CN105705278A - 单晶合金构件的分层制造 - Google Patents

单晶合金构件的分层制造 Download PDF

Info

Publication number
CN105705278A
CN105705278A CN201480062336.9A CN201480062336A CN105705278A CN 105705278 A CN105705278 A CN 105705278A CN 201480062336 A CN201480062336 A CN 201480062336A CN 105705278 A CN105705278 A CN 105705278A
Authority
CN
China
Prior art keywords
component
control apparatus
thermal control
external thermal
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480062336.9A
Other languages
English (en)
Other versions
CN105705278B (zh
Inventor
T.J.罗克斯特罗
M.F.X.吉吉利奥蒂
W.T.卡特
D.H.阿博特
R.M.克尔卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53268857&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105705278(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN105705278A publication Critical patent/CN105705278A/zh
Application granted granted Critical
Publication of CN105705278B publication Critical patent/CN105705278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/005Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/02Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method without using solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/06Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0061Heating devices using lamps for industrial applications for metal treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/101Induction heating apparatus, other than furnaces, for specific applications for local heating of metal pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/24Rotors for turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

一种制造构件(C)的方法包括:将金属粉末(P)沉积在工作面(128)上;从定向能量源(124)引导射束来以对应于构件(C)的截面层的图案熔化粉末(P);在循环中重复沉积和熔化的步骤来以逐层方式构造构件(C);以及在沉积和熔化的循环期间,使用与定向能量源(124)分开的外部热控制设备(144,146,150,154)保持构件(C)的预定温度轮廓,使得所得到的构件(C)具有定向固化或单晶微观结构。

