有相同的强度值;
S602:计算局部矩形区域中超像素边缘上各像素的贴合矩形边缘程度,其中,分别为边缘上像素点的坐标,区域中心点的坐标和区域的长宽值;
S603:基于边缘强度和贴合矩形边缘程度设计能量函数,其中,分别代表任一条闭合路径,所有可能闭合路径的集合和闭合路径归一化因子,在局部矩形区域内求得使最大的路径作为最优解为该局部矩形区域内的最优轮廓,对应的为该区域的轮廓性量化值。
较佳的:所述步骤S7具体包括:
S701:基于局部矩形区域b内的最优轮廓,将局部矩形区域划分为内部超像素集合和背景集合,并定义以外且在以内的超像素集合为背景集合以内的超像素集合为内部超像素集合
S702:通过超像素的颜色直方图相交距离计算内部超像素集合中每一个超像素到背景集合的距离,其中,中的超像素个数;对中超像素按进行降序排序,从中选出到背景集合最远的前的超像素作为前景集合;
S703:计算内部超像素集合中每一个超像素到前景集合和背景集合的距离差,将满足的超像素定义为显著超像素集合,其中,分别为中的超像素个数;
S704:通过公式计算得到紧凑度得分值,其中代表超像素的面积。
较佳的:所述基于紧密性、轮廓性和紧凑度的目标性评价方法的融合方法具体为:建立联合目标性得分公式:,并通过大数据驱动的方法求解出三种度量方式之间的平衡系数,,其中为紧密性得分,为轮廓性得分和为紧凑度得分。
本发明还包括基于目标性潜在区域分析的目标检测算法在机器人视觉导航上和汽车辅助驾驶上的应用。
本发明有益效果为:本发明结合超像素的内部一致性和超像素的保边特性,联合评估区域中目标存在的可能性,以目标性得分值的形式给出量化的结果,依据该量化的结果,能有效的对高目标性区域进行优先推荐。
附图说明
图1为本发明算法流程图。
图2为局部矩形区域内超像素紧密性计算流程图。
图3为局部矩形区域的内部超像素示意图。
图4为局部矩形区域内超像素轮廓性计算流程图。
图5为局部矩形区域内显著超像素紧凑度计算流程图。
图6为紧密性、轮廓性和紧凑度融合算法流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例1为本发明的优选实施例。如附图1-6所示,本发明是针对可见光下获取的彩色图像提出一种基于目标性潜在区域分析的目标检测算法,具体包括如下步骤:
S1:通过摄像头获取可见光下的640*480大小的彩色图像数据。
S2:采用高效的图像分割方法(P.Felzenszwalb,D.Huttenlocher,Efficientgraph-basedimagesegmentation,InternationalJournalofComputerVision59(2004)167-181.)对图像进行分割,将图像从像素级转换成超像素级。
S3:快速提取超像素分割图的边缘图,并获取超像素的大小及其外接矩形。
S4:采用颜色相似性、纹理相似性、小区域优先和包含优先四合并逻辑对分割得到的超像素块进行合并获得初始的局域集合(J.Uijlings,K.vandeSande,T.Gevers,A.Smeulders,Selectivesearchforobjectrecognition,InternationalJournalofComputerVision104(2013).154-171),并取这些区域的外接矩形为初始矩形集合,其中:
颜色相似性度量,其中分别代表两个超像素,为超像素的第k维颜色直方图统计数值;
纹理相似性度量,其中分别代表两个超像素,为超像素的第k维LBP(LocalBinaryPattern,局部二值模式)纹理直方图统计数值。
小区域优先,其中分别代表超像素和原始图像的面积;
包含优先,其中为包含超像素的最小外接矩形。
S5:基于每一个局部矩形区域,计算区域内的超像素集合的紧密性得分
局部矩形区域内超像素紧密性计算(X.Chen,H.Ma,X.Wang,andZ.Zhao,“Improvingobjectproposalswithmulti-thresholdingstraddlingexpansion,”inProc.IEEEConferenceonComputerVisionandPatternRecognition(CVPR),2015.)。流程图如图2所示,对可见光下获取的彩色图像进行如下处理:
S501:基于每一个局部矩形区域,计算区域内每个超像素与矩形区域的重叠度,其中为超像素和矩形区域的面积;
S502:找到的所有超像素,定义为矩形区域的内部超像素子集,如图3所示;
S503:通过内部超像素子集的面积和与矩形区域的面积比计算紧密性,其中为超像素和矩形区域的面积。
S6:基于局部矩形区域内超像素边缘,计算区域内的最优轮廓的轮廓性得分。流程如图4所示,本步骤的目的是通过计算区域内最大的近似闭合轮廓,并计算得到该区域的轮廓性得分。具体包括如下步骤:
S601:采用颜色直方图相交距离计算局部矩形区域内超像素之间的边缘强度,其中,分别代表两个两两相邻的超像素,为超像素的第k维颜色直方图统计数值,两两相邻超像素边缘上的像素点具有相同的强度值;
S602:计算局部矩形区域中超像素边缘上各像素的贴合矩形边缘程度,其中,分别为边缘上像素点的坐标,区域中心点的坐标和区域的长宽值;
S603:基于边缘强度和贴合矩形边缘程度设计能量函数,其中,分别代表任一条闭合路径,所有可能闭合路径的集合和闭合路径归一化因子(LuC,LiuS,JiaJ,etal.ContourBox:RejectingObjectProposalsWithoutExplicitClosedContours[C]//ProceedingsoftheIEEEInternationalConferenceonComputerVision.2015:2021-2029.)。在局部矩形区域内求得使最大的路径作为最优解为该局部矩形区域内的最优轮廓,对应的为该区域的轮廓性量化值。
S7:基于局部矩形区域内最优轮廓,计算轮廓内显著超像素集合的紧凑度得分。局部矩形区域内显著超像素紧凑度计算流程如图5所示。本步骤的目的是通过局部区域内最优轮廓中显著区域占所有区域的比例来计算显著超像素紧凑度。具体包括如下步骤:
S701:基于局部矩形区域b内的最优轮廓,将局部矩形区域划分为内部超像素集合和背景集合,并定义以外且在以内的超像素集合为背景集合以内的超像素集合为内部超像素集合
S702:通过超像素的颜色直方图相交距离计算内部超像素集合中每一个超像素到背景集合的距离,其中,中的超像素个数;对中超像素按进行降序排序,从中选出到背景集合最远的前的超像素作为前景集合;
S703:计算内部超像素集合中每一个超像素到前景集合和背景集合的距离差,将满足的超像素定义为显著超像素集合,其中,分别为中的超像素个数;
S704:通过公式计算得到紧凑度得分值,其中代表超像素的面积。紧凑度越大,表明目标整体越显著越大。
S8:通过数据驱动的方法对紧密性得分、轮廓性得分和紧凑度得分进行融合,得到最终评价区域目标性的得分值。流程如图6所示。本步骤的目的是通过融合区域内部超像素的紧密性、轮廓性和紧凑度得到目标性的量化得分。
所述基于紧密性、轮廓性和紧凑度的目标性评价方法的融合方法具体为:建立联合目标性得分公式:,并通过ImageNet(O.Russakovsky,J.Deng,H.Su,J.Krause,S.Satheesh,S.Ma,Z.Huang,A.Karpathy,A.Khosla,M.Bernstein,A.C.Berg,andL.Fei-Fei,“ImageNetLargeScaleVisualRecognitionChallenge,”2014.)大数据库的图像数据(大数据驱动方法)对平衡系数,进行训练,选取在数据库的训练集上取得最好召回率的参数平衡系数,。其中为紧密性得分,为轮廓性得分和为紧凑度得分。数据驱动的训练过程如下:
(1)从图像数据库的训练集中随机挑出个是目标的样本和个不是目标(背景)的样本,分别构成目标样本集和背景样本集
(2)计算目标样本集和背景样本集中所有样本的紧密性得分,轮廓性得分和紧凑度得分。
(3),的取值范围,学习的步进为0.1,共种组合方式,分别计算得到。选取使得最大的,系数组合,其中的均值,的方差。
S9:通过得分值对初始矩形集合进行降序排序,选出前500个高概率区域进行目标检测。
本发明基于目标性潜在区域分析的目标检测算法可应用于机器人视觉导航上或汽车辅助驾驶上。
以上所述,仅为本发明的较佳实施例,并不用以限制本发明,凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同替换和改进,均应包含在本发明技术方案的保护范围之内。

Claims (8)

1.一种基于目标性潜在区域分析的目标检测算法,其特征在于,具体包括如下步骤:
S1:通过摄像头获取可见光下的彩色图像数据;
S2:对图像进行超像素分割;
S3:快速提取超像素分割图的边缘图,并获取超像素的大小及其外接矩形;
S4:对分割得到的超像素块进行合并,将合并得到的所有区域合成为初始区域集合,并取这些区域的外接矩形为初始矩形集合
S5:基于每一个局部矩形区域,计算区域内的超像素集合的紧密性得分
S6:基于局部矩形区域内超像素边缘,计算区域内的最优轮廓的轮廓性得分
S7:基于局部矩形区域内最优轮廓,计算轮廓内显著超像素集合的紧凑度得分
S8:通过数据驱动的方法对紧密性得分、轮廓性得分和紧凑度得分进行融合,得到最终评价区域目标性的得分值
S9:通过得分值对初始矩形集合进行降序排序,选出高概率区域进行目标检测。
2.根据权利要求1所述的一种基于目标性潜在区域分析的目标检测算法,其特征在于,所述步骤S4中采用颜色相似性、纹理相似性、小区域优先和包含优先四种合并逻辑对分割得到的超像素块进行合并获得初始区域集合,并取这些区域的外接矩形为初始矩形集合,其中:
颜色相似性度量,其中分别代表两个超像素,为超像素的第k维颜色直方图统计数值;
纹理相似性度量,其中分别代表两个超像素,为超像素的第k维LBP纹理直方图统计数值;
小区域优先,其中分别代表超像素和原始图像的面积;
包含优先,其中为包含超像素的最小外接矩形。
3.根据权利要求1所述的一种基于目标性潜在区域分析的目标检测算法,其特征在于,所述步骤S5具体包括:
S501:基于每一个局部矩形区域,计算区域内每个超像素与矩形区域的重叠度,其中为超像素和矩形区域的面积;
S502:找到的所有超像素,定义为矩形区域的内部超像素子集;
S503:通过内部超像素子集的面积和与矩形区域的面积比计算紧密性
4.根据权利要求1所述的一种基于目标性潜在区域分析的目标检测算法,其特征在于,所述步骤S6具体包括:
S601:采用颜色直方图相交距离计算局部矩形区域内超像素之间的边缘强度,其中,分别代表两个两两相邻的超像素,为超像素的第k维颜色直方图统计数值,两两相邻超像素边缘上的像素点具有相同的强度值;
S602:计算局部矩形区域中超像素边缘上各像素的贴合矩形边缘程度,其中,分别为边缘上像素点的坐标,区域中心点的坐标和区域的长宽值;
S603:基于边缘强度和贴合矩形边缘程度设计能量函数,其中,分别代表任一条闭合路径,所有可能闭合路径的集合和闭合路径归一化因子,在局部矩形区域内求得使最大的路径作为最优解为该局部矩形区域内的最优轮廓,对应的为该区域的轮廓性量化值。
5.根据权利要求1所述的一种基于目标性潜在区域分析的目标检测算法,其特征在于,所述步骤S7具体包括:
S701:基于局部矩形区域b内的最优轮廓,将局部矩形区域划分为内部超像素集合和背景集合,并定义以外且在以内的超像素集合为背景集合以内的超像素集合为内部超像素集合
S702:通过超像素的颜色直方图相交距离计算内部超像素集合中每一个超像素到背景集合的距离,其中,中的超像素个数;对中超像素按进行降序排序,从中选出到背景集合最远的前的超像素作为前景集合;
S703:计算内部超像素集合中每一个超像素到前景集合和背景集合的距离差,将满足的超像素定义为显著超像素集合,其中,分别为中的超像素个数;
S704:通过公式计算得到紧凑度得分值,其中代表超像素的面积。
6.根据权利要求1所述的一种基于目标性潜在区域分析的目标检测算法,其特征在于,所述基于紧密性、轮廓性和紧凑度的目标性评价方法的融合方法具体为:建立联合目标性得分公式:,并通过大数据驱动的方法求解出三种度量方式之间的平衡系数,,其中为紧密性得分,为轮廓性得分和为紧凑度得分。
7.一种权利要求1至6中任一项所述的基于目标性潜在区域分析的目标检测算法在机器人视觉导航上的应用。
8.一种权利要求1至6中任一项所述的基于目标性潜在区域分析的目标检测算法在汽车辅助驾驶上的应用。
CN201610205681.4A 2016-04-05 2016-04-05 一种基于目标性潜在区域分析的目标检测方法及其应用 Expired - Fee Related CN105787481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610205681.4A CN105787481B (zh) 2016-04-05 2016-04-05 一种基于目标性潜在区域分析的目标检测方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610205681.4A CN105787481B (zh) 2016-04-05 2016-04-05 一种基于目标性潜在区域分析的目标检测方法及其应用

Publications (2)

Publication Number Publication Date
CN105787481A true CN105787481A (zh) 2016-07-20
CN105787481B CN105787481B (zh) 2019-03-01

Family

ID=56394792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610205681.4A Expired - Fee Related CN105787481B (zh) 2016-04-05 2016-04-05 一种基于目标性潜在区域分析的目标检测方法及其应用

Country Status (1)

Country Link
CN (1) CN105787481B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373131A (zh) * 2016-08-25 2017-02-01 上海交通大学 基于边缘的图像显著性区域检测方法
CN108090895A (zh) * 2017-11-28 2018-05-29 浙江工业大学 一种基于图像处理的集装箱锁孔轮廓提取方法
CN108229316A (zh) * 2017-11-28 2018-06-29 浙江工业大学 一种基于超像素分割的车辆轮廓提取方法
CN108549874A (zh) * 2018-04-19 2018-09-18 广州广电运通金融电子股份有限公司 一种目标检测方法、设备及计算机可读存储介质
CN108874269A (zh) * 2017-05-12 2018-11-23 北京臻迪科技股份有限公司 一种目标跟踪方法、装置及***
CN109146912A (zh) * 2018-07-26 2019-01-04 湖南人文科技学院 一种基于目标性分析的视觉目标跟踪方法
CN109816650A (zh) * 2019-01-24 2019-05-28 强联智创(北京)科技有限公司 一种基于二维dsa图像的目标区域识别方法及其***
CN109949344A (zh) * 2019-03-18 2019-06-28 吉林大学 一种基于颜色概率目标建议窗口的核相关滤波跟踪方法
CN112070172A (zh) * 2020-09-11 2020-12-11 湖南人文科技学院 基于目标性分析的异常目标检测方法、装置及计算机设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104346800A (zh) * 2013-08-02 2015-02-11 南京理工大学 一种基于纹理显著性的微光图像目标检测方法
US20150279036A1 (en) * 2014-04-01 2015-10-01 Xerox Corporation Side window detection in near-infrared images utilizing machine learning
CN105046701A (zh) * 2015-07-08 2015-11-11 安徽大学 一种基于构图线的多尺度显著目标检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104346800A (zh) * 2013-08-02 2015-02-11 南京理工大学 一种基于纹理显著性的微光图像目标检测方法
US20150279036A1 (en) * 2014-04-01 2015-10-01 Xerox Corporation Side window detection in near-infrared images utilizing machine learning
CN105046701A (zh) * 2015-07-08 2015-11-11 安徽大学 一种基于构图线的多尺度显著目标检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN X, MA H, WANG X, ET AL: "Improving object proposals with multi-thresholding straddling expansion", 《IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION》 *
贾西西: "图像显著性目标检测理论及其应用", 《中国优秀硕士学位论文全文数据库》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373131B (zh) * 2016-08-25 2020-11-06 上海交通大学 基于边缘的图像显著性区域检测方法
CN106373131A (zh) * 2016-08-25 2017-02-01 上海交通大学 基于边缘的图像显著性区域检测方法
CN108874269B (zh) * 2017-05-12 2020-12-29 北京臻迪科技股份有限公司 一种目标跟踪方法、装置及***
CN108874269A (zh) * 2017-05-12 2018-11-23 北京臻迪科技股份有限公司 一种目标跟踪方法、装置及***
CN108229316A (zh) * 2017-11-28 2018-06-29 浙江工业大学 一种基于超像素分割的车辆轮廓提取方法
CN108090895B (zh) * 2017-11-28 2021-07-06 浙江工业大学 一种基于图像处理的集装箱锁孔轮廓提取方法
CN108090895A (zh) * 2017-11-28 2018-05-29 浙江工业大学 一种基于图像处理的集装箱锁孔轮廓提取方法
CN108229316B (zh) * 2017-11-28 2020-05-12 浙江工业大学 一种基于超像素分割的车辆轮廓提取方法
CN108549874B (zh) * 2018-04-19 2021-11-23 广州广电运通金融电子股份有限公司 一种目标检测方法、设备及计算机可读存储介质
CN108549874A (zh) * 2018-04-19 2018-09-18 广州广电运通金融电子股份有限公司 一种目标检测方法、设备及计算机可读存储介质
CN109146912B (zh) * 2018-07-26 2020-08-04 湖南人文科技学院 一种基于目标性分析的视觉目标跟踪方法
CN109146912A (zh) * 2018-07-26 2019-01-04 湖南人文科技学院 一种基于目标性分析的视觉目标跟踪方法
CN109816650A (zh) * 2019-01-24 2019-05-28 强联智创(北京)科技有限公司 一种基于二维dsa图像的目标区域识别方法及其***
CN109816650B (zh) * 2019-01-24 2022-11-25 强联智创(北京)科技有限公司 一种基于二维dsa图像的目标区域识别方法及其***
CN109949344A (zh) * 2019-03-18 2019-06-28 吉林大学 一种基于颜色概率目标建议窗口的核相关滤波跟踪方法
CN109949344B (zh) * 2019-03-18 2022-12-27 吉林大学 一种基于颜色概率目标建议窗口的核相关滤波跟踪方法
CN112070172A (zh) * 2020-09-11 2020-12-11 湖南人文科技学院 基于目标性分析的异常目标检测方法、装置及计算机设备
CN112070172B (zh) * 2020-09-11 2023-12-22 湖南人文科技学院 基于目标性分析的异常目标检测方法、装置及计算机设备

