CN105676081B - 基于超低频介损的直流电缆挤出绝缘老化状态评估方法 - Google Patents

基于超低频介损的直流电缆挤出绝缘老化状态评估方法 Download PDF

Info

Publication number
CN105676081B
CN105676081B CN201610012713.9A CN201610012713A CN105676081B CN 105676081 B CN105676081 B CN 105676081B CN 201610012713 A CN201610012713 A CN 201610012713A CN 105676081 B CN105676081 B CN 105676081B
Authority
CN
China
Prior art keywords
dielectric loss
insulation
voltage
direct current
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610012713.9A
Other languages
English (en)
Other versions
CN105676081A (zh
Inventor
刘�英
王林杰
肖阳
苏宇
王国利
廖帆
廖一帆
张福增
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
Xian Jiaotong University
Original Assignee
China South Power Grid International Co ltd
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China South Power Grid International Co ltd, Xian Jiaotong University filed Critical China South Power Grid International Co ltd
Priority to CN201610012713.9A priority Critical patent/CN105676081B/zh
Publication of CN105676081A publication Critical patent/CN105676081A/zh
Application granted granted Critical
Publication of CN105676081B publication Critical patent/CN105676081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2688Measuring quality factor or dielectric loss, e.g. loss angle, or power factor
    • G01R27/2694Measuring dielectric loss, e.g. loss angle, loss factor or power factor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

一种基于超低频介损的直流电缆挤出绝缘老化状态评估方法,以直流电缆的挤出型固体绝缘为研究对象,包括如下步骤:准备电缆绝缘内、中、外层切片试样;根据电缆的额定运行电压及尺寸参数确定测量电压;在不同的0.1Hz电压下进行试样介损测量;测量数据处理并在归一化坐标系中制作介损‑电压曲线图;根据介损‑电压曲线图上内、外层介损值的大小及其随外加电压的变化趋势,评估直流电缆挤出绝缘的老化状态;按照本发明方法可以对直流电缆挤出绝缘的老化程度进行准确评估,有效判断挤出型直流电缆的实时状态;测试所需的试样量小,对测试仪器的电压及容量要求低;减小了测试仪器***误差的影响,降低了对测试设备精确度的要求;无需与历史数据对比,适用于原始数据缺失的电缆状态评估。