Description

单晶合金构件的分层制造
技术领域
本发明大体上涉及涡轮构件,并且更具体地涉及用于构造用于高温环境中的单晶涡轮构件的设备及方法。
背景技术
典型燃气涡轮发动机包括涡轮机核心,其具有成串流关系的高压压缩机、燃烧器和高压涡轮。核心可以以已知方式操作来生成主气流。高压涡轮包括一个或多个级,其从主气流取得能量。各个级均包括静止涡轮喷嘴,随后是承载涡轮叶片的下游转子。这些"热区段"构件在极高温度的环境中操作,其促进金属合金的热腐蚀和氧化。
在现有技术中,热区段构件通常由具有良好抗高温蠕变的镍基或钴基合金(通常称为"超级合金")铸造成。这些合金主要设计成满足机械性质要求,诸如蠕变断裂强度和疲劳强度。
铸造过程已知的是产生期望的微观结构,例如,定向固化("DS")或单晶("SX")。单晶微观结构是指没有结晶晶界的结构。单晶铸造需要晶种元件(即,用于冷却的成核点),以及冷却期间对温度的仔细控制。
增材制造为铸造的备选过程,其中材料逐层构建以形成构件。不同于铸造过程,增材制造仅由机器的位置辨析率限制,且不由如铸造所需的提供倾斜角(draftangle)、避免悬垂等的要求限制。增材制造还由诸如"分层制造"、"反向加工"、"直接金属激光熔化"(DMLM)和"3-D打印"的用语指出。此用语作为针对本发明的目的的同义词看待。
现有技术已知用于使用增材制造来产生热区段构件。例如,授予Morris等人的美国专利申请公告2011/013592描述了一种工艺,其中构件通过沉积金属粉末随后激光熔化的重复循环而构建。激光热输入足以对于构件的一部分保持所需的溶解温度,但不可产生具有完全的单晶微观结构的构件。
因此,所需的是一种用于具有单晶微观结构的构件的增材制造的工艺。
发明内容
该需求通过本发明解决,其提供了用于单晶合金构件的分层制造的设备和方法。设备和方法结合外部热控制设备的使用以有效地控制构造下的构件的温度。
根据本发明的一个方面,一种制造构件的方法包括:将金属粉末沉积在工作面上;从定向能量源引导射束来以对应于构件的截面层的图案熔化粉末;在循环中重复沉积和熔化的步骤来以逐层方式构造构件;以及在沉积和熔化的循环期间,使用与定向能量源分开的外部热控制设备保持构件的预定温度轮廓,使得所得到的构件具有定向固化或单晶微观结构。
根据本发明的另一个方面,粉末和构件支承在构造平台上,平台可沿垂直轴线移动。
根据本发明的另一个方面,该方法还包括在熔化粉末的各个步骤之后降低构造平台达到选择的层增量。
根据本发明的另一个方面,外部热控制设备包括包绕构件的隔热物的层。
根据本发明的另一个方面,外部热控制设备包括包绕构件的加热器。
根据本发明的另一个方面,外部热控制设备包括定位在构件附近的石英灯。
根据本发明的另一个方面,外部热控制设备包括包绕构件的至少一个感应线圈。
根据本发明的另一个方面,外部热控制设备用于将构件保持在溶解温度。
根据本发明的另一个方面,外部热控制设备用于在沉积和熔化期间控制构件的温度和加热速率两者。
根据本发明的另一个方面,一种用于制造金属构件的设备包括:构造封壳,其配置成保持预定成分的金属粉末;定向能量源,其可操作成产生适合用于熔化金属粉末的能量射束;射束操纵设备,其可操作成引导能量射束以对应于构件的截面层的图案越过金属粉末;以及与定向能量源分开的外部热控制设备,其可操作成保持构造封壳内的预定温度轮廓。
根据本发明的另一个方面,设备还包括设置在构造封壳内的构造平台,构造平台可沿垂直轴线移动。
根据本发明的另一个方面,外部热控制设备包括包绕构件的隔热物的层。
根据本发明的另一个方面,外部热控制设备包括包绕构件的加热器。
根据本发明的另一个方面,外部热控制设备包括定位在构件附近的石英灯。
根据本发明的另一个方面,外部热控制设备包括包绕构造封壳的至少一个感应线圈。
根据本发明的另一个方面,感应线圈安装在构造封壳上方。
根据本发明的另一个方面,感应线圈通过连接到促动器的臂安装在构造封壳上方,其中促动器可操作成使感应线圈在使用中的位置与远离构造封壳的缩回位置之间移动。
附图说明
本发明可连同附图参照以下描述来最佳地理解,在附图中:
图1为根据本发明的方面构建的示例性涡轮构件的示意性透视图;
图2为根据本发明的方面构建的增材制造设备的局部截面示意性侧视图;
图3为沿图2的线3-3截取的视图;
图4为根据本发明的方面构建的增材制造设备的局部截面示意性侧视图;
图5为沿图4的线5-5截取的视图;
图6为根据本发明的方面构建的增材制造设备的局部截面示意性侧视图;
图7为沿图6的线7-7截取的视图;以及
图8为根据本发明的方面构建的备选涡轮构件的示意性透视图。
具体实施方式
参看附图,其中相同的参考标号表示贯穿各个视图的相同元件,图1示出了示例性涡轮叶片10。涡轮叶片10包括常规燕尾部12,其可具有包括柄脚的任何适合形式,柄脚接合转子盘(未示出)中的燕尾槽的互补的柄脚,以用于在其在操作期间旋转时将叶片10固持至盘。叶柄14从燕尾部12沿径向向上延伸,且终止于平台16,平台16从柄部14沿侧向向外突出且包绕柄部14。中空翼型件18从平台16沿径向向外延伸且延伸到热气流中。翼型件具有在平台16和翼型件18的接合处的根部20,以及在其径向外端处的末梢22。翼型件18具有在前缘28处和在后缘30处接合在一起的凹形压力侧壁24和凸形吸力侧壁26。翼型件18可采用适合于从热气流获得能量且引起转子盘的旋转的任何构造。翼型件18可包括多个后缘冷却孔32,或其可在翼型件18的压力侧壁24上包括一定数目的后缘放出槽口(未示出)。翼型件18的末梢22由末梢盖34封闭,末梢盖34可整体结合到翼型件18,或单独地形成且附接到翼型件18。直立的声响器末梢36从末梢盖34沿径向向外延伸,且设置成紧邻组装的发动机中的静止护罩(未示出),以便最大限度减少越过末梢22的气流损失。声响器末梢36包括与压力侧末梢壁40成间隔开的关系设置的吸力侧末梢壁38。末梢壁40和38整体结合到翼型件18,且分别形成压力侧壁24和吸力侧壁26的延伸部。压力侧末梢壁40和吸力侧末梢壁38的外表面分别形成与压力侧壁24和吸力侧壁26的外表面连续的表面。多个膜冷却孔44穿过翼型件18的外壁。膜冷却孔44与翼型件18的内部空间(未示出)连通,内部空间可包括由内壁限定的冷却通路的复杂布置,诸如蛇形构造。
