CN105693026A - 一种黄姜提取皂素生产废水的处理方法 - Google Patents

一种黄姜提取皂素生产废水的处理方法 Download PDF

Info

Publication number
CN105693026A
CN105693026A CN201610140406.9A CN201610140406A CN105693026A CN 105693026 A CN105693026 A CN 105693026A CN 201610140406 A CN201610140406 A CN 201610140406A CN 105693026 A CN105693026 A CN 105693026A
Authority
CN
China
Prior art keywords
water
waste water
time
aerobic
produces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610140406.9A
Other languages
English (en)
Inventor
王敏
张虹
左洛
刘生国
张敏
王淼
桂亚斌
冯梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Sentai Environmental Protection Co Ltd
Original Assignee
Wuhan Sentai Environmental Protection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Sentai Environmental Protection Co Ltd filed Critical Wuhan Sentai Environmental Protection Co Ltd
Priority to CN201610140406.9A priority Critical patent/CN105693026A/zh
Publication of CN105693026A publication Critical patent/CN105693026A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种黄姜提取皂素生产废水的处理方法,包括以下各步骤:(1)预处理:利用石灰石和石灰乳先后中和废水中H+,去除胶体、悬浮物及硫酸盐;(2)两段厌氧:第一阶段厌氧,将预处理后的废水经水解产酸菌水解酸化,将大分子有机物降解为小分子有机物,将不溶性有机物水解成可溶性有机物;第二阶段厌氧,将酸化产物经产甲烷菌进一步分解生成甲烷、CO2和H2O;(3)好氧生化:将厌氧出水经空气和好氧微生物所形成的活性污泥进一步降解有机污染物;(4)深度处理:将好氧出水利用臭氧和活性碳的协同作用处理。本发明将不同功能的处理工艺单元进行合理组合,通过集成创新,成功应用于黄姜皂素生产废水的处理。

Description

一种黄姜提取皂素生产废水的处理方法
技术领域
本发明涉及一种黄姜提取皂素生产废水的处理方法,属于水处理领域。
背景技术
皂素是广泛存在于动植物体内的一种激素,是合成避孕药、甾体激素类药的重要原料,而黄姜则是提取皂素的天然基础植物原料。黄姜种植加工业主要集中在我国鄂西北、陕南等贫困山区,该区域是汉江源头,也是我国南水北调中线工程核心水源区,黄姜加工过程的水污染问题已成为制约南水北调中线工程水源区保护与经济社会可持续发展亟待解决的重大问题,因此黄姜皂素生产废水的治理已经刻不容缓。
黄姜皂素生产废水成分复杂,其中主要污染物是还原性糖、可溶性淀粉、蛋白质和少量的水溶性皂甙、单宁、糠醛类物质等;因酸解过程中大量用到硫酸,废水呈强酸性,pH值范围为0.5-2.5,其中酸解头道洗酸水pH值只有0.5,COD高达100000mg/L;含盐量高,采用H2SO4水解工艺时,废水中SO4 2-的浓度高达8000-12000mg/L;废水呈深褐色,可生化性较差,属于高浓度难处理有机工业废水。为此,一些研究者对皂素废水的处理展开了研究,处理方法主要有厌氧、好氧、物化以及自然处理等处理工艺,但鲜有成功的工程案例。