Description

基于超低频介损的直流电缆挤出绝缘老化状态评估方法
技术领域
本发明涉及一种对挤出绝缘直流电缆的绝缘老化状态进行评估的方法,具体涉及基于固体介质的超低频介质损耗角正切的切片测量及数据分析,对采用挤出型绝缘的直流电力电缆的绝缘老化状态进行评估的方法。
背景技术
近年来,直流电缆由于在远距离、高电压、大容量、特别是跨越大面积水域应用中的优势而得到全世界的广泛关注。目前,应用最广泛的挤出型直流电缆主要由内部结构稳定、性能可靠的交联聚乙烯(XLPE)作为绝缘介质。直流电缆在加工制造过程中会不可避免的存在绝缘内部不均匀,而电缆敷设过程也易于在绝缘中产生缺陷。投入实际运行后的直流电缆,在电压、温度、机械力以及环境的综合作用下,其XLPE绝缘材料会发生老化,逐渐丧失应有的绝缘功能,导致电缆寿命终结。因此,为了保障直流输电线路或配电***的运行安全,必须实时了解直流电缆的状态,而这取决于对挤出绝缘老化状态的有效评估。
挤出绝缘直流电缆的研发及应用处于高速发展当中,但是针对直流电缆挤出绝缘的测试方法还不成熟,目前应用的方法主要有:直流耐压法、交流耐压法、局部放电法等。直流耐压法是CIGRE TB 496中对挤出绝缘直流电缆现场安装后推荐进行的试验项目之一,需要施加额定电压1.45倍的负极性直流电压,并持续1小时。这个试验因为施加的直流电压较高,可能会激发电缆本身的一些潜在缺陷,而造成绝缘损伤;另外,试验时需对直流电缆充电,试验完成后还需对电缆***充分放电,因此,试验过程比较麻烦且费时,对设备容量的要求也比较高。鉴于此,ABB公司的J.Karlstrand对于XLPE及其他类型长距离电缆的检测建议是:无论高压交流或直流电缆,均使用交流耐压试验而非直流耐压试验。但是,直流电缆应用交流耐压试验进行绝缘检测的有效性还未获得公认;而且,交流耐压试验时由于长电缆的电容量较大,将产生很大的充电电流,对仪器容量要求高。直流电压下固体绝缘中的局部放电次数少、信号弱,因此直流局部放电法对测试技术的要求十分苛刻,易受现场噪声影响,对抗干扰技术和后期数据处理技术要求很高,目前仍在研究当中。
在针对交流电缆挤出绝缘的检测技术当中,介质损耗角正切(tanδ,下文简称“介损”)测量是一种较为有效的绝缘老化状态评估技术,不仅可以反映电缆绝缘的整体老化程度,而且有利于分析绝缘状态随时间的发展趋势。最初的介损测量都是在工频(即50Hz)下进行的,随着检测技术的发展,超低频(即0.1Hz)试验方法于1990年代被提出,并应用于XLPE电缆的绝缘检测当中,它可以大大降低对设备容量的要求,减小设备体积,有利于进行现场试验。
M.Kuschel等人对聚乙烯、交联聚乙烯、乙丙橡胶等挤出绝缘中压电缆的绝缘介损值进行0.1Hz~50Hz的频谱分析,结果发现,0.1Hz电压下的tanδ值明显大于50Hz电压下的tanδ值,并且随绝缘状态的不同,tanδ值差异增大,即在0.1Hz电压下测量tanδ更易于评估挤出绝缘的老化水平。同时,S Hvidsten等人发现,随着电缆绝缘的0.1Hz介损值增大,绝缘的击穿场强减小,即0.1Hz介损能够有效反映绝缘状态。此外,测量0.1Hz电压下的tanδ不易受外界噪声干扰,而且受空间电荷注入与抽出的影响小,测量容易进行,结果较为准确。
IEEE分别在2000年、2004年和2013年制定了超低频试验的相关标准IEEE.Std.400‐2001、IEEE.Std.400.2‐2004、IEEE.Std.400.2‐2013,并在其中介绍了针对成品交流电缆的离线测试方法,以及电缆绝缘不同老化程度的判断依据。但是大量的研究发现,标准中所列判据并不适用于工程实践,例如,标准规定:当测得的tanδ大于4×10‐3时,表明电缆已严重老化,必须立即更换。而实际上,大量状态较好的电缆其tanδ测量值均大于4×10‐3,并且,tanδ的测量值本身就受测试***及外界环境影响较大。
对于挤出绝缘直流电缆,能否利用0.1Hz介损测量值判断绝缘的老化状态,以及具体的评估技术,目前尚无相关研究。
发明内容
为了弥补现有直流电缆挤出绝缘测试方法的不足,完善挤出绝缘直流电缆的状态检测技术,本发明的目的在于提供一种基于超低频介损的直流电缆挤出绝缘老化状态评估方法,按照本发明方法可以对直流电缆挤出绝缘的老化程度进行准确评估,有效判断挤出型直流电缆的实时状态;测试所需的试样量小,对测试仪器的电压及容量要求低;减小了测试仪器***误差的影响,降低了对测试设备精确度的要求;无需与历史数据对比,适用于原始数据缺失的电缆状态评估。
为了实现上述目的,本发明采用以下技术方案:
一种基于超低频介损的直流电缆挤出绝缘老化状态评估方法,包括如下步骤:
步骤1:准备试样,从成品电缆上截取一定长度的电缆样段,取出线芯并剥除绝缘屏蔽以外的所有部分后,沿电缆圆周方向进行环向切削(如削水果皮),获得一定厚度的薄膜带状试片,沿径向将绝缘均分为三部分,分别称为内层、中层和外层,分别在对应于绝缘内、中、外层位置切取3至5片试样,清洁并压平备用;
步骤2:确定测量电压,根据电缆的额定运行电压及尺寸参数,确定试验电压基准U0,施加的测量电压幅值按照U0的倍数增加,选取不发生明显闪络的最高电压作为测量电压的上限;
步骤3:0.1Hz电压下试样的介质损耗角正切值tanδ测量,完成必要的线路连接及设备调试后,在确定的0.1Hz外加测量电压下,测量各切片试样的介质损耗角正切值tanδ;
步骤4:数据处理及作图,对同一位置多个试样的介质损耗角正切值tanδ测量数据求平均,以平均值作为该位置层绝缘的介质损耗角正切值tanδ测量结果;以中层介质损耗角正切值tanδ0为基准,将内、外层介质损耗角正切值tanδ相对于基准值进行归一化处理;以归一化介损即tanδ/tanδ0值为纵坐标,归一化测试电压即U/U0为横坐标,制作介损‐电压曲线图;
步骤5:绝缘老化状态评估,根据介损‐电压曲线图上内、外层介损值大小及其随外加电压的变化趋势,判断直流电缆挤出绝缘的老化状态,在介损‐电压曲线图中,未老化绝缘的内、外层归一化介损在数值上接近1.0,而且几乎不随外加电压而变化;而明显老化的绝缘其内、外层归一化介损将大于1.5,并且随外加电压的升高显著增大。
按照本发明所提出的基于超低频介损对直流电缆挤出绝缘老化状态进行评估的方法,可以对直流电缆挤出绝缘的老化程度进行准确评估,有效判断挤出型直流电缆的实时状态,为直流输、配电线路的安全运行提供保障。本发明以绝缘切片为测试试样,所需的试样量小,对测试仪器的电压及容量要求低;本发明对测试结果进行归一化处理,以归一化数据作为绝缘老化状态的判断依据,减小了测试仪器***误差的影响,降低了对测试设备精确度的要求;本发明以直流电缆挤出绝缘不同位置切片试样的超低频介损测量值作为绝缘老化状态的判据,无需与新电缆绝缘的原始测量数据进行对比分析,对于原始数据缺失的电缆尤其适用。
附图说明
图1为直流电缆挤出绝缘的环切取样示意图。
图2为测试***及接线示意图。
图3为本发明实施例中新的直流电缆绝缘各层的介损随电压变化的归一化图。
图4为本发明实施例中通过预鉴定试验后的直流电缆绝缘各层的介损随电压变化的归一化图。
具体实施方式
下面结合具体实施方式对本发明作更详细的说明。
利用本发明所提出的基于超低频介损对直流电缆挤出绝缘老化状态进行评估的方法,包括如下步骤:
步骤1:准备试样,
以新的和经过预鉴定试验的高压直流挤出电缆为对象,分别取长约100mm的电缆段,去除导体线芯并剥除绝缘屏蔽以外的所有部分,沿电缆圆周方向进行环向切削(如削水果皮),将绝缘层环切成厚约0.2±0.02mm的切片试样,沿径向将绝缘均分为三部分,分别称为内层、中层和外层,如图1所示,分别在对应于绝缘内、中、外层位置切取3片试样,裁成约100mm×100mm的矩形,用酒精擦拭后,将试样放在50℃烘箱内烘干,之后将试样从烘箱内取出并压平备用;绝缘切片厚度不应过小,否则会出现明显的卷曲和不平整。
步骤2:确定测量电压,
根据电缆的额定运行电压及绝缘厚度,折算出0.2mm厚试样的试验电压基准U0,如式(1)所示:
式中,Un——直流电缆的额定运行电压,kV;
ri——绝缘层外径,mm;
rc——绝缘层内径,mm;
d——被测试样厚度,mm,此处取0.2mm。
在确定试验电压基准U0后,在介损测试时试样上实际施加的0.1Hz电压幅值按照U0的倍数增加,即试验电压分别为U0、2U0、3U0、4U0等,选取不发生明显闪络的最高电压作为试验电压的上限。
步骤3:0.1Hz电压下试样介损测量,
取一50cm×50cm的敞口玻璃容器,如图2所示,自上而下按照上电极、导电橡胶、试样、导电橡胶、下电极的顺序放置在玻璃容器中,试样通过导电橡胶与上、下电极实现良好接触;容器中倒入硅油,淹没过试样即可;高压线及测量线的一端连接在上电极上,另一端连接测量仪器;测量仪器要求具有内置的0.1Hz可调压电压源,并可精确测量介质损耗角正切值tanδ至10‐3,估读至10‐4,可选用奥地利BAUR公司的型号为Frida的介损测量装置;下电极与测量仪的接地端相连接。采用导电橡胶的目的一是为改善试样与电极之间的接触,二是导电橡胶类似于电缆中的半导电屏蔽层,可以更好的模拟实际的电缆结构;硅油可以防止电极间的外部放电以及试样上的沿面闪络。
在幅值为U0、2U0、3U0、4U0的0.1Hz试验电压下,分别测量电缆绝缘内层、中层和外层试样的介质损耗角正切值tanδ并记录。
步骤4:数据处理及作图,
对同一位置3个试样的介质损耗角正切值tanδ测量数据求平均,以平均值作为该位置层绝缘的介质损耗角正切值tanδ测量结果;以中层介损值为基准,将内、外层介质损耗角正切值tanδ相对于基准值进行归一化处理;以归一化介损即tanδ/tanδ0值为纵坐标,归一化测试电压即U/U0为横坐标,制作介损‐电压曲线图,如图3及图4所示;
步骤5:绝缘老化状态评估,
根据归一化坐标中介损‐电压曲线图上内、外层介损值的大小及其随外加电压的变化趋势,判断直流电缆挤出绝缘的老化状态,如图3所示,新电缆绝缘的内、外层归一化介损在数值上接近1.0,即各层归一化介损基本相等,而且介损测量值几乎不随外加电压而变化,在图中近似为一条水平直线,这说明新电缆的绝缘呈现出完全未老化的状态;而如图4所示,由于直流电缆在外加直流电压下空载及满载时其内、外层绝缘上的场强分别是最高的,因此,经过预鉴定试验后,电缆绝缘其内、外层归一化介损均较大,全部大于1.5,而且由于内层绝缘承受的场强更高,其绝缘老化更严重,故其归一化介损比外层更大;此外,内、外层绝缘的归一化介损随外加电压的升高显著增大,增大的速率也随外加电压的升高而增加,显示在经过为期一年的电压及负荷循环共同作用后,电缆绝缘发生了明显老化。
以上基于0.1Hz电压下试样介损测量所获得的绝缘老化状态评估结果与直流电缆的实际带电压、带负荷状态对绝缘的老化作用完全一致,由此可以验证,本发明所提出的基于超低频介损的直流电缆挤出绝缘老化状态评估方法简单易行,准确可靠。