为了具有足够的蠕变断裂强度和疲劳强度,且为了抵抗热腐蚀和氧化,涡轮叶片10由诸如具有良好抗高温蠕变的镍基或钴基合金(通常称为"超级合金")的材料制成。
本发明提供了一种用于使用增材制造方法产生具有单晶(SX)微观结构的构件的方法及设备。上文所述的涡轮叶片仅为需要此材料和微观结构且可使用本发明的原理制造的许多类型的构件的一个示例。当描述本发明的过程和设备时,将使用用语"构件",指定为"C"。
图2示意性地示出了用于执行本发明的制造方法的设备100。基础构件为台112、粉末供应源114、刮具116、溢出容器118、可选由构造封壳122包绕的构造平台120、定向能量源124,以及射束操纵设备126。这些构件中的各个将在下文中更详细描述。设备100还包括外部热控制设备,其将在下文中描述。
台112为提供平坦工作表面128的刚性结构。工作表面128与虚拟工作面共面且限定虚拟工作面。在所示的示例中,其包括与构造封壳122连通且暴露构造平台120的中心开口130、与粉末供应源114连通的供应开口132,以及与溢出容器118连通的溢出开口134。
刮具116为位于工作表面128上的刚性侧向伸长的结构。其连接到促动器136,促动器136可操作成使刮具116沿工作表面128选择性地移动。促动器136在图2中示意性地绘出,其中理解到诸如气动或液压缸、滚珠螺杆或线性电促动器等的装置可用于此目的。
粉末供应源114包括供应容器138,其在供应开口之下且与其连通,以及升降器140。升降器140为板状结构,其可在供应容器138内垂直地滑动。其连接到促动器142,促动器142可操作成使升降器140选择性地向上或向下移动。促动器142在图2中示意性地绘出,其中理解到诸如气动或液压缸、滚珠螺杆或线性电促动器等的装置可用于此目的。当升降器140降低时,期望的合金成分的金属粉末"P"的供应可装载到供应容器138中。当升高升降器140时,其使粉末P暴露在工作表面128上方。
构造平台120为板状结构,其可在中心开口130下方垂直地滑动。其连接到促动器121,促动器121可操作成使构造平台120选择性地向上或向下移动。促动器121在图2中示意性地绘出,其中理解到诸如气动或液压缸、滚珠螺杆或线性电促动器等的装置可用于此目的。
溢出容器118在溢出开口134之下且与其连通,且用作多余粉末P的储存器。
定向能量源124可包括可操作成生成适合功率的射束以及在构造过程期间熔融和熔化金属粉末的其它操作特征的任何已知的装置,如下文更详细描述的那样。例如,定向能量源124可为具有大约104W/cm2的数量级的输出功率密度的激光器。其它定向能量源(诸如电子束枪)为激光器的适合的备选方案。
射束操纵设备126包括一个或多个反射镜、棱镜和/或透镜,且设有适合的促动器,且布置成使得来自定向能量源124的射束"B"可聚焦至期望的斑点大小,且在与工作表面128一致的X-Y平面中操纵至期望位置。
如本文使用的用语"外部热控制设备"是指不同于定向能量源124的设备,其有效地将定位在构造平台120上的构件C保持在适合的溶解温度下(即,保持预定的温度轮廓),且因此在构造过程期间控制固化粉末P的结晶性质。如下文更详细所述,外部热控制设备可通过直接地用作热源(即,热能输入)或通过保持由定向能量加热过程生成的热来操作。外部热控制设备与定向能量源124物理地且功能地分开。
图2-图7中示出了各种类型的外部热控制设备的示例。在图2和图3中,隔热物144的层包绕构造封壳122。隔热物144有效阻止热从构造的构件C传递,从而减小其冷却速率且保持升高的温度。
图4和图5示出了包括一个或多个加热器的外部热控制设备。带型电阻加热器146环绕在构造封壳122的外部,且连接到电功率源148。在启用时,加热器146通过热传导加热构造封壳122(且因此内部的构件C)。
外部热控制设备的另一可选类型为辐射加热源。例如,图4示出了布置成具有至构件C的视线且连接到电功率源152的石英灯150(也称为石英卤素灯)。此灯是市售的,分别额定为几千瓦输出。当启用时,石英灯150通过辐射热传递来加热构件C。石英灯150可替代上文所述的带加热器146使用或除其之外使用。
外部热控制设备的另一个选择为感应加热,其中在感应线圈中流动的AC电流感应出磁场,其继而又在附近传导物体中感应出涡流,导致物体的电阻加热。在图6和图7中所示的示例中,感应加热器154包括包绕构造平台120的一个或多个独立的感应线圈156,其连接到电功率源158。在所示的示例中,提供了多个感应线圈156,但单匝线圈可能就足够。在启用时,感应加热器154有效加热构件C。由发明人根据经验证明的是,此类外部感应加热154将优选加热粉末床内的熔化/固化构件C,而不将疏松粉末P充分加热至引起其熔化或以其它方式附接到构造的构件C。线圈156附近的构件(例如构造平台120和构造封壳122)必须由适合的非传导性材料制成,以避免来自感应加热器154的加热。
可选地,设备可包括另一个感应加热器154',其包括连接到电功率源158'的感应线圈156'。感应加热器154'通过连接到促动器161的臂159定位在构造平台120上且在工作表面128上方。促动器161可操作成使感应加热器154'在图6中所示的延伸或"使用中"的位置与远离工作表面128的缩回位置之间移动。