皂素废水处理的难点在于该类废水中不仅有机物浓度高,而且含有大量高浓度SO4 2-。因此不能直接采用好氧生化处理,单纯采用物化处理不仅处理成本高,而且不能达标排放,因此,必须采用厌氧生化处理工艺。但在厌氧条件下,硫酸盐还原菌将SO4 2-转化为H2S,H2S具有较强的生物抑制和毒性作用,当S2-含量为60mg/L时将使产甲烷菌活性下降50%;而好氧微生物处理对硫化物运允许浓度是40mg/L,S2-过高不仅大量耗氧,而且极易引起好氧活性污泥膨胀和污泥中毒。为了消除硫化物的影响,一是从源头减少SO4 2-的浓度,常用的方法是石灰沉淀法,但因为CaSO4微溶,需要投加过量的石灰,因此会带来结垢堵塞等问题;二是采用二段厌氧,将一段厌氧过程中产生的H2S及时从***中分离出来,常用吹脱或化学沉淀的方法,化学沉淀法效率高但产生大量的污泥而且运行费用高,吹脱法效率较低,且空气吹脱残留氧气会对厌氧有一定抑制作用。
发明内容
本发明要解决的技术问题是克服现有的缺陷,提供了一种黄姜提取皂素生产废水的处理方法,该方法处理效率高,生产成本低。
为了解决上述技术问题,本发明提供了如下的技术方案:
一种黄姜提取皂素生产废水的处理方法,包括以下各步骤:
(1)预处理:利用石灰石和石灰乳先后中和废水中H+,去除胶体、悬浮物及硫酸盐;
(2)两段厌氧:第一阶段厌氧,将预处理后的废水经水解产酸菌水解酸化,将大分子有机物降解为小分子有机物,将不溶性有机物水解成可溶性有机物;第二阶段厌氧,将酸化产物经产甲烷菌进一步分解生成甲烷、CO2和H2O;
(3)好氧生化:将厌氧出水经空气和好氧微生物所形成的活性污泥进一步降解有机污染物;
(4)深度处理:将好氧出水利用臭氧和活性碳的协同作用处理。
本发明针对黄姜皂素行业生产废水的特点,将物化预处理、厌氧+好氧生化处理及臭氧氧化+活性碳的深度处理有机结合,从源头减少SO4 2-的浓度,将厌氧过程分为二段,将第一段厌氧所产生的H2S及时从废水中分离,最大程度地减少了S2-的生物抑制作用,从而保证了整个生化***的处理效率,同时将臭氧氧化和活性碳吸附有机结合,进一步降低了难降解有机物浓度,并取得了良好的脱色效果,确保了最终出水达标排放。
上述方案中优选的是,步骤(1)预处理具体为:先通过石灰石对废水进行中和,至pH值升高一个单位,后续生石灰用量和铁碳填料的消耗可降低30%以上;
然后,在废水中加入石灰乳进行中和,使水中部分SO42-和Ca2+结合沉淀反应生成CaSO4,水中部分SO4 2-和Ca2+结合生成CaSO4沉淀与水中悬浮物一起被去除,SO4 2-去除率约为50%以上;
然后,废水经过铁碳填料发生氧化还原反应,单质铁失去电子变为Fe2+,H+得到电子变为H原子;使有机物发生断链、开环等作用,破坏有机物分子的发色基团而脱色并提高可生化性,B/C由0.25提高至0.35;
最后,加碱调节pH值,使水中Fe2+发生絮凝反应形成Fe(OH)2沉淀,同时去除水中细小的悬浮性物质,SS去除率为70%-80%。
步骤(1)的上述处理,提高了废水的可生化性。
上述任一方案中优选的是,所述石灰石以石灰石过滤床的方式使用,其中石灰石的主要成分为碳酸钙,形状为不规则块状,平均粒径为250-350mm;
过滤床下面设空气搅拌,其目的是将石灰石表面污物及时清除,同时吹脱反应产生的CO2气体,减少气体对后续沉淀的干扰,空气搅拌强度为每100m3有效池容空气量为1.0-1.5m3/min;
所述石灰乳中和时,控制pH为4.5-5.5,保持弱酸性,防止碱性条件下结垢堵塞铁碳填料,所述生成CaSO4沉淀反应在沉淀池中进行,沉淀池表面负荷为0.5-0.7m3/m2·h,沉淀时间为4-5h,为提高沉淀效率,沉淀时投加助凝剂PAM,投加量为1-1.5‰;