Also Published As

Publication number Publication date
CN105787481B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN105787481A (zh) 一种基于目标性潜在区域分析的目标检测算法及其应用
CN107424142B (zh) 一种基于图像显著性检测的焊缝识别方法
CN110246141B (zh) 一种基于联合角点池化的复杂交通场景下车辆图像分割方法
Cheng et al. Outdoor scene image segmentation based on background recognition and perceptual organization
CN109214420A (zh) 基于视觉显著性检测的高纹理图像分类方法及***
CN103530638B (zh) 多摄像头下的行人匹配方法
CN104123554B (zh) 基于mmtd的sift图像特征提取方法
CN105321176A (zh) 一种基于分层高阶条件随机场的图像分割方法
CN103309982B (zh) 一种基于视觉显著点特征的遥感影像检索方法
CN104850850A (zh) 一种结合形状和颜色的双目立体视觉图像特征提取方法
CN109034035A (zh) 基于显著性检测和特征融合的行人重识别方法
WO2021082168A1 (zh) 一种场景图像中特定目标对象的匹配方法
CN109033944B (zh) 一种全天空极光图像分类与关键局部结构定位方法及***
CN103473551A (zh) 基于sift算子的台标识别方法及***
CN106897681A (zh) 一种遥感图像对比分析方法及***
CN111582178B (zh) 基于多方位信息和多分支神经网络车辆重识别方法及***
CN107369158A (zh) 基于rgb‑d图像的室内场景布局估计及目标区域提取方法
CN106355607B (zh) 一种宽基线彩色图像模板匹配方法
CN108734200B (zh) 基于bing特征的人体目标视觉检测方法和装置
CN107067037B (zh) 一种使用llc准则定位图像前景的方法
CN109344842A (zh) 一种基于语义区域表达的行人重识别方法
CN103106409A (zh) 一种针对头肩检测的混合特征提取方法
CN108537816A (zh) 一种基于超像素和背景连接先验的显著物体分割方法
CN108932518A (zh) 一种基于视觉词袋模型的鞋印图像特征提取及检索方法
CN107123130A (zh) 一种基于超像素和混合哈希的核相关滤波目标跟踪方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190301