CN105772096A - 一种应用于太阳光催化的纳米复合材料及其制备方法 - Google Patents

一种应用于太阳光催化的纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN105772096A
CN105772096A CN201610009703.XA CN201610009703A CN105772096A CN 105772096 A CN105772096 A CN 105772096A CN 201610009703 A CN201610009703 A CN 201610009703A CN 105772096 A CN105772096 A CN 105772096A
Authority
CN
China
Prior art keywords
composite material
nano composite
nano
preparation
methacrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610009703.XA
Other languages
English (en)
Inventor
汪乐余
陈洪荔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201610009703.XA priority Critical patent/CN105772096A/zh
Publication of CN105772096A publication Critical patent/CN105772096A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/26Organic substances containing nitrogen or phosphorus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种全光谱吸收可以应用于太阳光催化的纳米复合材料及其制备方法,该复合材料具有较高的催化效率。本发明采用正负电吸附的方法,将带正电的两亲高分子与带负电的氧化石墨烯通过静电作用结合,得到两亲的GO/polymer复合物,并通过超声乳化的方法,利用复合物将疏水的Cu7S4纳米晶包覆,得到Cu7S4@GO纳米复合材料,即为应用于太阳光催化的纳米复合材料。其中含有3‑5mg Cu7S4的纳米复合材料在模拟太阳光1W/cm2的照射下,光催化效果高达94.7%,具有较高的应用前景。

Description

一种应用于太阳光催化的纳米复合材料及其制备方法
技术领域
本发明属于纳米材料制备技术领域,特别涉及一种全光谱吸收具有较高光催化效率的Cu7S4@GO纳米复合物,可以应用于太阳光催化降解有机物。
技术背景
由于半导体是一个可以将太阳光能转化为化学能的高效的光催化剂,因此,半导体光催化剂材料的设计、合成及应用引起了广泛的关注。人们探索了大量的半导体。例如常用的N型半导体TiO2,由于具有较大的带隙,只能吸收占有整个太阳光5%的紫外光。再者α-Fe2O3虽是有相对较小的带隙可以利用可见光,但是传递电子的能力较差。而具有不错电子传递性能的Si、GaN等具有较弱的催化能力。
光催化剂的首要条件就是能够产生电子空穴对以及有较好的电子传递介质,阻止电子和空穴的快速结合。因此,需要理性的设计光催剂的结构以及组成。由于很好的设计和控制金属与碳材料的界面并且石墨烯及其衍生物氧化石墨烯,具有较好的导电性和机械性,这使得石墨烯类物质称为很好的电子传递桥梁。因此,发展可以产生电子空穴对的半导体和可以传递电子的石墨烯的纳米复合结构,是太阳光直接利用与催化领域的重要需求。
发明内容
本发明为满足太阳能转化为化学能需求,特别设计一种全光谱吸收具有比较高光转换效率的Cu7S4纳米复合材料,可以应用于光催化。
本发明采用正负电吸附的方法,将带正电的高分子与带负电的氧化石墨烯通过静电作用结合,得到两亲的GO/polymer复合物,并通过超声乳化的方法,利用复合物将疏水的Cu7S4纳米晶包覆,得到Cu7S4@GO纳米复合材料,即为应用于太阳光催化的纳米复合材料。
本发明所述的一种应用于太阳光催化的纳米复合材料的制备方法,其具体步骤如下:
a.将10-30mg带正电的两亲高分子分散在1-5mL氯仿中,然后加入到3-8mL的DMSO中,混匀;随后加入浓度为3-8mg/mL的氧化石墨烯溶液,其中氧化石墨烯加入量为10-20mg,摇晃振荡混合均匀;
b.向步骤a的混合液中加入乙醇沉淀并离心,沉淀用0.5-2mL氯仿分散得到功能化的高分子-氧化石墨烯复合物分散液;
c.将有机相分散的Cu7S4纳米颗粒加入到步骤b得到的分散液中,Cu7S4纳米颗粒含量为2-10mg,然后转入10mL的0.3-1mM的NaOH溶液中,在功率为100-500W的超声下得到稳定乳液;
d.30-60℃下搅拌蒸掉步骤c的乳液中的有机溶剂,5000-15000转/分离心5-20min得到应用于太阳光催化的纳米复合材料,最后将其重新分散到去离子水中。
所述的带正电的两亲高分子为聚苯乙烯-甲基丙烯酸-丙烯基甲基氯代咪唑,其中丙烯基甲基氯代咪唑质量含量为5-8%,甲基丙烯酸质量含量为2-5%。
所述的带正电的两亲高分子为聚苯乙烯-甲基丙烯酸-丙烯酰胺,其中甲基丙烯酸质量含量为2-5%,丙烯酰胺质量含量为5-8%。
所述的带正电的两亲高分子分子量范围为5000-10000。
将上述制备得到的纳米复合材料在太阳光条件下催化降解有机物的应用。
本发明的有益效果:本发明制备了一种全光谱吸收可以应用于太阳光催化的纳米复合材料,该复合材料具有较高的催化效率。其中含有3-5mg Cu7S4的纳米复合材料在模拟太阳光1W/cm2的照射下,光催化效果高达94.7%,具有较高的应用前景。
附图说明
图1:实施例1制备的应用于太阳光催化的纳米复合材料的电镜图。
图2:实施例1制备的应用于太阳光催化的纳米复合材料与带正电的两亲高分子聚苯乙烯-甲基丙烯酸-丙烯基甲基氯代咪唑光催化降解罗丹明B的降解曲线对比图。
具体实施方式
实施例1
a.将10mg聚苯乙烯-甲基丙烯酸-丙烯基甲基氯代咪唑(分子量6000,丙烯基甲基氯代咪唑质量含量为5%,甲基丙烯酸质量含量为5%)分散在1mL氯仿中,然后加入到3mL的DMSO中,混匀;随后加入浓度为5mg/mL的氧化石墨烯溶液,其中氧化石墨烯加入量为20mg,摇晃振荡1分钟;
b.向步骤a的混合液中加入乙醇沉淀并离心,沉淀用0.6mL氯仿分散得到功能化的高分子-氧化石墨烯复合物分散液;
c.将0.4mL的氯仿分散的Cu7S4纳米颗粒加入到步骤b得到的分散液中,Cu7S4纳米颗粒含量为3.2mg,然后转入10mL的1mM的NaOH溶液中,在功率为300W的超声下得到稳定乳液;
d.50℃下搅拌蒸掉步骤c的乳液中的氯仿,7000转/分离心10min得到应用于太阳光催化的纳米复合材料,最后将其重新分散到去离子水中。
将上述制备的应用于太阳光催化的纳米复合材料进行光催化降解罗丹明B,反应条件:光功率密度为1W/cm2,纳米复合材料浓度为7.5mg/mL,罗丹明B浓度为10ppm,降解总体积为2mL。
以不加纳米复合材料光降解罗丹明B溶液为对比,结果如图2所示。

Claims (4)

1.一种应用于太阳光催化的纳米复合材料的制备方法,其特征在于,其具体步骤如下:
a.将10-30mg带正电的两亲高分子分散在1-5mL氯仿中,然后加入到3-8mL的DMSO中,混匀;随后加入浓度为3-8mg/mL的氧化石墨烯溶液,其中氧化石墨烯加入量为10-20mg,摇晃振荡混合均匀;
b.向步骤a的混合液中加入乙醇沉淀并离心,沉淀用0.5-2mL氯仿分散得到功能化的高分子-氧化石墨烯复合物分散液;
c.将有机相分散的Cu7S4纳米颗粒加入到步骤b得到的分散液中,Cu7S4纳米颗粒含量为2-10mg,然后转入10mL的0.3-1mM的NaOH溶液中,在功率为100-500W的超声下得到稳定乳液;
d.30-60℃下搅拌蒸掉步骤c的乳液中的有机溶剂,5000-15000转/分离心5-20min得到应用于太阳光催化的纳米复合材料,最后将其重新分散到去离子水中。
2.根据权利要求1所述的制备方法,其特征在于,所述的带正电的两亲高分子为聚苯乙烯-甲基丙烯酸-丙烯基甲基氯代咪唑,其中丙烯基甲基氯代咪唑质量含量为5-8%,甲基丙烯酸质量含量为2-5%。
3.根据权利要求1所述的制备方法,其特征在于,所述的带正电的两亲高分子为聚苯乙烯-甲基丙烯酸-丙烯酰胺,其中甲基丙烯酸质量含量为2-5%,丙烯酰胺质量含量为5-8%。
4.根据权利要求1-3任一所述的方法制备得到的纳米复合材料在太阳光条件下催化降解有机物的应用。
CN201610009703.XA 2016-01-07 2016-01-07 一种应用于太阳光催化的纳米复合材料及其制备方法 Pending CN105772096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610009703.XA CN105772096A (zh) 2016-01-07 2016-01-07 一种应用于太阳光催化的纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610009703.XA CN105772096A (zh) 2016-01-07 2016-01-07 一种应用于太阳光催化的纳米复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN105772096A true CN105772096A (zh) 2016-07-20

Family

ID=56390083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610009703.XA Pending CN105772096A (zh) 2016-01-07 2016-01-07 一种应用于太阳光催化的纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105772096A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831748A (zh) * 2018-06-27 2018-11-16 安徽大学 一种掺氮石墨烯修饰下四硫化七铜/硫化铜复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061212A1 (en) * 2008-11-25 2010-06-03 Johnson Matthey Plc Reduced copper sulphide sorbent for removing heavy metals
CN104258909A (zh) * 2014-08-01 2015-01-07 曲阜师范大学 一种Fe3O4-聚多巴胺-Au纳米复合材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061212A1 (en) * 2008-11-25 2010-06-03 Johnson Matthey Plc Reduced copper sulphide sorbent for removing heavy metals
CN104258909A (zh) * 2014-08-01 2015-01-07 曲阜师范大学 一种Fe3O4-聚多巴胺-Au纳米复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGLI CHEN ET AL.: "Cu2-xS/graphene oxide nanocomposites for efficient photocatalysis driven by real sunlight", 《RSC ADVANCES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108831748A (zh) * 2018-06-27 2018-11-16 安徽大学 一种掺氮石墨烯修饰下四硫化七铜/硫化铜复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Zhu et al. High visible light response Z-scheme Ag3PO4/g-C3N4/ZnO composite photocatalyst for efficient degradation of tetracycline hydrochloride: preparation, properties and mechanism
Liang et al. Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater
CN102963934B (zh) 钨酸铋量子点及其与石墨烯复合材料的制备方法
CN103480398B (zh) 一种微纳结构石墨烯基复合可见光催化材料及其制备方法
Liu et al. Synthesis of direct Z-Scheme Bi3NbO7/BiOCl photocatalysts with enhanced activity for CIP degradation and Cr (VI) reduction under visible light irradiation
Zhang et al. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation
Li et al. Internal-electric-field induced high efficient type-I heterojunction in photocatalysis-self-Fenton reaction: Enhanced H2O2 yield, utilization efficiency and degradation performance
Gao et al. Sonocatalytic performance of Er3+: YAlO3/TiO2–Fe2O3 in organic dye degradation
CN103521780B (zh) 具有表面增强拉曼光谱活性的氧化石墨烯负载金纳米溶胶的制备方法和应用
CN101347724B (zh) 一种碳60/二氧化钛纳米复合光催化剂及其制备方法和用途
Li et al. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts
CN105567227B (zh) 一种从咖啡渣固体废弃物中提取石墨烯量子点的方法
Jia et al. Fabrication of g-C3N4/Ag3PO4-H2O2 heterojunction system with enhanced visible-light photocatalytic activity and mechanism insight
CN105935594A (zh) 一种碘氧化铋/氮掺石墨烯复合光催化剂及其制备方法
Zhang et al. Fe3O4@ MIL-100 (Fe) modified ZnS nanoparticles with enhanced sonocatalytic degradation of tetracycline antibiotic in water
CN103506142A (zh) 一种二硫化钼/磷酸银复合可见光光催化材料及其制备方法
CN103301860A (zh) 多壁碳纳米管负载磷酸银可见光光催化剂的制备方法
CN108786792A (zh) 一种金属/半导体复合光催化剂及其制备与应用
Liu et al. Black phosphorus quantum dots modified CdS nanowires with efficient charge separation for enhanced photocatalytic H2 evolution
Habibi-Yangjeh et al. Novel ZnO/CuBiS2 nanocomposites with pn heterojunctions for persulfate-promoted photocatalytic mitigation of pollutants under visible light
CN105215352A (zh) 用二氧化硅包覆阳离子聚合物修饰的金纳米簇的制备方法
Torabi Momen et al. Photocatalytic degradation of rhodamine B and methylene blue by electrochemically prepared nano titanium dioxide/reduced graphene oxide/poly (methyl methacrylate) nanocomposite
Aghajani et al. Design novel Ce (MoO 4) 2@ TiO 2 n–n heterostructures: Enhancement photodegradation of toxic dyes
Xiao et al. Construction of oxygen vacancy modified Bi/BiOI nanocomposite with improved photocatalytic activity for microcystin-LR degradation
Xu et al. V2C MXene–modified g-C3N4 for enhanced visible-light photocatalytic activity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160720