使用上文所述的设备的用于单晶构件"C"的构造过程如下。构造平台120移动到初始高的位置。晶种元件160(见图2)置于构造平台120上。晶种元件160用作用于冷却的成核点,且具有选择的结晶结构。如果期望制造单晶构件C,则晶种元件将具有单晶微观结构。此晶种元件160可由已知技术制成。一旦定位晶种元件160,则构造平台120降低到工作表面128以下达到选择的层增量。层增量影响增材制造过程的速度和构件C的辨析率。举例来说,层增量可为大约10到50微米(0.0003到0.002英寸)。粉末"P"然后沉积在构造平台120和晶种元件160上。例如,供应容器138的升降器140可升高来推动粉末通过供应开口132,以使其暴露在工作表面128上方。刮具116移动越过工作表面,以使升高的粉末P在构造平台120上水平地扩散。当刮具116从左行进到右时,任何多余的粉末P通过溢出开口134落入溢出容器118中。随后,刮具116可缩回到起始位置。
定向能量源124用于熔化构造的构件C的二维截面或层。定向能量源124发射射束"B",且射束操纵设备126用于以适合图案在暴露的粉末表面上操纵射束B的焦点"S"。粉末P的暴露层由射束B加热至允许其融化、流动和固结的温度。该步骤可称为熔化粉末P。
构造平台120垂直地向下移动达到层增量,且另一层粉末P以类似的厚度施加。定向能量源124再次发射射束B,且射束操纵设备126用于以适合图案在暴露的粉末表面上操纵射束B的焦点S。粉末P的暴露层由射束B加热至允许其在顶层内且与之前固化的较低层一起融化、流动和固结的温度,再次保持下方的层的结晶定向。
移动构造平台120、施加粉末P和然后定向能量熔化粉末P的该循环重复,直到整个构件C完成。
保持整个构件C的单晶微观结构需要在制造期间控制整个构件C的温度和冷却速率。定向能量热输入足以保持构件C的最上方部分的所需温度,新的层主动地铺设在其附近,但并非用于其全部范围。为了解决该问题,本发明的方法在粉末沉积和定向能量熔化的循环期间使用外部热控制设备。
外部热控制设备可操作成控制整个构件C的温度和加热速率两者。例如,一种已知的溶解热处理包括以下步骤:(1)将构件加热至大约1260℃(2300℉)大约两小时以使微观结构均匀化,(2)以大约5.5℃(10℉)每小时的速率将温度从大约1260℃(2300℉)逐渐地升高到大约1320℃(2415℉)的溶解温度,然后(3)将构件保持在那个温度下大约两小时,随后是(4)在三分钟或更短内冷却至大约1120℃(2050℉)的老化温度。外部热控制设备有效实现执行该热处理和其它热处理所需的温度轮廓。
由于外部热控制设备与定向能量源124分开,故其还可用于其它热处理过程,诸如构造过程完成之后老化构件C。例如,一种已知的老化过程涉及在几小时的时期内在老化温度下初步老化该构件以实现期望的微观结构。
如果可选的感应加热器154'存在,则其可用于更直接地控制构件C的再熔化和固化以保持其结晶定向和微观结构。在上文所述的循环期间,感应加热器154'将移动到构件C的新近定向能量熔化的层上的延伸位置,且触动来按期望加热该层。如果需要,则定向能量源124可用于同时地再熔化暴露的层,直到感应加热器154'可移动就位。一旦期望的加热循环完成,则感应加热器154'将离开设备的其余部分缩回,使得粉末P的下一层可施加且定向能量熔化至下方的层。
上文所述的设备和方法可用于与其它方法组合来构建构件的全部或部分。例如,图8示出了涡轮叶片210,其具有燕尾部212、从燕尾部212沿径向向上延伸且终止于平台216中的叶柄214。中空翼型件218从平台216沿径向向外延伸。翼型件具有在平台216和翼型件218的接合处的根部220,以及在其径向外端处的末梢222。涡轮叶片210的下部(即,燕尾部212、柄部214、平台216和根部220)可使用常规铸造过程制成,且具有定向固化微观结构。翼型件218的本体可为使用上文所述的增材制造过程构建的单晶结构。置于铸造的下部上的单晶薄片221用作增材制造过程的晶种。
翼型件218(或上文所述的任何其它构件C)不需要具有均质的合金成分。成分可在增材制造过程期间通过改变粉末P的成分来改变,以产生构件C的变化的层或区段。例如,图8中所示的翼型件218可具有制造带有第一合金成分的径向内部或本体部分(虚线下方),以及制造带有不同于第一合金的第二合金成分的径向外部或末梢部分219(虚线上方)。例如,用于末梢部分219的合金可具有大于用于本体部分的合金的抗氧化性。
本文所述的过程具有优于现有技术的若干优点。增材制造过程更简单,且相比于常规熔模铸造需要少得多的过程步骤来产生构件。该工艺的构件产量可显著高于常规熔模铸造,例如,在90%的范围中对65%或更少。其还允许用于更精细的细节的技术,诸如冲击冷却、成形膜孔、湍流器结构和另外为"非可铸造"或"非可加工"的特征。
前文描述了用于单晶合金构件的分层制造的设备和方法。此说明书中公开的所有特征(包括任何所附权利要求、摘要和附图)和/或如此公开的任何方法或工艺的所有步骤可以以除至少一些此类特征和/或步骤相互排斥的组合外的任何组合来组合。
此说明书中公开的各个特征(包括任何所附权利要求、摘要和附图)可由用于相同、等同或类似目的的备选特征替换,除非明确另外指出。因此,除非明确另外指出,则公开的各个特征仅为普通的一系列等同或类似特征的一个示例。
本发明不限于前述实施例的细节。本发明延伸至此说明书(包括任何所附潜在新颖点、摘要和附图)中公开的任何新颖的一个特征或特征的任何新颖组合,或延伸至如此公开的任何方法或工艺的任何新颖的一个步骤或步骤的任何新颖组合。

Claims (17)

1.一种制造构件(C)的方法,包括:
将金属粉末(P)沉积在工作面(128)上;
从定向能量源(124)引导射束来以对应于所述构件(C)的截面层的图案熔化所述粉末(P);
在循环中重复沉积和熔化的步骤来以逐层方式构造所述构件(C);以及
在沉积和熔化的循环期间,使用与所述定向能量源(124)分开的外部热控制设备(144,146,150,154)保持所述构件(C)的预定温度轮廓,使得所得到的构件(C)具有定向固化或单晶微观结构。
2.根据权利要求1所述的方法,其特征在于,所述粉末(P)和构件(C)支承在可沿垂直轴线移动的构造平台(120)上。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括在熔化所述粉末(P)的各个步骤之后降低所述构造平台(120)达到选择的层增量。
4.根据权利要求1所述的方法,其特征在于,所述外部热控制设备(144)包括包绕所述构件(C)的隔热物(144)的层。
5.根据权利要求1所述的方法,其特征在于,所述外部热控制设备(146)包括包绕所述构件(C)的加热器(146)。
6.根据权利要求1所述的方法,其特征在于,所述外部热控制设备(150)包括定位在所述构件(C)附近的石英灯(150)。
7.根据权利要求1所述的方法,其特征在于,所述外部热控制设备(154)包括包绕所述构件(C)的至少一个感应线圈(154)。
8.根据权利要求1所述的方法,其特征在于,所述外部热控制设备(144,146,150,154)用于将所述构件(C)保持在溶解温度。
9.根据权利要求1所述的方法,其特征在于,所述外部热控制设备(144,146,150,154)用于在沉积和熔化期间控制所述构件(C)的温度和加热速率两者。
10.一种用于制造金属构件(C)的设备,包括:
构造封壳(122),其配置成保持预定成分的金属粉末(P);
定向能量源(124),其可操作成产生适合用于熔化所述金属粉末(P)的能量射束(B);
射束操纵设备(126),其可操作成引导所述能量射束(B)以对应于所述构件(C)的截面层的图案越过所述金属粉末(P);以及
与所述定向能量源(124)分开的外部热控制设备(144,146,150,154),其可操作成保持所述构造封壳(122)内的预定温度轮廓。
11.根据权利要求10所述的设备(144,146,150,154),其特征在于,所述设备还包括设置在所述构造封壳(122)内的构造平台(120),所述构造平台(120)可沿垂直轴线移动。
12.根据权利要求10所述的设备,其特征在于,所述外部热控制设备(144)包括包绕所述构件(C)的隔热物(144)的层。
13.根据权利要求10所述的设备,其特征在于,所述外部热控制设备(146)包括包绕所述构件(C)的加热器(146)。
14.根据权利要求10所述的设备,其特征在于,所述外部热控制设备(144,146,150,154)包括定位在所述构件(C)附近的石英灯。
15.根据权利要求10所述的设备,其特征在于,所述外部热控制设备(144,146,150,154)包括包绕所述构造封壳的至少一个感应线圈。
16.根据权利要求15所述的设备,其特征在于,感应线圈(156')安装在所述构造封壳(122)上方。
17.根据权利要求16所述的设备,其特征在于,所述感应线圈(154')通过连接到促动器(161)的臂(159)安装在所述构造封壳(122)上方,其中所述促动器(161)可操作成使所述感应线圈(156')在使用中的位置与远离所述构造封壳(122)的缩回位置之间移动。
CN201480062336.9A 2013-11-14 2014-11-12 单晶合金构件的分层制造 Active CN105705278B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361904183P 2013-11-14 2013-11-14
US61/904183 2013-11-14
PCT/US2014/065205 WO2015119692A2 (en) 2013-11-14 2014-11-12 Layered manufacturing of single crystal alloy components

