CN105683137A - 催化脱氢方法 - Google Patents

催化脱氢方法 Download PDF

Info

Publication number
CN105683137A
CN105683137A CN201480059171.XA CN201480059171A CN105683137A CN 105683137 A CN105683137 A CN 105683137A CN 201480059171 A CN201480059171 A CN 201480059171A CN 105683137 A CN105683137 A CN 105683137A
Authority
CN
China
Prior art keywords
reactor
catalytic
heat
fluidized reactor
separation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480059171.XA
Other languages
English (en)
Inventor
M·T·普雷茨
M·W·斯图尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Priority to CN202010646524.3A priority Critical patent/CN111875468A/zh
Publication of CN105683137A publication Critical patent/CN105683137A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

提供了一种改进的催化脱氢方法,所述方法包括在上流式流化反应器中在催化条件下使烷烃或烷基芳烃原料流与脱氢催化剂接触,其中所述流化反应器包括一个或多个反应器,所述催化条件包括范围从500℃到800℃的温度、范围从0.1到1000的重时空速、范围从0.1秒到10秒的气体停留时间,并且在流化反应器之后,通过使用旋风分离***使夹带的催化剂与反应器的排出物分离,其中改进之处包括在上流式流化反应器和旋风分离***之间***冷却手段以大体上终止热反应,由此有效增加对于烯烃产物的总摩尔选择性。

Description

催化脱氢方法
技术领域
本发明涉及一种改进的催化脱氢方法。
背景技术
在用于将石蜡烃和/或烷基芳烃脱氢为相关烯烃的流化反应***中,石蜡烃和/或烷基芳烃原料的热(气相)反应的选择性有时显著低于催化选择性。例如,在丙烷的情况下,热脱氢为丙烯的选择性为约45摩尔%到50摩尔%,而催化脱氢为丙烯的选择性为约99摩尔%或更高。同样地,乙基苯热脱氢为苯乙烯的选择性为约67摩尔%,而乙基苯催化脱氢的选择性为约99摩尔%或更高。
上流式流化反应器是使烷烃和烷基芳烃脱氢的经济手段。具体而言,提升管、湍动床反应器、鼓泡床反应器或快速流化反应器的优点在于能够在最短的停留时间下进行脱氢反应。然而,将产物气体和固体输送至催化剂分离***以及分离***本身增加了总的气体停留时间。这一额外的气体停留时间导致原料的反应选择性较小,生成所需产物的总反应器选择性较低。
发明内容
本发明是一种改进的催化脱氢方法。具体而言,所述改进的方法通过使用急冷手段提高了对于相关烯烃的总反应器选择性。
附图说明
为了描述本发明的目的,在附图中示出了示例性的形式;然而,应当理解的是本发明并不限于所显示的精确布置和装置。
图1是本发明的旋风反应器***的第一实施例的示意图,其中,冷却手段包括***流化反应器和分离***提升管之间的急冷交换器。
具体实施方式
本发明的一个实施例提供了一种改进的催化脱氢方法,所述方法包括在上流式流化反应器***中在催化条件下使烷烃或烷基芳烃原料流与脱氢催化剂接触,所述脱氢催化剂包含镓和铂并且由氧化铝载体或氧化铝氧化硅载体负载,其中所述上流式流化反应器***包括一个或多个选自由鼓泡床反应器、湍动床反应器、快速流化反应器和提升管反应器组成的群组的反应器,所述催化条件包括范围从500℃到800℃的温度、范围从0.1到1000的重时空速、范围从0.1秒到10秒的气体停留时间,并且在所述流化反应器之后,通过使用旋风分离***使夹带的催化剂与反应器的排出物分离,其中所述改进之处包括在流化反应器和旋风分离***之间***冷却手段以大体上终止热反应,由此有效地增大对于烯烃产物的总摩尔选择性。
改进的方法在包括范围从500℃到800℃的温度的催化条件下是有用的。从500℃到800℃的所有单个数值和子范围均包括在本文中并在本文中公开;例如,催化反应温度可以从500℃、550℃、600℃、650℃、700℃或750℃的下限到525℃、575℃、625℃、675℃、725℃或800℃的上限。例如,催化反应温度的范围可以为500℃到800℃,或者替代地,从600℃到800℃,或者替代地,从500℃到650℃,或者替代地,从575℃到675℃。
改进的方法在包括范围从0.1小时-1到1000小时-1的重时空速(例如,烃原料的质量速率(磅/小时)与催化反应器中的催化剂的质量(磅)的比率)的催化条件下是有用的。从0.1小时-1到1000小时-1的所有单个数值和子范围均包括在本文中并在本文中公开;例如,催化反应的重时空速的范围可以从0.1小时-1、1小时-1、10小时-1、100小时-1或500小时-1的下限到0.5小时-1、5小时-1、55小时-1、450小时-1或970小时-1的上限。例如,催化反应的重时空速的范围可以从0.1小时-1到1000小时-1,或者替代地,从0.1小时-1到500小时-1,或者替代地,从400小时-1到990小时-1,或者替代地,从250小时-1到750小时-1
改进的方法在包括范围从0.1秒到10秒的气体停留时间的催化条件下是有用的。从0.1秒到10秒的所有单个数值和子范围均包括在本文中并在本文中公开;例如,催化反应的气体停留时间的范围可以从0.1秒、0.5秒、1秒、5秒或9秒的下限到0.4秒、0.8秒、3.5秒、7.8秒或10秒的上限。例如,催化反应的气体停留时间的范围可以从0.1秒到10秒,或者替代地,从0.1秒到5秒,或者替代地,从5秒到10秒,或者替代地,从2.5秒到7.5秒。
在本发明的一个实施例中,改进可应用于催化石蜡烃脱氢反应,其中基于本文中描述的计算方法,在反应温度下热转化率不超过总转化率的20%。不超过总转化率的20%的所有单个数值和子范围均包括在本文中并在本文中公开。例如,在反应温度下热转化率可以为总转化率的20%或更少,或者替代地,在反应温度下热转化率可以为总转化率的16%或更少,或者替代地,在反应温度下热转化率可以为总转化率的14%或更少,或者替代地,在反应温度下热转化率可以为总转化率的12%或更少。
本发明的改进可应用于所发生的全部反应中的70摩尔%或更多是脱氢的方法。
改进的方法在上流式流化反应器中是有用的。上流式流化反应器***包括一个或多个选自由鼓泡床反应器、湍动床反应器、快速流化反应器和提升管反应器组成的群组的反应器。此类反应器在现有技术中是已知的,这些类型中的任何一个或多个或组合都可用于本发明的实施例中。
上流式流化反应器***还包括旋风分离***。旋风分离***在现有技术中是已知的,并且在一些情况中包括两级或更多级的旋风分离。在存在超过一个旋风分离装置的情况下,流化物流进入到的第一分离装置称为初级旋风分离装置。来自初级旋风分离装置的流化排出物可以进入次级旋风分离装置。初级旋风分离装置在现有技术中是已知的,包括例如,初级旋风分离器,和以名称VSS、LD2和RS2商购获得的***。初级旋风分离器描述在例如美国专利号4,579,716;5,190,650;和5,275,641中。在利用初级旋风分离器作为初级旋风分离装置的一些已知的分离***中,使用一套或多套另外的旋风分离器,例如次级旋风分离器和三级旋风分离器,从而进一步分离催化剂和产物气体。应了解任何初级旋风分离装置都可以用在本发明的实施例中。
在上流式流化反应器的出口与旋风分离***的进口之间***冷却手段。在如图1所示使用两个或更多个上流式反应器的情况中,冷却手段可位于第一上流式反应器之后,并且在一些情况中位于第二上流式反应器之前,但是,在所有情况中均位于旋风分离***的进口之前。在一个实施例中,使用热交换器或急冷交换器。此类交换器是众所周知的,示例性的交换器包括可以加热蒸汽、丙烷或产物的壳管式交换器,或者能够由液态水产生高压蒸汽的锅炉,还可以是使用卡口型管的壳管式或常规的催化剂冷却器。替代地,可以使用盘管使蒸气过热,或者提供传热区域来加热液体,所述液体随后在保持液体/蒸气界面的锅炉容器外部气化。在一个替代性实施例中,冷却介质与离开上流式流化反应器的流化流接触。冷却介质可以是任何形式,包括液体、固体或气体。示例性的冷却介质包括蒸汽、液态水、冷催化剂、液态烃、冷却后的产物气体、燃料和填料颗粒。冷却介质可以是两种或更多种冷却介质的混合物。用作冷却介质的“冷催化剂”是指比上流式流化反应器中的催化剂的温度低至少10℃的脱氢催化剂。对通过反应器至少一次的催化剂使用催化剂冷却器能够生成这种较冷的催化剂。用作冷却介质的“冷却后的产物气体”指的是比上流式流化反应器排出的流化流冷至少50℃的脱氢产物气体。用作冷却介质的“燃料”包括,例如,氢气、甲烷气体、天然气及其混合物。尽管冷却介质的使用在本发明的范围内,不过使用热交换器的一个优点在于不必分离可能会引入的另外的气体或固体(即,冷却介质),这一分离会导致更大的旋风分离器和用于旋风分离器的容纳性容器。
冷却手段降低了流化流的温度。在一个替代性实施例中,除冷却手段使流化流的温度降低了至少5℃之外,本发明提供根据本文中所公开的任一个实施例的改进的催化脱氢方法。至少5℃的所有单个数值和子范围均包含在本文中并在本文中公开。例如,温度的降低可以为至少5℃,或者替代地,温度的降低可以为至少7℃,或者替代地,温度的降低可以为至少9℃,或者替代地,温度的降低可以为至少11℃,或者替代地,温度的降低可以为至少13℃。
在一个替代性实施例中,除烷烃是丙烷,并且由反应***排出的热反应产物与催化反应产物的摩尔比为大于0∶1到小于或等于0.1∶1(其中反应***被定义为进料和产物处于反应温度下的方法区域)之外,本发明提供根据本文中所公开的任一个实施例的改进的催化脱氢方法。在一个替代性实施例中,除烷基芳烃是乙基苯并且热反应产物与催化反应产物的摩尔比为大于0∶1到小于或等于0.1∶1之外,本发明提供根据本文中所公开的任一个实施例的改进的催化脱氢方法。在丙烷和乙基苯原料的两种情况中,从0∶1到0.1∶1的所有单个数值和子范围均包含在本文中并在本文中公开。例如,热反应产物与催化反应产物的摩尔比可以为从0∶1、0.001∶1、0.005∶1、0.01∶1、0.05∶1或0.08∶1的下限到0.003∶1、0.008∶1、0.02∶1、0.05∶1、0.08∶1或0.1∶1的上限。热反应产物与催化反应产物的摩尔比可以为0到0.1∶1,或者替代地,从0.05∶1到0.1∶1,或者替代地,从0∶1到0.05∶1,或者替代地,从0.01∶1到0.08∶1。
在一个替代性实施例中,除在相等的总转化率下总选择性相比于不采用冷却手段的方法改进了至少0.5摩尔%之外,本发明提供根据本文中所公开的任一个实施例的改进的催化脱氢方法。至少0.5摩尔%的所有单个数值和子范围均包含在本文中并在本文中公开。例如,在相等的总转化率下总选择性相比于不采用冷却手段的方法改进了至少0.5摩尔%,或者替代地,改进了至少1摩尔%,或者替代地,改进了至少1.5摩尔%,或者替代地,改进了至少2摩尔%。
图1图示了本发明的旋风反应器***1的第一实施例的示意图,其中冷却手段包括插在流化反应器和分离***提升管之间的急冷交换器。所述***包括上流式流化反应器40,其中脱氢催化剂在烷烃或烷基芳烃原料与脱氢产物和氢的流中流化。流化流流出反应器40,并通过急冷交换器30,在急冷交换器中流化流的温度得以降低。流化流随后向上流经截头体20进入输送提升管10,随后进入二级旋风分离***。旋风分离***还包括将固体催化剂与流化流初步分离的初级旋风分离器50,分离出的催化剂经由料腿52从初级旋风分离器排出。包含气相脱氢产物、氢、未反应的原料和剩余的催化剂的初级旋风分离器的排出物从初级旋风分离器50排出,并进入次级旋风分离器60。另外的催化剂分离发生在次级旋风分离器60中,分离出的催化剂通过料腿62排出。次级旋风分离器60的排出物进入分离器增压室70中。
在一个替代性实施例中,上流式流化反应器40的流化流排出物可进入管、容器或截头体20中,在所述管、容器或截头体中排出物与冷却介质接触。冷却介质被注入到输送提升管10的底部或者截头体20的顶部中,在图1中所示的括弧15所表示的区域内。在又一个实施例中,流化流排出物可流经急冷交换器30并与冷却介质接触。
在一个替代性实施例中,一种改进的催化脱氢方法,所述方法包括在上流式流化反应器中在催化条件下使烷烃或烷基芳烃原料流与脱氢催化剂接触,所述脱氢催化剂包含镓和铂并且由氧化铝载体或氧化铝氧化硅载体负载,其中所述流化反应器包括一个或多个选自由鼓泡床反应器、湍动床反应器、快速流化反应器和提升管反应器组成的群组的反应器,所述催化条件包括范围从500℃到800℃的温度、范围从0.1到1000的重时空速、范围从0.1秒到10秒的气体停留时间,并且在所述流化反应器之后,通过使用旋风分离***使夹带的催化剂与反应器的排出物分离,其中所述改进之处本质上由在上流式流化反应器和旋风分离***之间***冷却手段构成,从而大体上终止热反应,由此有效地增大对于烯烃产物的总摩尔选择性。
实例
以下实例描述了本发明但并不意图限制本发明的范围。
比较实例1是美国公开申请20120123177中公开的上流式流化反应器***和旋风分离***的模型,所述模型将丙烷脱氢为丙烯,选择性为91摩尔%到94摩尔%。
本发明实例1是如比较实例1中的上流式流化反应器***的模型,所述模型还包括位于上流式流化反应器和旋风分离***之间的急冷交换器。
使用模型来说明以本发明获得的可能的丙烯选择性。
高活性和高选择性的石蜡烃脱氢催化剂是已知的。作为一个实例,在PCT公开号PCT/US2012/046188中,表1显示了丙烷转化率为约37.6%,催化选择性为99.3摩尔%。在PCT/US2012/046188表1中说明的实验在600℃下进行,所述温度是展现极低气相反应的温度。PCT/US2012/046188,表6,如下表1再现,代表催化选择性,预期将产生极为活跃且具有高选择性的催化剂。
表1
循环编号 C3H8转化率(%) C3H6选择性(%)
1 41.8 99.4
2 38.1 99.3
5 37.9 99.3
8 37.6 99.2
10 37.6 99.3
替代地,PCT/US2012/046188,表9,如下表2部分再现,显示出使用相同的催化剂,在625℃下丙烷转化率为46.1%,丙烷生成丙烯的选择性为96.4%。在625℃下,丙烷显示出明显更多的气相反应,这降低了实验中的总测得选择性。为了显示这点,开发出如表3中所述的简单模型。
表2
实例 C3H8转化率(%) C3H6选择性(%)
6 46.1 96.4
表3催化和气相丙烷→丙烯选择性模型
热动力学 单位 催化反应器实验室
In(a) 33.18
Ea/R -33769.5
剩余丙烷 摩尔% 100
平均反应温度 625
停留时间 2
催化转化率 44
催化选择性 摩尔% 99.3
热速率,k 摩尔/秒 0.01197
热转化率 2.4
转化热 2.4
热选择性 摩尔% 45
总转化率 46.4
总选择性 摩尔% 96.5
催化选择性取自表1,显示出选择性为99.3摩尔%。丙烷的热选择性取自Froment的工业工程化学工艺设计与开发(IndustrialEngineeringChemistryProcessDesignandDevelopment)中的“丙烷的热裂解、动力学和产物分布(ThermalCrackingofPropane.KineticsandProductDistributions)”(1968),440页。使用Froment在“丙烷的热裂解、动力学和产物分布(ThermalCrackingofPropane.KineticsandProductDistributions)”中所描述的Laider系数,采用如下Eqn.(1)中所示的Arrenhius方程式计算热反应速率,
( 1 ) - - - k = Ae - E a / ( R T )
Arrenhius方程式的应用取自如下Eqn(2)中所示的Eqn.(1)的重排。这使得能够计算每秒钟的摩尔反应速率,k。
( 2 ) - - - ln ( k ) = - E a R 1 T + l n ( A )
随后对丙烷求热反应速率,在45摩尔%选择性下可得。解得催化性能以获得测得的总转化率。所得的总选择性随后应接近于实验中的测得值。在此情况中,模型显示出96.5摩尔%选择性,对比测得值96.4摩尔%。
通过将催化反应器中的预期催化性能与相关的气相反应动力学相结合,采用以上描述的方法对本发明建模。
反应器尺寸订定准则
上部输送提升管
输送部分的高度是基于装置的物理布局。因为装置在物理上是由烃汽提塔和两级旋风分离***组成,因此在快速流化/湍动床反应器到旋风分离器之间存在最小距离。这增加了气体停留时间,从而导致丙烷的热裂解和产物的降解。
该这一上部部分的直径是基于最大值约35到80ft/s设定,从而将催化剂和气体快速输送至旋风分离器,不会造成不必要的设备腐蚀或催化剂的消耗。
快速流化/湍动床反应器
下部反应器的直径和高度是基于所需的催化剂负荷来设定,从而以可能的最短气体停留时间实现所需的催化转化率。将上述模型应用于比较实例1。在比较实例1中,在预期的催化选择性下考虑下部反应器中的催化转化率为37.58%,输送提升管中为3.31%。在反应器、输送提升管和旋风分离器各区域中的催化反应之后,各区域中的剩余丙烷进行热反应。由于热反应和催化反应将同时发生,因此这是对选择性的粗略估计。结果为,反应***实现了45.5%的转化率,总选择性为93.8摩尔%,如表4中所示。
替代地,模型也可应用于反应器类型B。将模型应用于本发明实例1,显示在表5中。在本发明实例1中,在快速流化/湍动床反应器之后可直接应用急冷交换器或直接的急冷导入。通过立即急冷催化剂和气体,总转化率由45.5%降到43.3%,而选择性由93.8%增至96.2%。这比反应器类型A改进了差不多2.5摩尔%。事实上,额外的2.2%的转化率的增量选择性仅为45摩尔%,这是极差的,也是不理想的。
除了单独改进方法的总选择性之外,催化反应器中的气体停留时间可增加,从而将总转化率的水平升至与反应器类型A所示相同的水平。如果转化率增大,可以在表6中找到结果。在这一实例中,实现了45.5%的丙烷转化率,总选择性为96.1摩尔%。
使用急冷交换器或直接的急冷至提升管中能够提高对于所需的烯烃产物的选择性。替代地,可以升高反应温度,从而在与不使用急冷交换器的情况中类似的选择性下实现更高的转化率。
表4
表5
表6
本发明可以在不背离本发明的精神及其本质属性的情况下以其他形式实施,因此,应当提及由所附权利要求书而非前述说明书来指明本发明的范围。

Claims (7)

1.一种改进的催化脱氢方法,所述方法包括在上流式流化反应器中在催化条件下使烷烃或烷基芳烃原料流与脱氢催化剂接触,所述脱氢催化剂包含镓和铂并且由氧化铝载体或氧化铝氧化硅载体负载,其中所述流化反应器包括一个或多个选自由鼓泡床反应器、湍动床反应器、快速流化反应器和提升管反应器组成的群组的反应器,所述催化条件包括范围从500℃到800℃的温度、范围从0.1到1000的重时空速、范围从0.1秒到10秒的气体停留时间,并且在所述流化反应器之后,通过使用旋风分离***使夹带的催化剂与反应器的排出物分离,其中所述改进之处包括在上流式流化反应器和所述旋风分离***之间***冷却手段以大体上终止热反应,由此有效地增大对于烯烃产物的总摩尔选择性。
2.如权利要求1所述的改进的催化脱氢方法,其中在反应温度下热转化率不超过总转化率的20%。
3.如权利要求1所述的改进的催化脱氢方法,其中所述冷却手段选自由以下组成的群组:(i)位于所述流化反应器和所述旋风分离***之间的急冷交换器;和(ii)将冷却介质注入到所述流化反应器和所述旋风分离***之间的区域中。
4.如权利要求3所述的改进的催化脱氢方法,其中所述烷烃和/或烷基芳烃选自丙烷和/或乙基苯,并且热反应产物与催化反应产物的摩尔比为大于0到小于或等于0.1∶1。
5.如权利要求1所述的改进的催化脱氢方法,其中所述冷却手段是将冷却介质注入到所述反应区和所述提升管之间的区域中,其中所述冷却介质是选自由蒸汽和液态水组成的群组中的一种或多种。
6.如权利要求2所述的改进的催化脱氢方法,其中在相等的总转化率下总选择性相比于不利用冷却手段的方法改进了至少0.5摩尔%。
7.如权利要求3所述的改进的催化脱氢方法,其中所述冷却介质是选自由蒸汽、水、冷催化剂、液态烃、冷却后的产物气体、燃料和填料颗粒组成的群组中的一种或多种。
CN201480059171.XA 2013-11-12 2014-10-14 催化脱氢方法 Pending CN105683137A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010646524.3A CN111875468A (zh) 2013-11-12 2014-10-14 催化脱氢方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361903050P 2013-11-12 2013-11-12
US61/903050 2013-11-12
PCT/US2014/060371 WO2015073152A1 (en) 2013-11-12 2014-10-14 Catalytic dehydrogenation process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010646524.3A Division CN111875468A (zh) 2013-11-12 2014-10-14 催化脱氢方法

Publications (1)

Publication Number Publication Date
CN105683137A true CN105683137A (zh) 2016-06-15

Family

ID=51842878

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010646524.3A Pending CN111875468A (zh) 2013-11-12 2014-10-14 催化脱氢方法
CN201480059171.XA Pending CN105683137A (zh) 2013-11-12 2014-10-14 催化脱氢方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010646524.3A Pending CN111875468A (zh) 2013-11-12 2014-10-14 催化脱氢方法

Country Status (11)

Country Link
US (1) US9725382B2 (zh)
EP (1) EP3068748B1 (zh)
KR (1) KR102322348B1 (zh)
CN (2) CN111875468A (zh)
AR (1) AR098383A1 (zh)
BR (1) BR112016009581B1 (zh)
CA (1) CA2929594C (zh)
MX (1) MX367860B (zh)
RU (1) RU2665480C1 (zh)
SA (1) SA516371017B1 (zh)
WO (1) WO2015073152A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473389A (zh) * 2016-01-21 2018-08-31 沙特基础全球技术有限公司 通过丙烷脱氢生产丙烯的方法
CN110300739A (zh) * 2017-03-13 2019-10-01 陶氏环球技术有限责任公司 用于由不同进料物流制备轻烯烃的方法
CN114072372A (zh) * 2019-06-28 2022-02-18 陶氏环球技术有限责任公司 包括使用冷却的产物作为再循环的骤冷流的形成轻质烯烃的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9707533B2 (en) * 2015-12-01 2017-07-18 Dow Global Technologies Llc Fluidized catalyst stripping unit for displacing entrained gas from catalyst particles
AR109884A1 (es) * 2016-11-02 2019-01-30 Dow Global Technologies Llc Métodos para diseñar reactores catalíticos fluidos ampliados
CA3042006A1 (en) 2016-11-02 2018-05-11 Dow Global Technologies Llc Fluid catalytic reactors which include flow directors
AR111237A1 (es) 2017-03-13 2019-06-19 Dow Global Technologies Llc Métodos y aparatos para formar olefinas ligeras por craqueo
AR111992A1 (es) 2017-06-19 2019-09-11 Dow Global Technologies Llc Sistemas de reactor que comprenden el reciclado de fluidos
ES2926644T3 (es) 2018-03-23 2022-10-27 Exxonmobil Chemical Patents Inc Procesos y sistemas para la conversión de hidrocarburos
KR20220137724A (ko) * 2020-03-06 2022-10-12 엑손모빌 케미칼 패턴츠 인코포레이티드 알칸 및 알킬 방향족 탄화수소의 업그레이드 방법
US11760703B2 (en) * 2020-03-06 2023-09-19 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
US11000832B1 (en) * 2020-03-13 2021-05-11 Uop Llc Dehydrogenation catalyst with minimized aromatic production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982798A (en) * 1958-09-08 1961-05-02 Phillips Petroleum Co Co-current flow dehydrogenation system
CN102417432A (zh) * 2011-12-16 2012-04-18 天津市泰亨气体有限公司 采用丁烷催化脱氢制备1,3-丁二烯的方法
WO2013126210A1 (en) * 2012-02-20 2013-08-29 Dow Global Technologies Llc Reconstituted dehydrogenation catalyst showing slowed activity loss when compared with fresh catalyst

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579716A (en) 1983-09-06 1986-04-01 Mobil Oil Corporation Closed reactor FCC system with provisions for surge capacity
US5190650A (en) 1991-06-24 1993-03-02 Exxon Research And Engineering Company Tangential solids separation transfer tunnel
US5254788A (en) * 1991-09-10 1993-10-19 Stone And Webster Engineering Corporation Process for the production of olefins from light paraffins
US5220093A (en) * 1992-04-03 1993-06-15 Stone & Webster Engineering Corporation Process for production of olefins from mixtures of light paraffins
RU2178399C1 (ru) * 2000-12-09 2002-01-20 Институт катализа им. Г.К. Борескова СО РАН Способ каталитического дегидрирования углеводородов
ITMI20012709A1 (it) * 2001-12-20 2003-06-20 Snam Progetti Composizione catalitica per la deidrogenazione di idrocarburi alchilaromatici
ZA200606323B (en) * 2004-02-09 2008-02-27 Dow Chemical Co Process for the preparation of dehydrogenated hydrocarbon compounds
DE102005010586A1 (de) * 2005-03-08 2006-09-14 Basf Ag Verfahren zur Herstellung von Propen aus Propan
US9834496B2 (en) 2011-07-13 2017-12-05 Dow Global Technologies Llc Reactivating propane dehydrogenation catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2982798A (en) * 1958-09-08 1961-05-02 Phillips Petroleum Co Co-current flow dehydrogenation system
CN102417432A (zh) * 2011-12-16 2012-04-18 天津市泰亨气体有限公司 采用丁烷催化脱氢制备1,3-丁二烯的方法
WO2013126210A1 (en) * 2012-02-20 2013-08-29 Dow Global Technologies Llc Reconstituted dehydrogenation catalyst showing slowed activity loss when compared with fresh catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108473389A (zh) * 2016-01-21 2018-08-31 沙特基础全球技术有限公司 通过丙烷脱氢生产丙烯的方法
CN110300739A (zh) * 2017-03-13 2019-10-01 陶氏环球技术有限责任公司 用于由不同进料物流制备轻烯烃的方法
CN114072372A (zh) * 2019-06-28 2022-02-18 陶氏环球技术有限责任公司 包括使用冷却的产物作为再循环的骤冷流的形成轻质烯烃的方法

Also Published As

Publication number Publication date
MX2016005412A (es) 2016-08-19
EP3068748A1 (en) 2016-09-21
BR112016009581B1 (pt) 2021-09-21
KR102322348B1 (ko) 2021-11-09
KR20160093001A (ko) 2016-08-05
US9725382B2 (en) 2017-08-08
BR112016009581A2 (zh) 2017-08-01
US20160272559A1 (en) 2016-09-22
EP3068748B1 (en) 2019-07-03
MX367860B (es) 2019-09-09
SA516371017B1 (ar) 2017-12-05
RU2016122616A (ru) 2017-12-19
WO2015073152A1 (en) 2015-05-21
CA2929594C (en) 2021-12-07
CA2929594A1 (en) 2015-05-21
AR098383A1 (es) 2016-05-26
RU2665480C1 (ru) 2018-08-30
CN111875468A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN105683137A (zh) 催化脱氢方法
CN101402541B (zh) 一种乙炔加氢制乙烯的流化床工艺及装置
CN101239871B (zh) 甲醇或二甲醚转化过程中提高低碳烯烃选择性的方法
CN101830769A (zh) 一种将甲醇转化为丙烯的方法
CN107337574A (zh) 一种轻烃裂解制烯烃的催化转化方法
CN105439790B (zh) 一种由苯和甲醇制备异构级二甲苯的方法
US7357855B2 (en) Reactor for chemical conversion of a feed with added heat, and crosswise flow of feed and catalyst
US20220251456A1 (en) Dense phase fluidized bed reactor to maximize btx production yield
TW201235104A (en) Reactor
CN103028450A (zh) 催化转化催化剂再生方法
US2450500A (en) Synthesis of hydrocarbons
CN107206341A (zh) 一种固定床反应器
CN105980527B (zh) 重油的流化催化裂化法
CN105268381B (zh) 用于甲醇制烯烃的下行床反应‑再生装置及其反应方法
US12012556B2 (en) Dense phase riser to maximize light olefins yields for naphtha catalytic cracking
CN101318868B (zh) 一种由含氧化合物生成低碳烯烃的方法及装置
US7070742B2 (en) Reactor for chemical conversion of a feedstock in the presence of a diluent, with heat inputs and feedstock/catalyst cross-circulation
US20220275288A1 (en) Multiple dense phase risers to maximize light olefins yields for naphtha catalytic cracking
WO2017077420A1 (en) Process for syngas production from co2 and h2
US11377598B2 (en) Method related to heat transfer for exothermic reactions
JP2024525615A (ja) 流動接触分解反応器及び再生器を含むプロセスの熱統合
EP3990575A1 (en) Heating plates riser reactor
WO2021024117A1 (en) Multiple dense phase risers to maximize aromatics yields for naphtha catalytic cracking
CN105315119A (zh) 基于高密度反应器的甲醇制烯烃的方法
JPH03105198A (ja) 流動粒子と熱交換流体間の間接熱交換法及び装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160615

RJ01 Rejection of invention patent application after publication