在所述铁碳填料停留时间为1.5-2.5h,填料为块状高温烧结的铁碳合金,粒径为35-40mm,其中,Fe含量大于60%,C含量约为15%,孔隙率>65%,铁碳填料下面设空气搅拌,其目的在于防止填料堵塞,空气搅拌强度为气水比5:1;所述絮凝反应在絮凝沉淀池进行,调节pH时使用的碱液为30%NaOH溶液,控制pH值在7.5-8.0,加碱同时进行混合搅拌,反应时间为20-30min,沉降时间为3-4h,沉淀池表面负荷为0.6-0.8m3/m2·h。
上述任一方案中优选的是,步骤(2)两段厌氧具体为:首先,将预处理后的出水引入水解酸化池中,通过水解产酸菌的作用将大分子有机物降解为小分子有机物,将不溶性有机物水解成可溶性有机物;提高其可生化性,并为后续的产甲烷反应提供较适宜的基质。同时,降低硫酸盐还原菌对产甲烷菌对基质竞争的初级抑制以及硫酸盐还原产物产生毒性的次级抑制作用,SO4 2-还原率为50%-60%;
然后,将水解酸化出水引入UASB进一步厌氧,利用产甲烷菌的作用将酸化产物进一步分解生成甲烷、CO2和H2O。从而大大降低有机污染负荷,COD去除率达75%-80%。
上述任一方案中优选的是,步骤(2)中所述水解酸化池进水有机负荷为10-15kgCOD/m3·d,水力停留时间为20h,废水pH为5.0-6.0,控制碳硫比C/S>3,同时对出水进行空气吹脱,使废水中因SO42-还原产生的H2S气体一部分进入空气,一部分被氧化为单质S,气水比为15:1,吹脱时间3.5-4h;所述UASB进水有机负荷为5-8kgCOD/m3·d,水力停留时间为36-48h,废水pH为6.5-7.5,保持厌氧反应器内温度为35℃-38℃;为了达到均匀布水和混合搅拌的目的,两段厌氧布水***均采用脉冲虹吸布水,脉冲周期为2-3min,虹吸布水时间为10-15s。
上述任一方案中优选的是,步骤(3)预处理具体为:厌氧出水进入好氧池,通入空气,在空气和好氧微生物所形成的活性污泥作用下,发生新陈代谢,进一步降解有机污染物,COD去除率达80%-85%,好氧池混合液进入沉淀池进行泥水分离,污泥回流至好氧池维持微生物数量的稳定。
上述任一方案中优选的是,步骤(3)中,所述好氧生化池水力停留时间为24-30h,溶解氧浓度为2-3mg/L,有机负荷为0.15-0.2kgBOD5/kgMLSS·d。因该废水含有皂甙等表面活性物质,极易产生泡沫,因此好氧池设置水喷淋消泡装置。
上述任一方案中优选的是,步骤(4)深度处理具体为:好氧生化处理后的废水首先进入臭氧氧化反应器,通入臭氧;然后废水进入活性碳吸附池。
上述任一方案中优选的是,步骤(4)中,所述的臭氧发生器为空气源,所产臭氧气体浓度为20-30mg/L,臭氧投加量为80-100mg/L,氧化反应时间为1.5-2.0h;所述活性碳为煤质柱状炭,粒径为3mm,长度为6mm,碘值≥800mg/g,吸附时间为45min。
本发明的有益效果:
1、本发明将不同功能的处理工艺单元进行合理组合,通过集成创新,成功地应用于黄姜皂素生产废水的处理。
2、本发明采用石灰石进行预中和,可大大减少了石灰乳投加量和运行成本。
3、本发明采用铁碳微电解处理工艺,并采用高温烧结多孔铁碳合金作为填料,能有效提高废水可生化性率。
4、本发明采用二段厌氧工艺并通过空气吹脱将一段厌氧所产生的H2S及时从废水中分离,最大程度地减少了S2-的生物抑制作用,从而保证了整个生化***的处理效率。
5、本发明中二段厌氧均采用脉冲虹吸布水***,保证了均匀布水和混合搅拌,既能防止污泥沉积,又能防止污泥流失。
6、本发明将臭氧氧化和活性炭吸附有机结合应用于深度处理,进一步降低了难降解有机物浓度,并取得了良好的脱色效果,利用残留臭氧对活性碳进行再生,大大提高了活性碳使用寿命。
7、通过本发明的方法得到的处理出水中主要污染物浓度低于《皂素工业水污染物排放标准》(GB20425-2006)中表2的标准限值,COD300mg/L、SS70mg/L、pH6.0-9.0。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1:
一种黄姜皂素废水原水水质如下:COD为30000mg/L,SO4 2-为12000mg/L,pH为1。
(1)预处理:废水首先进入石灰石过滤床,通过H+和石灰石中CO3 2-结合生成CO2和H2O,从而消耗水中酸度,pH值可提高1个单位,后续生石灰用量和铁碳填料的消耗可降低30%,其中所述的石灰石主要成分为碳酸钙,形状为不规则块状,平均粒径为350mm;滤床下面设空气搅拌,其目的是将石灰石表面污物及时清除,同时吹脱反应产生的CO2气体,减少气体对后续沉淀的干扰,空气搅拌强度为每100m3有效池容空气量1.5m3/min;
接着废水通过石灰乳中和沉淀池进一步中和酸度提高pH值,控制废水pH为4.5-5.5,保持弱酸性,防止碱性条件下结垢堵塞铁碳填料,水中部分SO4 2-和Ca2+结合生成CaSO4沉淀与水中悬浮物一起被去除,SO4 2-去除率约为50%。沉淀池表面负荷为0.5m3/m2·h,沉淀时间为5h。为了提高沉淀效率,沉淀时投加助凝剂PAM,投加量为1.5‰;然后废水通过铁碳微电解池,控制停留时间为2.5h,填料为块状高温烧结的铁碳合金,平均粒径为40mm,其中,Fe含量大于60%,C含量约为15%,孔隙率>65%,同时,铁碳填料下面设空气搅拌,其目的在于防止填料堵塞,空气搅拌强度为气水比5:1,可生化性有所提高,B/C由0.25提高至0.35;最后通过投加30%NaOH调节pH值至中性左右,使得水中Fe2+发生絮凝形成Fe(OH)2沉淀同时去除水中细小悬浮性物质,加碱同时进行混合搅拌,反应时间为20min,沉降时间为3h,沉淀池表面负荷为0.6m3/m2·h,SS去除率为70%。
(2)物化预处理出水通过泵的作用引入水解酸化池中,控制有机负荷为10kgCOD/m3·d,水力停留时间为20h,废水pH为5.0-6.0,碳硫比C/S>3,同时对出水进行空气吹脱,使废水中因SO4 2-还原产生的H2S气体一部分进入空气,一部分被氧化为单质S,气水比为15:1,吹脱时间4h。此过程降低了硫酸盐还原菌对产甲烷菌对基质竞争的初级抑制以及硫酸盐还原产物产生毒性的次级抑制作用,SO4 2-还原率为50%;然后,将水解酸化出水引入UASB进一步厌氧,其中UASB进水有机负荷为8kgCOD/m3·d,水力停留时间为36h,废水pH为7.5,保持厌氧反应器内温度为35℃,此过程COD去除率可达75%。为了达到均匀布水和混合搅拌的目的,两段厌氧布水***均采用脉冲虹吸布水,脉冲周期为2min,虹吸布水时间为10s。
(3)厌氧出水进入好氧池,控制水力停留时间为24h,溶解氧浓度为2mg/L,有机负荷为0.2kgBOD5/kgMLSS·d。由于该废水含有皂甙等表面活性物质,极易产生泡沫,因此好氧池设置水喷淋消泡装置。此过程COD去除率可达80%。
(4)生化出水仍然含有一定量的未降解有机物,并有较深的颜色,利用臭氧和活性碳的协同作用进一步处理。废水首先进入臭氧氧化反应器,其中,臭氧发生器为空气源,所产臭氧气体浓度为30mg/L,臭氧投加量为80mg/L,氧化反应时间为1.5h,COD去除率达30%;然后废水进入活性碳吸附池,所用活性碳为煤质柱状炭,粒径为3mm,长度为6mm,碘值≥800mg/g,吸附时间为45min,利用活性碳巨大的比表面积与废水充分接触,废水中剩余的有机物被吸附于活性碳表面,臭氧氧化池未分解完全的臭氧在活性碳催化作用下继续分解,同时将活性碳表面吸附的有机物氧化分解使活性碳得到再生。
实施例2:
一种黄姜皂素废水原水水质如下:COD为25000mg/L,SO4 2-为8000mg/L,pH为1.3左右。
(1)预处理:废水首先进入石灰石过滤床,通过H+和石灰石中CO3 2-结合生成CO2和H2O,从而消耗水中酸度,pH值可提高1个单位,后续生石灰用量和铁碳填料的消耗可降低33%左右,其中所述的石灰石主要成分为碳酸钙,形状为不规则块状,平均粒径为300mm;滤床下面设空气搅拌,其目的是将石灰石表面污物及时清除,同时吹脱反应产生的CO2气体,减少气体对后续沉淀的干扰,空气搅拌强度为每100m3有效池容空气量1.3m3/min;
接着废水通过石灰乳中和沉淀池进一步中和酸度提高pH值,控制废水pH为4.5-5.5,保持弱酸性,防止碱性条件下结垢堵塞铁碳填料,水中部分SO4 2-和Ca2+结合生成CaSO4沉淀与水中悬浮物一起被去除,SO4 2-去除率可达到53%以上。沉淀池表面负荷为0.6m3/m2·h,沉淀时间为4.5h。为了提高沉淀效率,沉淀时投加助凝剂PAM,投加量为1.5‰;然后废水通过铁碳微电解池,控制停留时间为2.0h,填料为块状高温烧结的铁碳合金,平均粒径为40mm,其中,Fe含量大于60%,C含量约为15%,孔隙率>65%,同时,铁碳填料下面设空气搅拌,搅拌强度为气水比4:1,可生化性有所提高,B/C由0.20提高至0.30;最后投加30%NaOH调节pH值在7.5-8.0范围内,反应时间为30min,沉降时间为4h,沉淀池表面负荷为0.8m3/m2·h,SS去除率为80%。
(2)物化预处理出水通过泵的作用引入水解酸化池中,控制有机负荷为12kgCOD/m3·d,水力停留时间为18h,废水pH为5.0-6.0,碳硫比C/S>3,同时对出水进行空气吹脱,使废水中因SO4 2-还原产生的H2S气体一部分进入空气,一部分被氧化为单质S,气水比为13:1,吹脱时间3.5h。此过程降低了硫酸盐还原菌对产甲烷菌对基质竞争的初级抑制以及硫酸盐还原产物产生毒性的次级抑制作用,SO4 2-还原率为55%;然后,将水解酸化出水引入UASB进一步厌氧,其中UASB进水有机负荷为6.5kgCOD/m3·d,水力停留时间为48h,废水pH为7.0,保持厌氧反应器内温度为36℃,此过程COD去除率可达80%。为了达到均匀布水和混合搅拌的目的,两段厌氧布水***均采用脉冲虹吸布水,脉冲周期为3min,虹吸布水时间为15s。
(3)厌氧出水进入好氧池,控制水力停留时间为30h,溶解氧浓度为3mg/L,有机负荷为0.2kgBOD5/kgMLSS·d。由于该废水含有皂甙等表面活性物质,极易产生泡沫,因此好氧池设置水喷淋消泡装置。此过程COD去除率可达85%。
(4)生化出水仍然含有一定量的未降解有机物,并有较深的颜色,利用臭氧和活性碳的协同作用进一步处理。废水首先进入臭氧氧化反应器,其中,臭氧发生器为空气源,所产臭氧气体浓度为25mg/L,臭氧投加量为100mg/L,氧化反应时间为2.0h,COD去除率为35%左右;然后废水进入活性碳吸附池,所用活性碳为煤质柱状炭,粒径为2.7mm,长度为5.0mm,碘值≥800mg/g,吸附时间为40min。
实施例3:
一种黄姜皂素废水原水水质如下:COD为20000mg/L,SO4 2-为6000mg/L,pH为1.5。
(1)预处理:废水首先进入石灰石过滤床,通过H+和石灰石中CO3 2-结合生成CO2和H2O,从而消耗水中酸度,pH值可提高1个单位,后续生石灰用量和铁碳填料的消耗可降低35%左右,其中所述的石灰石主要成分为碳酸钙,形状为不规则块状,平均粒径为250mm;滤床下面设空气搅拌,其目的是将石灰石表面污物及时清除,同时吹脱反应产生的CO2气体,减少气体对后续沉淀的干扰,空气搅拌强度为每100m3有效池容空气量1.0m3/min;
接着废水通过石灰乳中和沉淀池进一步中和酸度提高pH值,控制废水pH为4.5-5.5,保持弱酸性,防止碱性条件下结垢堵塞铁碳填料,水中部分SO4 2-和Ca2+结合生成CaSO4沉淀与水中悬浮物一起被去除,SO4 2-去除率可达到55%以上。沉淀池表面负荷为0.7m3/m2·h,沉淀时间为4.0h。为了提高沉淀效率,沉淀时投加助凝剂PAM,投加量为1.0‰;然后废水通过铁碳微电解池,控制停留时间为1.5h,填料为块状高温烧结的铁碳合金,粒径为35mm,其中,Fe含量大于60%,C含量约为15%,孔隙率>65%,同时,铁碳填料下面设空气搅拌,搅拌强度为气水比3:1,可生化性有所提高,B/C由0.22提高至0.34;最后投加30%NaOH调节pH值在7.5-8.0范围内,反应时间为30min,沉降时间为3.5h,沉淀池表面负荷为0.8m3/m2·h,SS去除率为78%。
(2)物化预处理出水通过泵的作用引入水解酸化池中,控制有机负荷为15kgCOD/m3·d,水力停留时间为15h,废水pH为5.0-6.0,碳硫比C/S>3,同时对出水进行空气吹脱,使废水中因SO4 2-还原产生的H2S气体一部分进入空气,一部分被氧化为单质S,气水比为10:1,吹脱时间4h。此过程降低了硫酸盐还原菌对产甲烷菌对基质竞争的初级抑制以及硫酸盐还原产物产生毒性的次级抑制作用,SO4 2-还原率为50%;然后,将水解酸化出水引入UASB进一步厌氧,其中UASB进水有机负荷为7kgCOD/m3·d,水力停留时间为40h,废水pH为6.5,保持厌氧反应器内温度为38℃,此过程COD去除率可达76%。为了达到均匀布水和混合搅拌的目的,两段厌氧布水***均采用脉冲虹吸布水,脉冲周期为2.5min,虹吸布水时间为12s。
(3)厌氧出水进入好氧池,控制水力停留时间为27h,溶解氧浓度为2.5mg/L,有机负荷为0.17kgBOD5/kgMLSS·d。由于该废水含有皂甙等表面活性物质,极易产生泡沫,因此好氧池设置水喷淋消泡装置。此过程COD去除率为80%。
(4)生化出水仍然含有一定量的未降解有机物,并有较深的颜色,利用臭氧和活性碳的协同作用进一步处理。废水首先进入臭氧氧化反应器,其中,臭氧发生器为空气源,所产臭氧气体浓度为20mg/L,臭氧投加量为90mg/L,氧化反应时间为2.0h,COD去除率达38%;然后废水进入活性碳吸附池,所用活性碳为煤质柱状炭,粒径为2.5mm,长度为4.0mm,碘值≥800mg/g,吸附时间为30min。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种黄姜提取皂素生产废水的处理方法,其特征在于,包括以下各步骤:
(1)预处理:利用石灰石和石灰乳先后中和废水中H+,去除胶体、悬浮物及硫酸盐;
(2)两段厌氧:第一阶段厌氧,将预处理后的废水经水解产酸菌水解酸化,将大分子有机物降解为小分子有机物,将不溶性有机物水解成可溶性有机物;第二阶段厌氧,将酸化产物经产甲烷菌进一步分解生成甲烷、CO2和H2O;
(3)好氧生化:将厌氧出水经空气和好氧微生物所形成的活性污泥进一步降解有机污染物;
(4)深度处理:将好氧出水利用臭氧和活性碳的协同作用处理。
2.根据权利要求1所述的黄姜提取皂素生产废水的处理方法,其特征在于:步骤(1)预处理具体为:先通过石灰石对废水进行中和,至pH值升高一个单位;然后,在废水中加入石灰乳进行中和,使水中部分SO4 2-和Ca2+结合沉淀反应生成CaSO4;然后,废水经过铁碳填料发生氧化还原反应,单质铁失去电子变为Fe2+,H+得到电子变为H原子;最后,加碱调节pH值,使水中Fe2+发生絮凝反应形成Fe(OH)2沉淀。
3.根据权利要求2所述的黄姜提取皂素生产废水的处理方法,其特征在于:所述石灰石以石灰石过滤床的方式使用,其中石灰石的主要成分为碳酸钙,形状为不规则块状,平均粒径为250-350mm,过滤床下面设空气搅拌,空气搅拌强度为每100m3有效池容空气量为1.0-1.5m3/min;
所述石灰乳中和时,控制pH为4.5-5.5,所述生成CaSO4沉淀反应在沉淀池中进行,沉淀池表面负荷为0.5-0.7m3/m2·h,沉淀时间为4-5h,沉淀时投加助凝剂PAM,投加量为1-1.5‰;
在所述铁碳填料停留时间为1.5-2.5h,填料为块状高温烧结的铁碳合金,粒径为35-40mm,其中,Fe含量大于60%,C含量约为15%,孔隙率>65%,铁碳填料下面设空气搅拌,空气搅拌强度为气水比3:1-5:1;
所述絮凝反应在絮凝沉淀池进行,加碱控制pH值在7.5-8.0,加碱同时进行混合搅拌,反应时间为20-30min,沉降时间为3-4h,沉淀池表面负荷为0.6-0.8m3/m2·h。
4.根据权利要求1所述的黄姜提取皂素生产废水的处理方法,其特征在于:步骤(2)两段厌氧具体为:首先,将预处理后的出水引入水解酸化池中,通过水解产酸菌的作用将大分子有机物降解为小分子有机物,将不溶性有机物水解成可溶性有机物;然后,将水解酸化出水引入UASB进一步厌氧,利用产甲烷菌的作用将酸化产物进一步分解生成甲烷、CO2和H2O。
5.根据权利要求4所述的黄姜提取皂素生产废水的处理方法,其特征在于:步骤(2)中所述水解酸化池进水有机负荷为10-15kgCOD/m3·d,水力停留时间为15-20h,废水pH为5.0-6.0,控制碳硫比C/S>3,同时对出水进行空气吹脱,气水比为10:1-15:1,吹脱时间3.5-4h;
所述UASB进水有机负荷为5-8kgCOD/m3·d,水力停留时间为36-48h,废水pH为6.5-7.5,保持厌氧反应器内温度为35℃-38℃;
两段厌氧布水***均采用脉冲虹吸布水,脉冲周期为2-3min,虹吸布水时间为10-15s。
6.根据权利要求1所述的黄姜提取皂素生产废水的处理方法,其特征在于:步骤(3)预处理具体为:厌氧出水进入好氧池,通入空气,在空气和好氧微生物所形成的活性污泥作用下,发生新陈代谢,进一步降解有机污染物,好氧池出水进入沉淀池进行泥水分离,污泥回流至好氧池。
7.根据权利要求6所述的黄姜提取皂素生产废水的处理方法,其特征在于:步骤(3)步骤(3)中,所述好氧生化池水力停留时间为24-30h,溶解氧浓度为2-3mg/L,有机负荷为0.15-0.2kgBOD5/kgMLSS·d。
8.根据权利要求1所述的黄姜提取皂素生产废水的处理方法,其特征在于:步骤(4)深度处理具体为:好氧生化处理后的废水首先进入臭氧氧化反应器,通入臭氧;然后废水进入活性碳吸附池。
9.根据权利要求8所述的黄姜提取皂素生产废水的处理方法,其特征在于:步骤(4)中,所述的臭氧发生器为空气源,所产臭氧气体浓度为20-30mg/L,臭氧投加量为80-100mg/L,氧化反应时间为1.5-2.0h;所述活性碳为煤质柱状炭,粒径为2.5-3.0mm,长度为4-6mm,碘值≥800mg/g,吸附时间为30-45min。
CN201610140406.9A 2016-03-13 2016-03-13 一种黄姜提取皂素生产废水的处理方法 Pending CN105693026A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610140406.9A CN105693026A (zh) 2016-03-13 2016-03-13 一种黄姜提取皂素生产废水的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610140406.9A CN105693026A (zh) 2016-03-13 2016-03-13 一种黄姜提取皂素生产废水的处理方法

Publications (1)

Publication Number Publication Date
CN105693026A true CN105693026A (zh) 2016-06-22

Family

ID=56221452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610140406.9A Pending CN105693026A (zh) 2016-03-13 2016-03-13 一种黄姜提取皂素生产废水的处理方法

Country Status (1)

Country Link
CN (1) CN105693026A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133495A (zh) * 2018-07-23 2019-01-04 华南理工大学 一种无碳复写纸涂布废水处理及循环回用方法
CN109626744A (zh) * 2019-01-11 2019-04-16 苏州科特环保股份有限公司 一种黄姜废水的处理方法
CN114315045A (zh) * 2021-12-13 2022-04-12 苏沃特环境(江苏)有限公司 一种硫酸盐废水的处理***及处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544363A (zh) * 2003-11-10 2004-11-10 华中科技大学 一种皂素废水处理方法
CN1792894A (zh) * 2005-11-17 2006-06-28 中国地质大学(武汉) 盐酸法黄姜皂素废水处理的工艺
CN101746932A (zh) * 2009-12-14 2010-06-23 竹溪创艺皂素有限公司 皂素-酒精综合废水的处理工艺
CN102107963A (zh) * 2010-12-30 2011-06-29 天津市环境保护科学研究院 钢铁工业酸洗废水和金属离子的处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544363A (zh) * 2003-11-10 2004-11-10 华中科技大学 一种皂素废水处理方法
CN1792894A (zh) * 2005-11-17 2006-06-28 中国地质大学(武汉) 盐酸法黄姜皂素废水处理的工艺
CN101746932A (zh) * 2009-12-14 2010-06-23 竹溪创艺皂素有限公司 皂素-酒精综合废水的处理工艺
CN102107963A (zh) * 2010-12-30 2011-06-29 天津市环境保护科学研究院 钢铁工业酸洗废水和金属离子的处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133495A (zh) * 2018-07-23 2019-01-04 华南理工大学 一种无碳复写纸涂布废水处理及循环回用方法
CN109626744A (zh) * 2019-01-11 2019-04-16 苏州科特环保股份有限公司 一种黄姜废水的处理方法
CN114315045A (zh) * 2021-12-13 2022-04-12 苏沃特环境(江苏)有限公司 一种硫酸盐废水的处理***及处理方法

Similar Documents

Publication Publication Date Title
CN100494098C (zh) 芬顿与气浮一体化水处理方法
CN105347552B (zh) 一种含铜有机废水的预处理方法
CN102603094B (zh) 一种毒死蜱生产废水的处理方法
CN110642474B (zh) 一种厌氧-ao-sacr组合式高氨氮污水深度脱氮***及工艺
CN112850946B (zh) 一种增强型Fenton氧化工艺处理焦化废水的方法
WO2014082347A1 (zh) 一种利用两段式改性活性污泥处理硝酸盐污染饮用水的方法及其装置
CN112607963A (zh) 一种垃圾焚烧厂渗滤液浓缩液减量***及方法
CN105693026A (zh) 一种黄姜提取皂素生产废水的处理方法
CN105347628B (zh) 一种连二亚硫酸钠生产废水的处理方法
CN103771655A (zh) 一种纤维素乙醇发酵废液的处理方法
CN105712564A (zh) 一种草甘膦生产废水处理设备
CN108178448B (zh) 一种降低三环唑农药废水cod的方法
CN113461284A (zh) 一种硝酸盐强化热水解的市政污泥处理方法
CN112551744A (zh) 一种利用酸性混凝的芬顿氧化处理废水的方法
CN117023919A (zh) 一种气田采出水多级处理***及工艺
CN116462374A (zh) 一种复合型污水处理厂中工业废水的预处理方法
CN103910469B (zh) 食品加工产生的含盐废水的处理工艺
CN109534606A (zh) 一种发酵类制药废水处理工艺
CN102642948A (zh) 一种工业有机废水组合处理方法
CN109293176A (zh) 膜生产中dmf低压精馏回收塔塔顶废水处理方法及***
CN108862849A (zh) 杏仁脱苦废水的处理工艺及处理***
CN209740922U (zh) 一种废水深度处理的***
CN115536206A (zh) 化工难降解污水深度处理组合工艺
CN111807626A (zh) 一种污泥和蓝藻协同深度脱水的废水处理***及工艺
CN111847797A (zh) 垃圾焚烧厂渗滤液的零排放处理***及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160622

RJ01 Rejection of invention patent application after publication