Publications (2)

Publication Number Publication Date
CN105705278A true CN105705278A (zh) 2016-06-22
CN105705278B CN105705278B (zh) 2018-06-22

Family

ID=53268857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480062336.9A Active CN105705278B (zh) 2013-11-14 2014-11-12 单晶合金构件的分层制造

Country Status (6)

Country Link
US (3) US10569362B2 (zh)
EP (1) EP3068929B2 (zh)
JP (1) JP6216881B2 (zh)
CN (1) CN105705278B (zh)
CA (1) CA2930572C (zh)
WO (1) WO2015119692A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520234A (zh) * 2017-02-22 2019-11-29 通用电气公司 使用超薄板来修理涡轮构件的方法
CN110536772A (zh) * 2017-02-22 2019-12-03 通用电气公司 制造涡轮翼型件及其末梢构件的方法
CN110695358A (zh) * 2019-11-11 2020-01-17 北京理工大学 一种钛合金单晶叶片的丝材增材制造方法
CN111278589A (zh) * 2017-10-31 2020-06-12 株式会社Ihi 金属部件的制造方法
CN111872395A (zh) * 2020-09-28 2020-11-03 西安赛隆金属材料有限责任公司 镍基合金单晶或定向凝固零件的制备方法
CN114769624A (zh) * 2022-03-23 2022-07-22 南京航空航天大学 原位自热效应辅助3D打印成形TiAl复杂金属构件的装置及其方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8888480B2 (en) * 2012-09-05 2014-11-18 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
US10532556B2 (en) 2013-12-16 2020-01-14 General Electric Company Control of solidification in laser powder bed fusion additive manufacturing using a diode laser fiber array
JP6344004B2 (ja) * 2014-03-28 2018-06-20 国立大学法人大阪大学 単結晶の製造方法
DE102015205314A1 (de) * 2015-03-24 2016-09-29 Siemens Aktiengesellschaft Anlage für ein additives Herstellungsverfahren mit Heizeinrichtung für den Pulverraum
GB201513532D0 (en) 2015-07-31 2015-09-16 Rolls Royce Plc A method and an apparatus
US10343392B2 (en) * 2015-08-27 2019-07-09 General Electric Company Powder-bed additive manufacturing devices and methods
US20170067344A1 (en) * 2015-09-03 2017-03-09 General Electric Company Rotating component, method of forming a rotating component and apparatus for forming a rotating component
JP6553102B2 (ja) * 2016-02-03 2019-07-31 ゼネラル・エレクトリック・カンパニイ ダイオードレーザファイバーアレイを用いたレーザ粉体床溶融結合付加製造における凝固制御法
DE102016201836A1 (de) * 2016-02-08 2017-08-10 Siemens Aktiengesellschaft Vorrichtung für eine Anlage zur additiven Herstellung eines Bauteils
US10722946B2 (en) * 2016-04-25 2020-07-28 Thomas Strangman Methods of fabricating turbine engine components
US10926328B2 (en) * 2016-10-20 2021-02-23 Huntington Ingalls Incorporated System and method for in-situ inspection of additive manufacturing materials and builds
US10625342B2 (en) 2017-02-22 2020-04-21 General Electric Company Method of repairing turbine component
US10702958B2 (en) 2017-02-22 2020-07-07 General Electric Company Method of manufacturing turbine airfoil and tip component thereof using ceramic core with witness feature
US10610933B2 (en) * 2017-02-22 2020-04-07 General Electric Company Method of manufacturing turbine airfoil with open tip casting and tip component thereof
US10717130B2 (en) 2017-02-22 2020-07-21 General Electric Company Method of manufacturing turbine airfoil and tip component thereof
US20180264549A1 (en) * 2017-03-15 2018-09-20 Applied Materials Inc. Lamp configuration for Additive Manufacturing
WO2018194481A1 (en) * 2017-04-19 2018-10-25 Siemens Aktiengesellschaft Additive manufacturing technique including direct resistive heating of a workpiece
US11260475B2 (en) * 2017-08-07 2022-03-01 Board Of Regents, The University Of Texas System Method and system for powder bed fusion additive manufacturing of crack-free aluminum alloys
US10589351B2 (en) 2017-10-30 2020-03-17 United Technologies Corporation Method for magnetic flux compensation in a directional solidification furnace utilizing an actuated secondary coil
US10760179B2 (en) 2017-10-30 2020-09-01 Raytheon Technologies Corporation Method for magnetic flux compensation in a directional solidification furnace utilizing a stationary secondary coil
US10711367B2 (en) 2017-10-30 2020-07-14 Raytheon Technoiogies Corporation Multi-layer susceptor design for magnetic flux shielding in directional solidification furnaces
DE102018204316A1 (de) * 2018-03-21 2019-09-26 Siemens Aktiengesellschaft Anlage und Verfahren zum Laserauftragsschweißen mit Umschmelzen zur Kornvergrößerung
DE102018004337A1 (de) * 2018-05-30 2019-12-05 Rosswag Gmbh Verfahren zur Entwicklung von Schmiedewerkstoffen
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US20200101535A1 (en) * 2018-09-27 2020-04-02 The Boeing Company Additive manufacturing systems and method
DE102018128242A1 (de) * 2018-11-12 2020-05-14 SLM Solutions Group AG Pulverauftragsvorrichtung, Verfahren zum Betreiben einer Pulverauftragsvorrichtung und Anlage zur Herstellung eines dreidimensionalen Werkstücks
WO2020112176A1 (en) * 2018-11-29 2020-06-04 Arconic Inc. Systems and methods for additive manufacturing
SE544890C2 (en) * 2020-04-17 2022-12-20 Freemelt Ab Preheating of powder bed

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542173A (zh) * 2003-11-10 2004-11-03 北京航空航天大学 定向生长柱晶及单晶钛合金的制备方法
EP1637274A1 (en) * 2004-09-16 2006-03-22 Rolls-Royce Plc Forming structures by laser deposition
US20110135952A1 (en) * 2009-12-04 2011-06-09 Honeywell International Inc. Turbine components for engines and methods of fabricating the same
CN102549178A (zh) * 2009-08-21 2012-07-04 谢菲尔德大学 用于形成物体的方法、装置、计算机可读的存储介质和计算机程序
US20120213659A1 (en) * 2009-10-30 2012-08-23 Mtu Aero Engines Gmbh Method and device for producing a component of a turbomachine
EP2565294A1 (en) * 2011-08-29 2013-03-06 Siemens Aktiengesellschaft Manufacturing a component of single crystal or directionally solidified material

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US818191A (en) 1905-04-13 1906-04-17 William J Ramsaier Registering device for presses.
CA1339811C (en) 1981-12-30 1998-04-14 David Noel Duhl High strenght corrosion resistant nickel base single crystal article
US4758157A (en) * 1985-03-11 1988-07-19 Hailey Robert W Heating and handling system for objects
US4874312A (en) * 1985-03-11 1989-10-17 Hailey Robert W Heating and handling system for objects
US7043819B1 (en) 1996-12-23 2006-05-16 Recast Airfoil Group Methods for forming metal parts having superior surface characteristics
US6049978A (en) 1996-12-23 2000-04-18 Recast Airfoil Group Methods for repairing and reclassifying gas turbine engine airfoil parts
US6355086B2 (en) 1997-08-12 2002-03-12 Rolls-Royce Corporation Method and apparatus for making components by direct laser processing
FI982407A0 (fi) * 1998-03-03 1998-11-06 Adaptamat Tech Oy Toimielimet ja laitteet
US6031207A (en) * 1999-01-26 2000-02-29 Harper International Corp. Sintering kiln
WO2002042023A1 (en) 2000-11-27 2002-05-30 National University Of Singapore Method and apparatus for creating a three-dimensional metal part using high-temperature direct laser melting
DE10104732C1 (de) 2001-02-02 2002-06-27 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum selektiven Laser-Schmelzen von metallischen Werkstoffen
JP3916490B2 (ja) * 2002-03-28 2007-05-16 株式会社神戸製鋼所 熱間等方圧プレス装置および熱間等方圧プレス方法
ITBO20020523A1 (it) * 2002-08-05 2004-02-06 Azionaria Costruzioni Acma Spa Macchina per il riempimento di contenitori.
EP1400339A1 (de) * 2002-09-17 2004-03-24 Siemens Aktiengesellschaft Verfahren zum Herstellen eines dreidimensionalen Formkörpers
DE10319494A1 (de) 2003-04-30 2004-11-18 Mtu Aero Engines Gmbh Verfahren zur Reparatur und/oder Modifikation von Bauteilen einer Gasturbine
US20060121196A1 (en) * 2004-12-07 2006-06-08 Clifford Tanaka CVC process with coated substrates
US7357629B2 (en) * 2005-03-23 2008-04-15 3D Systems, Inc. Apparatus and method for aligning a removable build chamber within a process chamber
DE102005024790A1 (de) * 2005-05-26 2006-12-07 Eos Gmbh Electro Optical Systems Strahlungsheizung zum Heizen des Aufbaumaterials in einer Lasersintervorrichtung
DE102006049219A1 (de) 2006-10-18 2008-04-30 Mtu Aero Engines Gmbh Hochdruckturbinen-Schaufel und Verfahren zur Reparatur von Hochdruckturbinen-Schaufeln
DE102006058949A1 (de) 2006-12-14 2008-06-19 Inno-Shape Gmbh Vorrichtung und Verfahren zur Reparatur oder Herstellung von Schaufelspitzen von Schaufeln einer Gasturbine, insbesondere eines Flugtriebwerkes
US7980817B2 (en) 2007-04-16 2011-07-19 United Technologies Corporation Gas turbine engine vane
GB0709838D0 (en) 2007-05-23 2007-07-04 Rolls Royce Plc A hollow blade and a method of manufacturing a hollow blade
DE102007024469B4 (de) 2007-05-25 2009-04-23 Eos Gmbh Electro Optical Systems Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
DE102007036370C5 (de) 2007-07-31 2015-10-22 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur Herstellung von dreidimensionalen Objekten
DE102007056984A1 (de) 2007-11-27 2009-05-28 Eos Gmbh Electro Optical Systems Verfahren zum Herstellen eines dreidimensionalen Objekts mittels Lasersintern
CA2713854C (en) 2008-02-04 2014-06-10 Sharp Kabushiki Kaisha Mobile communication system, base station device, mobile station device, and mobile communication method
DE102008012063B4 (de) 2008-02-29 2016-01-07 Cl Schutzrechtsverwaltungs Gmbh Verfahren zur Herstellung eines Hybridformteils
DE102008015483B4 (de) * 2008-03-25 2018-10-11 Ivoclar Vivadent Ag Ofen zur thermischen Behandlung eines dentalen Brennobjektes
US20110171398A1 (en) * 2010-01-12 2011-07-14 Oladeji Isaiah O Apparatus and method for depositing alkali metals
US20090283501A1 (en) 2008-05-15 2009-11-19 General Electric Company Preheating using a laser beam
DE102008056336A1 (de) 2008-11-07 2010-05-12 Mtu Aero Engines Gmbh Reparaturverfahren
US20100192590A1 (en) 2009-01-30 2010-08-05 Michael Robert Johnson Thermally balanced materials
US8142874B1 (en) 2009-02-26 2012-03-27 United States Of America As Represented By The Secretary Of The Air Force Bi-material composite structure with reduced thermal expansion
DE102009020987A1 (de) 2009-05-12 2010-11-18 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur Herstellung von dreidimensionalen Objekten
EP2292357B1 (en) * 2009-08-10 2016-04-06 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Ceramic article and methods for producing such article
US8186414B2 (en) 2009-08-21 2012-05-29 Loughborough University Method for forming an object
US8181891B2 (en) 2009-09-08 2012-05-22 General Electric Company Monolithic fuel injector and related manufacturing method
CN101649844B (zh) 2009-09-09 2011-10-19 北京戴诺新思动力技术有限公司 一种基于中空结构金属/复合材料构架的风扇叶片
DE102009048665A1 (de) 2009-09-28 2011-03-31 Siemens Aktiengesellschaft Turbinenschaufel und Verfahren zu deren Herstellung
DE102009050563A1 (de) 2009-10-23 2011-01-27 Mtu Aero Engines Gmbh Nickelbasislegierung und Verfahren zur generativen Herstellung und/oder Reparatur von Bauteilen
EP2319641B1 (en) 2009-10-30 2017-07-19 Ansaldo Energia IP UK Limited Method to apply multiple materials with selective laser melting on a 3D article
DE102010004035A1 (de) 2010-01-05 2011-07-07 EOS GmbH Electro Optical Systems, 82152 Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts mit isoliertem Baufeld
US9175568B2 (en) 2010-06-22 2015-11-03 Honeywell International Inc. Methods for manufacturing turbine components
DE102010050531A1 (de) 2010-09-08 2012-03-08 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung zumindest eines Bauteilbereichs
DE102011008809A1 (de) 2011-01-19 2012-07-19 Mtu Aero Engines Gmbh Generativ hergestellte Turbinenschaufel sowie Vorrichtung und Verfahren zu ihrer Herstellung
US9085980B2 (en) 2011-03-04 2015-07-21 Honeywell International Inc. Methods for repairing turbine components
US8691333B2 (en) 2011-06-28 2014-04-08 Honeywell International Inc. Methods for manufacturing engine components with structural bridge devices
EP2572815B1 (de) 2011-09-22 2015-03-18 MTU Aero Engines GmbH Multifrequente Induktionserwärmung von generativ hergestellten Bauteilen
WO2013087515A1 (en) 2011-12-14 2013-06-20 Alstom Technology Ltd Method for additively manufacturing an article made of a difficult-to-weld material
US9266170B2 (en) 2012-01-27 2016-02-23 Honeywell International Inc. Multi-material turbine components
US11000899B2 (en) 2012-01-29 2021-05-11 Raytheon Technologies Corporation Hollow airfoil construction utilizing functionally graded materials
DE102012012344B4 (de) 2012-03-21 2018-05-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Herstellung von Werkstücken durch Strahlschmelzen pulverförmigen Materials
DE102012206125A1 (de) * 2012-04-13 2013-10-17 MTU Aero Engines AG Verfahren zur Herstellung von Niederdruckturbinenschaufeln aus TiAl
DE102012206122A1 (de) 2012-04-13 2013-10-17 MTU Aero Engines AG Mehrfach-Spulenanordnung für eine Vorrichtung zur generativen Herstellung von Bauteilen und entsprechendes Herstellverfahren
FR2998819B1 (fr) * 2012-11-30 2020-01-31 Association Pour La Recherche Et Le Developpement De Methodes Et Processus Industriels "Armines" Procede de fusion de poudre avec chauffage de la zone adjacente au bain
US20140263577A1 (en) * 2013-03-14 2014-09-18 General Electric Company Joining methods and temperature controlled fluid treating systems for joining
EP2789413B1 (de) 2013-04-08 2019-01-16 MTU Aero Engines AG Temperaturregelung für eine Vorrichtung zur generativen Herstellung von Bauteilen und entsprechendes Herstellungsverfahren
WO2014202413A2 (de) 2013-06-20 2014-12-24 MTU Aero Engines AG Vorrichtung und verfahren zur generativen herstellung zumindest eines bauteilbereichs eines bauteils
DE102013213260B4 (de) 2013-07-05 2019-04-25 MTU Aero Engines AG Verfahren zum Reparieren eines beschädigten Bauteils einer Gasturbine
JP6356801B2 (ja) 2013-11-14 2018-07-11 ゼネラル・エレクトリック・カンパニイ 負のcte特徴を有するタービン部品
US10343392B2 (en) 2015-08-27 2019-07-09 General Electric Company Powder-bed additive manufacturing devices and methods
KR20180042305A (ko) * 2015-09-16 2018-04-25 어플라이드 머티어리얼스, 인코포레이티드 적층 제조 시스템을 위한 조절가능한 z축 프린트헤드 모듈
DE102016206558A1 (de) * 2016-04-19 2017-10-19 MTU Aero Engines AG Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils
FR3081375B1 (fr) * 2018-05-25 2021-12-24 Addup Methode de preparation de la surface superieure d'un plateau de fabrication additive par depot de lit de poudre

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542173A (zh) * 2003-11-10 2004-11-03 北京航空航天大学 定向生长柱晶及单晶钛合金的制备方法
EP1637274A1 (en) * 2004-09-16 2006-03-22 Rolls-Royce Plc Forming structures by laser deposition
CN102549178A (zh) * 2009-08-21 2012-07-04 谢菲尔德大学 用于形成物体的方法、装置、计算机可读的存储介质和计算机程序
US20120213659A1 (en) * 2009-10-30 2012-08-23 Mtu Aero Engines Gmbh Method and device for producing a component of a turbomachine
US20110135952A1 (en) * 2009-12-04 2011-06-09 Honeywell International Inc. Turbine components for engines and methods of fabricating the same
EP2565294A1 (en) * 2011-08-29 2013-03-06 Siemens Aktiengesellschaft Manufacturing a component of single crystal or directionally solidified material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110520234A (zh) * 2017-02-22 2019-11-29 通用电气公司 使用超薄板来修理涡轮构件的方法
CN110536772A (zh) * 2017-02-22 2019-12-03 通用电气公司 制造涡轮翼型件及其末梢构件的方法
CN110536772B (zh) * 2017-02-22 2021-07-06 通用电气公司 制造涡轮翼型件及其末梢构件的方法
CN111278589A (zh) * 2017-10-31 2020-06-12 株式会社Ihi 金属部件的制造方法
US11618074B2 (en) 2017-10-31 2023-04-04 Ihi Corporation Method of manufacturing metal member
CN110695358A (zh) * 2019-11-11 2020-01-17 北京理工大学 一种钛合金单晶叶片的丝材增材制造方法
CN111872395A (zh) * 2020-09-28 2020-11-03 西安赛隆金属材料有限责任公司 镍基合金单晶或定向凝固零件的制备方法
CN111872395B (zh) * 2020-09-28 2021-01-19 西安赛隆金属材料有限责任公司 镍基合金单晶或定向凝固零件的制备方法
CN114769624A (zh) * 2022-03-23 2022-07-22 南京航空航天大学 原位自热效应辅助3D打印成形TiAl复杂金属构件的装置及其方法

Also Published As

Publication number Publication date
WO2015119692A9 (en) 2015-09-17
US20200298341A1 (en) 2020-09-24
WO2015119692A3 (en) 2015-11-05
CA2930572A1 (en) 2015-08-13
US10569362B2 (en) 2020-02-25
US11446766B2 (en) 2022-09-20
WO2015119692A2 (en) 2015-08-13
EP3068929A2 (en) 2016-09-21
EP3068929B2 (en) 2021-09-22
CA2930572C (en) 2019-07-02
JP6216881B2 (ja) 2017-10-18
US20220362886A1 (en) 2022-11-17
CN105705278B (zh) 2018-06-22
US20160288266A1 (en) 2016-10-06
JP2017504714A (ja) 2017-02-09
EP3068929B1 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
CN105705278A (zh) 单晶合金构件的分层制造
CA2929827C (en) Turbine components with negative cte features
CA2940033C (en) Powder-bed additive manufacturing devices and methods
CN104662274B (zh) 通过增材制造技术制备的超级冷却的涡轮区段组件
US9393620B2 (en) Uber-cooled turbine section component made by additive manufacturing
US10443115B2 (en) Apparatus and method for direct writing of single crystal super alloys and metals
JP6973897B2 (ja) タービン部品の修理方法
EP2751304B1 (en) Manufacturing a component of single crystal or directionally solidified material
CN110520230A (zh) 制造具有开放末梢铸件的涡轮翼型件及其末梢构件的方法
BRPI0609109A2 (pt) método de soldagem de um material reforçado de precipitado gamma-prime
CN110520234A (zh) 使用超薄板来修理涡轮构件的方法
JP2017115864A (ja) 物品及び物品を形成する方法
CN110520233A (zh) 制造涡轮翼型件及其末梢构件的方法
CN106906436A (zh) 用于制造涡轮机的金属部件的固溶热处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant