CN105755535A - 基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法 - Google Patents

基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法 Download PDF

Info

Publication number
CN105755535A
CN105755535A CN201610222824.2A CN201610222824A CN105755535A CN 105755535 A CN105755535 A CN 105755535A CN 201610222824 A CN201610222824 A CN 201610222824A CN 105755535 A CN105755535 A CN 105755535A
Authority
CN
China
Prior art keywords
gallium nitride
gallium
substrate
epitaxial growth
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610222824.2A
Other languages
English (en)
Inventor
李亮
罗伟科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201610222824.2A priority Critical patent/CN105755535A/zh
Publication of CN105755535A publication Critical patent/CN105755535A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明是一种基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法,其特征包括如下步骤:选择一半绝缘氮化镓衬底;将衬底放入金属有机物化学气相沉积反应腔内(镓面朝上),升温烘烤衬底,同时通入氨气对衬底进行保护,防止衬底氮化镓在升温过程中发生分解;降温至生长温度,同时通入三甲基镓、氨气和硅烷,进行n型镓面氮化镓薄膜外延生长。待生长结束后,取出氮化镓衬底,将衬底翻转后,再次放入金属有机物化学气相沉积反应腔内(氮面朝上),重复上述过程进行n型氮面氮化镓薄膜外延生长。本发明的优点:方法简单易行,生长周期短,材料性能好,是实现氮化镓核探测器结构高质量、低成本生长的有效解决方案。

Description

基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法
技术领域
本发明涉及的是一种基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法,属于半导体技术领域。
背景技术
作为第三代半导体材料代表的氮化镓及其多元合金材料,因其光学和电学性能独特、优异而备受学术界和工业界的关注和青睐,目前,氮化镓基材料已广泛应用于光电子(如发光二极管LED和激光二极管LD)和微电子(高电子迁移率晶体管HEMT)领域,是当今半导体界的研究热点。在探测器领域,氮化镓基材料逐渐成为紫外探测器、特别是太阳光盲紫外探测器的研究热点。近年来,氮化镓材料开始应用在核辐射探测领域。氮化镓具有宽带隙、强共价键结合、高熔点、高击穿电场、抗腐蚀、抗辐射等优良性能,它是良好的室温核辐射探测器半导体材料,尤其是在强辐射场的探测方面颇具优势。多年来,在室温半导体核探测器领域,多采用CdZnTe(CZT)化合物半导体材料。它的平均原子序数高,吸收系数大,探测效率高;禁带宽度较大,可在室温下工作。但是,CZT材料生长工艺复杂,价格昂贵。相比CZT材料,氮化镓材料具有更宽的带隙、更强的机械性能、更佳的化学稳定性、更成熟的材料生长和器件制备技术等优势,因此,氮化镓核探测器必将发展成为环境监测、核医学、工业无损检测、安全检查、核武器突防、航空航天、天体物理和高能物理等领域的新一代廉价室温半导体核辐射探测器。
本发明针对于氮化镓核探测器所需的双面结构,开发了基于半绝缘氮化镓衬底的双面外延生长方法,该方法简单易行,生长周期短,是实现氮化镓核探测器结构高质量、低成本外延生长的有效解决方案。
发明内容
本发明提出的是一种基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法,其目的是针对氮化镓核探测器结构,进行基于半绝缘氮化镓衬底的双面外延生长,为氮化镓核探测器的制备提供材料基础。
本发明的技术解决方案:一种基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法,具体包括如下步骤:
(1)将氮化镓衬底放入金属有机物化学气相沉积***中(镓面朝上),通入氢气作为载气,同时通入氨气进行保护,其流量为2000~3000sccm,在高温1000~1050℃、反应腔压强100~200torr下加热烘烤0.5~1min,清洁衬底表面;
(2)降低温度至900~950℃,反应腔压强100~200torr,继续通入氨气,其流量为2000~3000sccm,同时通入三甲基镓和硅烷,外延生长n型镓面氮化镓薄膜,三甲基镓流量为20~30sccm,硅烷流量为1~1.5sccm;
(3)待n型镓面氮化镓薄膜生长结束后,反应腔降温过程中,停止通入三甲基镓和硅烷,继续通入氨气进行保护;
(4)反应腔温度降至常温后,将氮化镓衬底翻转后再次放入反应腔中(氮面朝上),氢气作为载气,同时通入氨气进行保护,其流量为2000~3000sccm,在高温1000~1050℃、反应腔压强100~200torr下加热烘烤0.5~1min,清洁衬底表面;
(5)降低温度至900~950℃,反应腔压强100~200torr,继续通入氨气,其流量为2000~3000sccm,同时通入三甲基镓和硅烷,外延生长n型氮面氮化镓薄膜,三甲基镓流量为20~30sccm,硅烷流量为1~1.5sccm。
本发明方法简单易行,生长周期短,是实现氮化镓核探测器结构高质量、低成本外延生长的有效解决方案。
附图说明
附图1是本发明的一个实施例的工艺流程。
具体实施方式
下面参照本发明的附图1,详细的描述本发明的实施例。
实施例1:
基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法,包括如下步骤:
(1)用金属有机物化学气相沉积设备,衬底采用半绝缘氮化镓衬底10,将衬底放入金属有机物化学气相沉积***中(镓面朝上),通入氢气作为载气,同时通入氨气进行保护,其流量为2000sccm,并在高温1050℃、反应腔压强100torr下加热烘烤1min,清洁衬底表面;
(2)降低温度至950℃,反应腔压强200torr,继续通入氨气,其流量为3000sccm,同时通入三甲基镓和硅烷,外延生长n型镓面氮化镓薄膜20,三甲基镓流量为20sccm,硅烷流量为1.5sccm。n型镓面氮化镓薄膜厚度为100nm;
(3)待n型镓面氮化镓薄膜生长结束后,反应腔降温过程中,停止通入三甲基镓和硅烷,继续通入氨气进行保护;
(4)反应腔温度降至常温后,将氮化镓衬底翻转后再次放入反应腔中(氮面朝上),氢气作为载气,同时通入氨气进行保护,其流量为2000sccm,在高温1000℃、反应腔压强100torr下加热烘烤0.5min,清洁衬底表面;
(5)降低温度至900℃,反应腔压强200torr,继续通入氨气,其流量为3000sccm,同时通入三甲基镓和硅烷,外延生长n型氮面氮化镓薄膜30,三甲基镓流量为20sccm,硅烷流量为1.5sccm,n型氮面氮化镓薄膜厚度为100nm。
以上制作实施例为本发明的一般实施方案,制作方法上实际可采用的制作方案是很多的,凡依本发明所做的均等变化与装饰,均属于本发明的涵盖范围。

Claims (4)

1.基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法,其特征是包括如下步骤:
(1)将氮化镓衬底放入金属有机物化学气相沉积***中(镓面朝上),通入氢气作为载气,同时通入氨气进行保护,其流量为2000~3000sccm,在高温1000~1050℃、反应腔压强100~200torr下加热烘烤0.5~1min,清洁衬底表面;
(2)降低温度至900~950℃,反应腔压强100~200torr,继续通入氨气,其流量为2000~3000sccm,同时通入三甲基镓和硅烷,外延生长n型镓面氮化镓薄膜,三甲基镓流量为20~30sccm,硅烷流量为1~1.5sccm;
(3)待n型镓面氮化镓薄膜生长结束后,反应腔降温过程中,停止通入三甲基镓和硅烷,继续通入氨气进行保护;
(4)反应腔温度降至常温后,将氮化镓衬底翻转后再次放入反应腔中(氮面朝上),氢气作为载气,同时通入氨气进行保护,其流量为2000~3000sccm,在高温1000~1050℃、反应腔压强100~200torr下加热烘烤0.5~1min,清洁衬底表面;
(5)降低温度至900~950℃,反应腔压强100~200torr,继续通入氨气,其流量为2000~3000sccm,同时通入三甲基镓和硅烷,外延生长n型氮面氮化镓薄膜,三甲基镓流量为20~30sccm,硅烷流量为1~1.5sccm。
2.根据权利要求1所述的一种基于氮化镓核探测器结构的双面氮化镓薄膜的外延生长方法,其特征在于所述衬底材料为半绝缘氮化镓衬底。
3.根据权利要求1所述的一种基于氮化镓核探测器结构的双面氮化镓薄膜的外延生长方法,其特征在于步骤(2)所述的n型镓面氮化镓薄膜厚度为100~150nm。
4.根据权利要求1所述的一种基于氮化镓核探测器结构的双面氮化镓薄膜的外延生长方法,其特征在于步骤(5)所述的n型氮面氮化镓薄膜厚度为100~150nm。
CN201610222824.2A 2016-04-12 2016-04-12 基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法 Pending CN105755535A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610222824.2A CN105755535A (zh) 2016-04-12 2016-04-12 基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610222824.2A CN105755535A (zh) 2016-04-12 2016-04-12 基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法

Publications (1)

Publication Number Publication Date
CN105755535A true CN105755535A (zh) 2016-07-13

Family

ID=56334622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610222824.2A Pending CN105755535A (zh) 2016-04-12 2016-04-12 基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法

Country Status (1)

Country Link
CN (1) CN105755535A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035226A1 (en) * 2016-08-16 2018-02-22 Texas Instruments Incorporated Process enhancement using double sided epitaxial on substrate
CN113053731A (zh) * 2021-03-05 2021-06-29 中国科学院苏州纳米技术与纳米仿生研究所 镓金属薄膜的制作方法以及氮化镓衬底的保护方法
CN117059478A (zh) * 2023-10-13 2023-11-14 中国科学院苏州纳米技术与纳米仿生研究所 GaN基板的制备方法、GaN基板及其外延生长方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724910A (zh) * 2009-12-02 2010-06-09 南京大学 消除GaN厚膜材料表面缺陷的方法
CN102719887A (zh) * 2012-06-13 2012-10-10 中国电子科技集团公司第五十五研究所 一种基于氮化镓衬底的高质量氮化镓外延薄膜的生长方法
CN102925968A (zh) * 2012-10-17 2013-02-13 中国电子科技集团公司第五十五研究所 一种氮化物单晶薄膜的应变调控方法
CN103614769A (zh) * 2013-10-25 2014-03-05 中国电子科技集团公司第五十五研究所 一种基于原位刻蚀的氮化镓同质外延方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724910A (zh) * 2009-12-02 2010-06-09 南京大学 消除GaN厚膜材料表面缺陷的方法
CN102719887A (zh) * 2012-06-13 2012-10-10 中国电子科技集团公司第五十五研究所 一种基于氮化镓衬底的高质量氮化镓外延薄膜的生长方法
CN102925968A (zh) * 2012-10-17 2013-02-13 中国电子科技集团公司第五十五研究所 一种氮化物单晶薄膜的应变调控方法
CN103614769A (zh) * 2013-10-25 2014-03-05 中国电子科技集团公司第五十五研究所 一种基于原位刻蚀的氮化镓同质外延方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李亮等: "高质量GaN薄膜的MOCVD同质外延生长", 《人工晶体学报》 *
陆敏等: "GaN核辐射探测器材料与器件研究金针", 《原子能科学技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035226A1 (en) * 2016-08-16 2018-02-22 Texas Instruments Incorporated Process enhancement using double sided epitaxial on substrate
US10002870B2 (en) 2016-08-16 2018-06-19 Texas Instruments Incorporated Process enhancement using double sided epitaxial on substrate
US10304827B2 (en) 2016-08-16 2019-05-28 Texas Instruments Incorporated Process enhancement using double sided epitaxial on substrate
US11056490B2 (en) 2016-08-16 2021-07-06 Texas Instruments Incorporated Process enhancement using double sided epitaxial on substrate
CN113053731A (zh) * 2021-03-05 2021-06-29 中国科学院苏州纳米技术与纳米仿生研究所 镓金属薄膜的制作方法以及氮化镓衬底的保护方法
CN113053731B (zh) * 2021-03-05 2024-05-17 中国科学院苏州纳米技术与纳米仿生研究所 镓金属薄膜的制作方法以及氮化镓衬底的保护方法
CN117059478A (zh) * 2023-10-13 2023-11-14 中国科学院苏州纳米技术与纳米仿生研究所 GaN基板的制备方法、GaN基板及其外延生长方法
CN117059478B (zh) * 2023-10-13 2024-01-23 中国科学院苏州纳米技术与纳米仿生研究所 GaN基板的制备方法、GaN基板及其外延生长方法

Similar Documents

Publication Publication Date Title
EP3547349B1 (en) Method for reducing silicon carbide epitaxial basal plane dislocation density
Rabiee Golgir et al. Fast growth of GaN epilayers via laser-assisted metal–organic chemical vapor deposition for ultraviolet photodetector applications
JP2008515175A5 (zh)
US20100105190A1 (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
WO2012170150A3 (en) Selective deposition of polymer films on bare silicon instead of oxide surface
CN105755535A (zh) 基于氮化镓核探测器结构的双面氮化镓薄膜外延生长方法
So et al. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors
Lee et al. Nanoscale GaN epilayer grown by atomic layer annealing and epitaxy at low temperature
US9324898B2 (en) Varying cadmium telluride growth temperature during deposition to increase solar cell reliability
Shin et al. A GaN nanoneedle inorganic/organic heterojunction structure for optoelectronic devices
Kim et al. Temperature-dependent photoluminescence of boron-doped ZnO nanorods
WO2011022519A1 (en) Substrates and methods of fabricating doped epitaxial silicon carbide structures with sequential emphasis
JP6812962B2 (ja) エピタキシャルシリコンウェーハの製造方法
CN104328390B (zh) 一种GaN/金刚石膜复合片的制备方法
CN103710757A (zh) 一种改善铟镓氮外延材料表面质量的生长方法
CN103938268B (zh) 一种降低碳化硅外延片表面颗粒密度的方法
CN101831613B (zh) 利用非极性ZnO缓冲层生长非极性InN薄膜的方法
CN103320764B (zh) 基于a面6H-SiC衬底上a面GaN缓冲层上InN半导体器件的制备方法
CN103346071A (zh) 含有SiNx***层的InN半导体器件的制备方法
CN103311100A (zh) 含有非极性m面GaN缓冲层的InN半导体器件的制备方法
WO2015004767A1 (ja) 太陽電池の製造方法
Wang et al. Hydrogenated amorphous si deposition for high efficiency a-Si/c-Si heterojunction solar cells
CN102674319B (zh) 基于C注入的Ni膜辅助退火石墨烯纳米带制备方法
CN104037282A (zh) 生长在Si衬底上的AlGaN薄膜及其制备方法和应用
CN108648988B (zh) 一种降低碳化硅多层结构中p型记忆效应的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160713