Claims (1)

1.一种基于超低频介损的直流电缆挤出绝缘老化状态评估方法,其特征在于:包括如下步骤:
步骤1:准备试样,从成品电缆上截取一定长度的电缆样段,取出线芯并剥除绝缘屏蔽以外的所有部分后,沿电缆圆周方向进行环向切削,获得一定厚度的薄膜带状试片,沿径向将绝缘均分为三部分,分别称为内层、中层和外层,分别在对应于绝缘内、中、外层位置切取3至5片试样,清洁并压平备用;
步骤2:确定测量电压,根据电缆的额定运行电压及尺寸参数,确定试验电压基准U0,施加的测量电压幅值按照U0的倍数增加,选取不发生明显闪络的最高电压作为测量电压的上限;
步骤3:0.1Hz下试样的介质损耗角正切值tanδ测量,完成必要的线路连接及设备调试后,在确定的0.1Hz外加测量电压下,测量各切片试样的介质损耗角正切值tanδ;
步骤4:数据处理及作图,对同一位置多个试样的介质损耗角正切值tanδ测量数据求平均,以平均值作为该位置层绝缘的介质损耗角正切值tanδ测量结果;以中层介质损耗角正切值tanδ0为基准,将内、外层介质损耗角正切值tanδ相对于基准值进行归一化处理;以归一化介损即tanδ/tanδ0值为纵坐标,归一化测试电压即U/U0为横坐标,制作介损-电压曲线图;
步骤5:绝缘老化状态评估,根据介损-电压曲线图上内、外层介损值大小及其随外加电压的变化趋势,判断直流电缆挤出绝缘的老化状态,在介损-电压曲线图中,未老化绝缘的内、外层归一化介损在数值上接近1.0,而且几乎不随外加电压而变化;而明显老化的绝缘其内、外层归一化介损将大于1.5,并且随外加电压的升高显著增大。
CN201610012713.9A 2016-01-08 2016-01-08 基于超低频介损的直流电缆挤出绝缘老化状态评估方法 Active CN105676081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610012713.9A CN105676081B (zh) 2016-01-08 2016-01-08 基于超低频介损的直流电缆挤出绝缘老化状态评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610012713.9A CN105676081B (zh) 2016-01-08 2016-01-08 基于超低频介损的直流电缆挤出绝缘老化状态评估方法

Publications (2)

Publication Number Publication Date
CN105676081A CN105676081A (zh) 2016-06-15
CN105676081B true CN105676081B (zh) 2018-07-03

Family

ID=56299647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610012713.9A Active CN105676081B (zh) 2016-01-08 2016-01-08 基于超低频介损的直流电缆挤出绝缘老化状态评估方法

Country Status (1)

Country Link
CN (1) CN105676081B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108181558B (zh) * 2017-12-30 2020-11-27 广东电网有限责任公司广州供电局 电缆绝缘层电老化试验方法及试验装置
CN108469571B (zh) * 2018-02-11 2021-12-21 济南荣耀合创电力科技有限公司 基于趋势线拟合的多元试验数据分析的电缆状态评价方法
CN109358270A (zh) * 2018-08-22 2019-02-19 国网天津市电力公司电力科学研究院 一种用于评估交联聚乙烯电缆绝缘老化状态的方法
CN109061315A (zh) * 2018-11-01 2018-12-21 伟宸科技(武汉)有限公司 一种超低频介质损耗测试仪
CN110161391B (zh) * 2019-05-07 2021-01-01 四川大学 通过低频信号逆向注入对电缆绝缘进行在线监测的方法
CN110133456B (zh) * 2019-05-21 2021-03-19 深圳供电局有限公司 电缆绝缘超低频介损检测的判据体系构建方法
CN110298012B (zh) * 2019-06-24 2020-09-01 西安交通大学 基于试验数据与运维信息的中低压xlpe电缆寿命评估方法
CN111736043A (zh) * 2020-06-19 2020-10-02 西安交通大学 一种基于低频介电谱的xlpe电缆脱气状态评价方法
CN111965497A (zh) * 2020-06-22 2020-11-20 内蒙古大唐国际托克托发电有限责任公司 一种高压电缆早期缺陷联合诊断方法
CN113721111A (zh) * 2021-08-19 2021-11-30 国网北京市电力公司 电缆绝缘层老化程度的测试方法和装置
CN114895151A (zh) * 2022-03-28 2022-08-12 国网上海市电力公司 基于介质谱的超导电缆回温过程监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564404A (en) * 1966-10-27 1971-02-16 Okonite Co Method and apparatus including resonant termination for detecting insulation dielectric discontinuities in electric cable
CN101464235A (zh) * 2009-01-12 2009-06-24 重庆大学 聚合物电力电缆绝缘加速电树老化的试验方法及装置
CN102890226A (zh) * 2012-09-29 2013-01-23 江苏省电力公司电力科学研究院 电力***xlpe电缆水树老化状态测试***
CN102981062A (zh) * 2012-12-20 2013-03-20 国网电力科学研究院武汉南瑞有限责任公司 一种基于频域介电谱的高压套管绝缘检测方法
CN103558458A (zh) * 2013-11-19 2014-02-05 国家电网公司 一种电缆的绝缘特性优劣的判断方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093774B2 (ja) * 2007-09-05 2012-12-12 東京電力株式会社 OFケーブル線路のtanδ分布の推定方法および誘電発熱特性の推定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564404A (en) * 1966-10-27 1971-02-16 Okonite Co Method and apparatus including resonant termination for detecting insulation dielectric discontinuities in electric cable
CN101464235A (zh) * 2009-01-12 2009-06-24 重庆大学 聚合物电力电缆绝缘加速电树老化的试验方法及装置
CN102890226A (zh) * 2012-09-29 2013-01-23 江苏省电力公司电力科学研究院 电力***xlpe电缆水树老化状态测试***
CN102981062A (zh) * 2012-12-20 2013-03-20 国网电力科学研究院武汉南瑞有限责任公司 一种基于频域介电谱的高压套管绝缘检测方法
CN103558458A (zh) * 2013-11-19 2014-02-05 国家电网公司 一种电缆的绝缘特性优劣的判断方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Characterization of Ageing for MV Power Cables Using Low Frequency Tanδ Diagnostic Measurements;J.C. Hernández-Mejía et.al;《IEEE Transactions on Dielectrics and Electrical Insulation》;20090630;第16卷(第3期);第862-870页 *
Correlation between Tanδ Diagnostic Measurements and Breakdown Performance at VLF for MV XLPE Cables;J.C. Hernández-Mejía et.al;《IEEE Transactions on Dielectrics and Electrical Insulation》;20090228;第16卷(第1期);第162-170页 *
XLPE高压电缆绝缘老化状态评估研究;薛程;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20150515(第05期);第C042-13页 *
运行高压交联聚乙烯电力电缆的介电性能;朱晓辉 等;《高电压技术》;20150430;第41卷(第4期);第1090-1095页 *

Also Published As

Publication number Publication date
CN105676081A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
CN105676081B (zh) 基于超低频介损的直流电缆挤出绝缘老化状态评估方法
CN107607837B (zh) 一种基于冲击电压的电缆绝缘老化程度测试方法及装置
CN105866647B (zh) 基于不同频率介损比值的xlpe绝缘老化状态评估方法
CN106855605B (zh) 用于电缆整体老化寿命评估的频域测试分析***及方法
CN105277857B (zh) 一种在线监测变压器套管受潮缺陷的方法
CN103105568B (zh) 变压器油纸绝缘电热联合老化与局部放电一体化实验装置
CN110736905A (zh) 一种110kV XLPE高压电缆绝缘老化评估方法
CN107843817B (zh) 一种基于极化去极化电流法的电缆绝缘老化检测方法
CN110726880A (zh) 基于频域和时域的电容式套管绝缘***老化状态评估方法
CN102759690A (zh) 一种评判交流电缆绝缘老化程度的方法
CN106021756A (zh) 一种基于频域介电谱特征量评估油纸绝缘状态的方法
CN109557439B (zh) 油纸绝缘缺陷套管运行工况模拟装置
CN106053955B (zh) 一种低频正弦激励下油纸绝缘***相对介电常数的测试方法
CN107797035A (zh) 基于宽频介电阻抗谱法的xlpe 电缆绝缘性能评估方法
CN103954896A (zh) 一种油纸绝缘局部放电起始电压试验***
CN113419147B (zh) 基于雷达谱图式的可视化电缆绝缘状态诊断评估方法
Ghorbani et al. Electrical characterization of extruded DC cable insulation—The challenge of scaling
CN112557843B (zh) 一种xlpe电缆绝缘层水树老化程度的评估方法
CN105116201A (zh) 回复电压参数的测量装置及测量方法
CN113917293A (zh) 基于频域时域高压干式套管绝缘老化状态评估方法及***
CN117434396A (zh) 一种变压器套管末屏在线监测***及其方法
Liu et al. A New method of aging assessment for XLPE cable insulation based on dielectric response
CN109142995B (zh) 一种基于介电响应法的油纸绝缘介电测试仪及方法
CN206311712U (zh) 一种模拟固体绝缘材料气隙放电缺陷的试验装置
CN205067572U (zh) 回复电压参数的测量装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant