CN105676941B - 一种光伏阵列局部阴影下最大功率点追踪***及方法 - Google Patents

一种光伏阵列局部阴影下最大功率点追踪***及方法 Download PDF

Info

Publication number
CN105676941B
CN105676941B CN201610192860.9A CN201610192860A CN105676941B CN 105676941 B CN105676941 B CN 105676941B CN 201610192860 A CN201610192860 A CN 201610192860A CN 105676941 B CN105676941 B CN 105676941B
Authority
CN
China
Prior art keywords
photovoltaic array
voltage
switch
circuit
maximum power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610192860.9A
Other languages
English (en)
Other versions
CN105676941A (zh
Inventor
周小杰
杨岸
李敬兆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN201610192860.9A priority Critical patent/CN105676941B/zh
Publication of CN105676941A publication Critical patent/CN105676941A/zh
Application granted granted Critical
Publication of CN105676941B publication Critical patent/CN105676941B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明涉及光伏阵列最大功率点追踪技术,具体涉及一种光伏阵列局部阴影下最大功率点追踪***及方法,包括顺序连接的光伏阵列、第一开关、DC/DC模块、负载,还包括追踪电路和控制器,所述追踪电路通过第二开关与光伏阵列连接,所述追踪电路与控制器连接,所述控制器连接DC/DC模块。本发明提供一种光伏阵列局部阴影下最大功率点追踪***及方法,相对于传统技术,本发明具有方法简单、搜索速度快、精度高、适用于局部阴影情况下光伏阵列最大功率点的追踪等优点。

Description

一种光伏阵列局部阴影下最大功率点追踪***及方法
技术领域
本发明涉及光伏阵列最大功率点追踪技术,具体涉及一种光伏阵列局部阴影下最大功率点追踪***及方法。
背景技术
光伏方阵(PV Array)又称光伏阵列,是由若干个光伏组件或光伏板在机械和电气上按一定方式组装在一起并且具有固定的支撑结构而构成的直流发电单元。给蓄电池充电,光伏阵列板的输出电压必须高于蓄电池的当前电压,如果光伏阵列板的电压低于电池的电压,那么输出电流就会接近0。而传统的太阳能充放电控制器就有点象手动档的变速箱,当发动机的转速增高的时候,如果变速箱的档位不相应提高的话,势必会影响车速。而MPPT控制器会实时跟踪太阳能板中的最大的功率点,来发挥出太阳能板的最大功效。当外界环境发生变化时,如果不进行最大功率追踪,光伏阵列此时的效率不能达到最大。理论上讲,使用MPPT控制器的太阳能发电***会比传统的效率提高50%,但是跟据我们的实际测试,由于周围环境影响与各种能量损失,最终的效率也可以提高20%-30%。
最大功率点跟踪(maximum power point tracking,MPPT)技术是提高光伏发电***效率的关键技术之一。在实际应用中,局部阴影情况往往使得光伏阵列的功率-电压(P-V)特性曲线呈现多个功率极值点,此时,传统的MPPT控制***通常采用如扰动观察法(perturb and observe,P&O)、电导增量法(incremental conductance,IC)等,往往容易陷入局部极值点而无法追踪到全局最大功率点。
发明内容
本发明提供一种光伏阵列局部阴影下最大功率点追踪***及方法,解决现有技术中传统的MPPT控制***在追踪最大功率点时常常陷入局部极值点导致无法追踪到的问题,具体技术方案如下:
一种光伏阵列局部阴影下最大功率点追踪***,包括顺序连接的光伏阵列、第一开关K1、DC/DC模块、负载,还包括追踪电路和控制器,所述追踪电路通过第二开关K2与光伏阵列连接,所述追踪电路与控制器连接,所述控制器连接DC/DC模块,所述追踪电路包括:电流传感器、电容C、第三开关K3、放电电阻R1、乘法器、峰值检测与触发器、采样保持器和分压电阻R2、R3,所述电容C与电流传感器、第一开关K1串联后连接在光伏阵列的两端,所述放电电阻R1与第三开关K3串联后与电容C并联,所述分压电阻R2、R3为兆欧级电阻且串联后也与电容C并联,所述乘法器的输入端一路连接电流传感器,另一路连接R2与R3的中间,所述乘法器输出端连接峰值检测与触发器,所述峰值检测与触发器连接采样保持器,所述采样保持器采集R2与R3之间的电压值,所述采样保持器输出追踪点的电压值到所述控制器。
进一步的,所述控制器为PI调节器,所述采样保持器将其电压采样值送入PI调节器,PI调节器调节占空比,输出PWM脉冲至DC/DC模块。
进一步的,所述DC/DC模块为升压电路。
进一步的,所述电容C可以通过选择合适的容值使得电容C的充放电时间为毫秒级。
进一步的,所述DC/DC模块包括电压和电流检测单元,所述电压和电流检测单元将检测到的光伏阵列输出的电压值和电流值传给控制器。
一种光伏阵列局部阴影下全局最大功率点追踪方法,包括如下步骤:
S1:判断当前DC/DC模块采集到的光伏阵列输出功率P(k+1)与前一次追踪电路得到的输出功率P(k)之差是否超过设定值Pε,是则转入S2,否则转入S6;
S2:断开光伏阵列与后级的DC/DC模块之间的第一开关K1,连通光伏阵列与追踪电路之间的第二开关K2,断开第三开关K3;
S3:通过追踪电路内电容的充电起始和终止时刻实时采样光伏阵列输出的电流值和电压值,再利用乘法器得到光伏阵列输出功率值,最后通过追踪电路内的峰值检测与触发器获得光伏阵列最大输出功率PMPP时对应的电压值VMPP,并将VMPP输入PI控制器;
S4:连通光伏阵列与后级的DC/DC模块之间的第一开关K1,断开光伏阵列与追踪电路之间的第二开关K2,连通第三开关K3;
S5:PI控制器根据获得的电压值VMPP,调节占空比,输出PWM脉冲至DC/DC模块,并通过PI调节器的闭环作用使光伏阵列输出电压保持在VMPP,进而使光伏阵列稳定工作于最大功率点。
S6:利用DC/DC模块内的电压检测单元和电流检测单元检测光伏阵列的输出电压UPV和电流IPV,并计算P(k+1)=UPV×IPV,转入S1。
需要说明的是,开始追踪时,光伏阵列与负载断开非常短暂的时间,一般几毫秒,同时与一个外部电容相连,在对外部电容器充电的过程中由追踪电路获得光伏阵列最大功率点的电压VMPP和电流IMPP,然后光伏阵列与负载重新连接,将获得的VMPP作为参考电压,通过闭环控制作用使光伏阵列输出电压保持在VMPP,使光伏阵列稳定工作于最大功率点。
有益效果:
本发明提供一种光伏阵列局部阴影下最大功率点追踪***及方法,相对于传统技术,本发明具有方法简单、搜索速度快、精度高、适用于局部阴影情况下光伏阵列最大功率点的追踪等优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明总体控制原理图;
图2为追踪电路原理图;
图3为局部阴影下光伏阵列功率电压曲线;
图4为DC/DC模块控制原理图;
图5为追踪方法步骤图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
局部阴影情况下的光伏阵列的全局最大功率点追踪***的原理图如图1所示,当进行全局最大功率点追踪时,K1(第一开关)断开,使光伏阵列与后级的DC-DC模块隔离,K2(第二开关)闭合,使光伏阵列与追踪电路连接,通过追踪电路找到此时的光伏阵列的全局最大功率点的电压UMPP和电流IMPP,此时,K2断开,K1闭合;电压、电流值被送入控制器,控制器将电压值UMPP作为PI调节器的给定,通过PI调节器的闭环调节作用使光伏阵列的输出电压保持在电压值UMPP上,从而使光伏阵列稳定工作于最大功率点。
追踪电路的原理如图2虚线所包围部分所示。R2和R3组成分压网络,通过采样和计算可得光伏阵列的电压,R2和R3阻值为兆欧(MΩ)级。
式(1)中,UPV为光伏阵列的电压,UR3为电阻R3两端电压。
当进行全局最大功率点追踪时,K2闭合,此时,光伏阵列、K2、电容C构成闭合回路(由于R2和R3阻值非常大,流过电流可忽略不计),光伏阵列给电容C充电(充电起始时,电容C两端电压为0),在充电过程中,得到光伏阵列的电压UPV(式1可得)和电流IPV(通过电流传感器得到),将这两个值送入乘法器得到光伏阵列的功率PPV,将此功率送入峰值检测与触发器,不停检测PPV,当PPV最大时(此时对应为PMPP),峰值检测与触发器触发采样保持器,将此时光伏阵列的电压(即最大功率点的电压UMPP)保持住,并将这个值送入控制器,这样就找到了光伏阵列的全局最大功率点的电压,完成追踪后,K2断开,K3(第三开关)闭合,电容C通过K3、电阻R1放电,为下一次追踪做准备。
下面解释追踪电路的局部极值点:
当K2(第二开关)闭合时,光伏阵列给电容C充电,由于之前电容C两端电压为0,所以刚开始充电时,电容C相当于短路,此时电流传感器检测到光伏阵列输出的电流为短路电流,随着时间的推移,电容C两端电压不停的升高,直到电容C两端电压为光伏阵列开路电压时,充电过程结束。在电容C充电的过程中,光伏阵列的输出电压从0一直增加到开路电压uco,从图3中可以看出,在电容C的充电过程中,光伏阵列的输出功率正好完整经过图3中的曲线,不会陷入某个局部极值点。
电容C充电时间tc可由式(2)得到
式(2)中,C为电容C的容值,uco为光伏阵列的开路电压,isc为光伏阵列的短路电流。
例如,光伏阵列的uco=400V,isc=100A,C=500μF,由式(2)计算得到电容C充电时间tc≈4ms,根据光伏阵列的开路电压、短路电流选择合适的电容C的容值,可使电容C充电时间处于毫秒级,此充电时间就是追踪全局最大功率点的时间,因此采用该方法追踪全局最大功率点所需时间很短。
DC-DC模块的控制原理如图4所示,将获得的VMPP作为给定值,将其与DC/DC模块内的电压检测单元比较送入PI调节器,根据PI调节器的输出大小调节占空比,输出PWM脉冲控制DC-DC模块,通过PI调节器的闭环作用使光伏阵列输出电压保持在VMPP,进而使光伏阵列稳定工作于最大功率点。
追踪方法的流程如图5所示,当前光伏阵列输出功率P(k+1)与前一次的功率P(k)之差超过某一个设定值Pε(该值可按占光伏阵列额定输出功率的百分比设定)时,表示外界的环境情况发生了变化,即最大功率点改变了,因此开始新一次的追踪过程。
S1:判断当前DC/DC模块采集到的光伏阵列输出功率P(k+1)与前一次追踪电路得到的输出功率P(k)之差是否超过设定值Pε,是则转入S2,否则转入S6;
S2:断开光伏阵列与后级的DC/DC模块之间的第一开关K1,连通光伏阵列与追踪电路之间的第二开关K2,断开追踪电路内电容的放电电路第三开关K3;
S3:通过追踪电路内电容的充电起始和终止时刻实时采样光伏阵列输出的电流值和电压值,再利用乘法器得到光伏阵列输出功率值,最后通过追踪电路内的峰值检测与触发器获得光伏阵列最大输出功率PMPP时对应的电压值VMPP,并将VMPP输入PI控制器;
S4:连通光伏阵列与后级的DC/DC模块的第一开关K1,断开光伏阵列与追踪电路之间的第二开关K2,连通追踪电路内电容的放电电路第三开关K3;
S5:PI控制器根据获得的电压值VMPP,调节占空比,输出PWM脉冲至DC/DC模块,并通过PI调节器的闭环作用使光伏阵列输出电压保持在VMPP,进而使光伏阵列稳定工作于最大功率点。
S6:利用DC/DC模块内的电压检测单元和电流检测单元检测光伏阵列的输出电压UPV和电流IPV,并计算P(k+1)=UPV×IPV,转入S1。
本发明提供一种光伏阵列局部阴影下最大功率点追踪***及方法,相对于传统技术,本发明具有方法简单、搜索速度快、精度高、适用于局部阴影情况下光伏阵列最大功率点的追踪等优点。
本以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (6)

1.一种光伏阵列局部阴影下全局最大功率点追踪***,包括顺序连接的光伏阵列、第一开关K1、DC/DC模块、负载,其特征在于,还包括追踪电路和控制器,所述追踪电路通过第二开关K2与光伏阵列连接,所述追踪电路与控制器连接,所述控制器连接DC/DC模块,所述追踪电路包括:电流传感器、电容C、第三开关K3、放电电阻R1、乘法器、峰值检测与触发器、采样保持器和分压电阻R2、R3,所述电容C与电流传感器、第一开关K1串联后连接在光伏阵列的两端,所述放电电阻R1与第三开关K3串联后与电容C并联,所述分压电阻R2、R3为兆欧级电阻且串联后也与电容C并联,所述乘法器的输入端一路连接电流传感器,另一路连接R2与R3的中间,所述乘法器输出端连接峰值检测与触发器,所述峰值检测与触发器连接采样保持器,所述采样保持器采集R2与R3之间的电压值,所述采样保持器输出追踪点的电压值到所述控制器。
2.如权利要求1所述的光伏阵列局部阴影下全局最大功率点追踪***,其特征在于,所述控制器为PI调节器,所述采样保持器将其电压采样值送入PI调节器,PI调节器调节占空比,输出PWM脉冲至DC/DC模块。
3.如权利要求1所述的光伏阵列局部阴影下全局最大功率点追踪***,其特征在于,所述DC/DC模块为升压电路。
4.如权利要求1所述的光伏阵列局部阴影下全局最大功率点追踪***,其特征在于,所述电容C通过选择合适的容值使得电容C的充放电时间为毫秒级。
5.如权利要求1所述的光伏阵列局部阴影下全局最大功率点追踪***,其特征在于,所述DC/DC模块包括电压和电流检测单元,所述电压和电流检测单元将检测到的光伏阵列输出的电压值和电流值传给控制器。
6.如权利要求1到5中的任意一项所述的光伏阵列局部阴影下全局最大功率点追踪***的追踪方法,其特征在于,包括如下步骤:
S1:判断当前DC/DC模块采集到的光伏阵列输出功率P(k+1)与前一次追踪电路得到的输出功率P(k)之差是否超过设定值Pε,是则转入S2,否则转入S6;
S2:断开光伏阵列与后级的DC/DC模块之间的第一开关K1,连通光伏阵列与追踪电路之间的第二开关K2,断开第三开关K3;
S3:通过追踪电路内电容的充电起始和终止时刻实时采样光伏阵列输出的电流值和电压值,再利用乘法器得到光伏阵列输出功率值,最后通过追踪电路内的峰值检测与触发器获得光伏阵列最大输出功率PMPP时对应的电压值VMPP,并将VMPP输入PI控制器;
S4:连通光伏阵列与后级的DC/DC模块之间的第一开关K1,断开光伏阵列与追踪电路之间的第二开关K2,连通第三开关K3;
S5:PI控制器根据获得的电压值VMPP,调节占空比,输出PWM脉冲至DC/DC模块,并通过PI调节器的闭环作用使光伏阵列输出电压保持在VMPP,进而使光伏阵列稳定工作于最大功率点;
S6:利用DC/DC模块内的电压检测单元和电流检测单元检测光伏阵列的输出电压UPV和电流IPV,并计算P(k+1)=UPV×IPV,转入S1。
CN201610192860.9A 2016-03-29 2016-03-29 一种光伏阵列局部阴影下最大功率点追踪***及方法 Expired - Fee Related CN105676941B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610192860.9A CN105676941B (zh) 2016-03-29 2016-03-29 一种光伏阵列局部阴影下最大功率点追踪***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610192860.9A CN105676941B (zh) 2016-03-29 2016-03-29 一种光伏阵列局部阴影下最大功率点追踪***及方法

Publications (2)

Publication Number Publication Date
CN105676941A CN105676941A (zh) 2016-06-15
CN105676941B true CN105676941B (zh) 2017-07-28

Family

ID=56224692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610192860.9A Expired - Fee Related CN105676941B (zh) 2016-03-29 2016-03-29 一种光伏阵列局部阴影下最大功率点追踪***及方法

Country Status (1)

Country Link
CN (1) CN105676941B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133351A1 (zh) * 2018-12-29 2020-07-02 华为技术有限公司 一种逆变器
CN116736929B (zh) * 2023-06-26 2024-05-28 浙江大学 基于区域分割的光伏组串全局最大功率点追踪方法及***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103324239A (zh) * 2013-05-17 2013-09-25 河海大学 局部阴影下光伏阵列全局最大功率点快速寻优方法
US9397501B2 (en) * 2013-09-09 2016-07-19 Mitsubishi Electric Research Laboratories, Inc. Maximum power point tracking for photovoltaic power generation system
CN103592992B (zh) * 2013-11-18 2016-02-10 国家电网公司 一种阴影条件下光伏阵列最大功率点快速寻优***及方法
CN103995558B (zh) * 2014-04-08 2015-07-29 山东科技大学 一种基于混沌优化搜索的光伏阵列最大功率点跟踪方法
CN104793691B (zh) * 2015-03-30 2016-06-15 南昌大学 一种基于蚁群算法的局部阴影下光伏阵列全局mppt方法
CN105375517A (zh) * 2015-11-12 2016-03-02 上海交通大学 任何光照条件下实现光伏组件最大功率跟踪的光伏并网发电***

Also Published As

Publication number Publication date
CN105676941A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
Das Maximum power tracking based open circuit voltage method for PV system
CN204349909U (zh) 一种高效率的光伏组件功率优化器及使用该优化器的光伏阵列
CN201001050Y (zh) 超级电容器太阳能电源装置
CN104506135A (zh) 一种高效率的光伏组件功率优化器
Padhee et al. Design of photovoltaic MPPT based charger for lead-acid batteries
CN105515033A (zh) 一种光储微电网***的功率协调控制方法
CN104333215B (zh) 一种抑制逆变器频繁启停的方法及装置
CN102130631B (zh) 用于光伏并网发电的最大功率点跟踪控制方法
CN103227483B (zh) 一种供多种电池充电的太阳能充电器
CN107168447B (zh) 一种基于改进电导增量法的光伏逆变器多峰值mppt方法
US20170063147A1 (en) Power source system
CN108336758A (zh) 一种基于纹波关联法的光伏组件mppt算法
Arulmurugan et al. Intelligent fuzzy MPPT controller using analysis of DC to DC novel buck converter for photovoltaic energy system applications
CN102118067A (zh) 非接触式高压取电方法
CN101202520A (zh) 光伏发电***直接电流控制的最大功率点跟踪方法
CN105676941B (zh) 一种光伏阵列局部阴影下最大功率点追踪***及方法
CN103904741B (zh) 一种储能设备电压平衡的方法及其***
CN205615448U (zh) 一种分布式电池管理***
Arulmurugan Photovoltaic powered transformer less hybrid converter with active filter for harmonic and reactive power compensation
Anandhi et al. Application of DC-DC boost converter for solar powered traffic light with battery backup
CN108181966B (zh) 一种基于电压-功率扫描的光伏多峰mpp快速跟踪方法
Rout et al. Analysis of energy management system for photovoltaic system with battery and supercapacitor using fuzzy logic controller
CN205930315U (zh) 一种电动汽车大功率直流充电机/桩dcdc变换装置
CN2859895Y (zh) 蓄电池并联充电控制电路
CN208433763U (zh) 一种基于自抗扰控制软开关的光伏逆变器并网控制装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhou Xiaojie

Inventor after: Yang An

Inventor after: Li Jingzhao

Inventor before: Yang An

Inventor before: Zhou Xiaojie

Inventor before: Li Jingzhao

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170728

Termination date: 20190329

CF01 Termination of patent right due to non-payment of annual fee