CN105671507B - 一种氮氟共掺杂氧化锌薄膜的制备方法 - Google Patents

一种氮氟共掺杂氧化锌薄膜的制备方法 Download PDF

Info

Publication number
CN105671507B
CN105671507B CN201610155287.4A CN201610155287A CN105671507B CN 105671507 B CN105671507 B CN 105671507B CN 201610155287 A CN201610155287 A CN 201610155287A CN 105671507 B CN105671507 B CN 105671507B
Authority
CN
China
Prior art keywords
nitrogen
gas
zinc
fluorine
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610155287.4A
Other languages
English (en)
Other versions
CN105671507A (zh
Inventor
刘亚强
李朋
曾庆国
吕志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangqiu Normal University
Original Assignee
Shangqiu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangqiu Normal University filed Critical Shangqiu Normal University
Priority to CN201610155287.4A priority Critical patent/CN105671507B/zh
Publication of CN105671507A publication Critical patent/CN105671507A/zh
Application granted granted Critical
Publication of CN105671507B publication Critical patent/CN105671507B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及氮氟共掺杂氧化锌薄膜的制备方法,可有效解决提高氧化锌薄膜的导电性和透射率的问题,方法是,将锌靶和玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10‑4Pa后,先通入溅射气体氩气,除去锌靶表面的杂物,然后通入氧气和氮氟气混合成的反应气体,在入射功率为100~600W、压强0.5~2 Pa、玻璃衬底温度100~400℃下,溅射20~50min,得到氮氟掺杂氧化锌薄膜,在温度150~500℃下退火20~90min,得成品氮氟共掺杂氧化锌薄膜;本发明方法简单,易操作,成本低,效果好,产品质量好,有效提高了氧化锌薄膜的导电性和透射率,增强了使用价值和商业价值。

Description

一种氮氟共掺杂氧化锌薄膜的制备方法
技术领域
本发明涉及化工,特别是一种氮氟共掺杂氧化锌薄膜的制备方法。
背景技术
氧化锌薄膜是一种直接带隙的宽禁带半导体材料,具有优良的压电、气敏性能以及高的化学稳定性,因而在平面显示器、太阳能电池、LDs、LEDs 以及其它光电子元器件中得到了广泛的应用。获得高质量稳定的p型薄膜是实现ZnO基光电器件化的关键。目前,国际上公认族元素中的N替代O位是实现p型ZnO较理想的掺杂途径。但p-ZnO:N薄膜的导电性能会随着时间、光照和温度条件发生变化,稳定性不足。
目前制备掺杂ZnO 薄膜的方法有许多种,主要有磁控溅射法、脉冲激光沉积法、化学气相沉积法、分子束外延法、喷雾热分解法及溶胶-凝胶法等,但由于种种原因,特别是由于现有方法中涉及到的工作气压、溅射功率、衬底温度和溅射角度等存在的问题,都会对沉积薄膜的结构和光电性质产生重要的影响,所制得的产品导电性能差,透射率低,满足不了实际对氧化锌薄膜的需要,因此氧化锌薄膜生产上的改进和创新是必需解决的技术问题。
发明内容
针对上述情况,为克服现有技术之缺陷,本发明之目的就是提供一种氮氟共掺杂氧化锌薄膜的制备方法,可有效解决提高氧化锌薄膜的导电性和透射率的问题。
本发明解决的技术方案是,将锌靶和玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去锌靶表面的杂物,然后通入氧气和氮氟气混合成的反应气体,在入射功率为100~600W、压强0.5~2 Pa、玻璃衬底温度100~400℃下,溅射20~50min,得到氮氟掺杂氧化锌薄膜,在温度150~500℃下退火20~90min,得成品氮氟共掺杂氧化锌薄膜;
所述的氩气、氧气、氮氟混合气的通入量的体积比为(21~24)∶(12~15) ∶(7~10);
所述的氮氟混合气中氮气与氟气的体积比(90~99)∶ (1~10)。
本发明方法简单,易操作,成本低,效果好,产品质量好,有效提高了氧化锌薄膜的导电性和透射率,增强了使用价值和商业价值,经济和社会效益显著。
具体实施方式
以下结合实施例对本发明的具体实施方式作详细说明。
本发明在具体实施中可由以下实施例给出。
实施例1
本发明在具体实施中,由以下方法实现:将锌靶和玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去锌靶表面的杂物,然后通入氧气和氮氟气混合成的反应气体,在入射功率为200~300W、压强0.8~1.2 Pa、玻璃衬底温度220~280℃下,溅射32~38min,得到氮氟掺杂氧化锌薄膜,在温度250~350℃下退火30~80min,得成品氮氟共掺杂氧化锌薄膜;
所述的氩气、氧气、氮氟混合气的通入量的体积比为(22~23)∶(13~14) ∶(8~9);
所述的氮氟混合气中氮气与氟气的体积比(92~97)∶ (3~8)。
实施例2
本发明在具体实施中,可由以下方法实现:将质量纯度为99.99%锌靶和清洗烘干后的玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去锌靶表面的杂物,然后通入反应气体氧气和氮氟气混合气体,氩气、氧气、氮氟混合气的标准毫升/分钟通入量比例为21:12:7,氮氟混合气中氮气与氟气的体积比为90:10,溅射时***压强为0.5Pa,衬底温度为100℃,入射功率为100W,溅射为20min,得到氮氟掺杂氧化锌薄,得到氮氟共掺杂氧化锌薄膜后在空气氛围中进行退火,退火温度为150℃,退火时间为20min。氮氟掺杂氧化锌薄的电阻率降为1×10-4Ωcm,可见光透射率为84%。
实施例3
本发明在具体实施中,也可由以下方法实现:将质量纯度为99.99%锌靶和清洗烘干后的玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去靶材表面的杂物,然后通入反应气体氧气和氮氟气混合气体,氩气、氧气、氮氟混合气的标准毫升/分钟通入量比例为22:13:8,氮氟混合气中氮气与氟气的体积比为93:7,溅射时***压强为1 Pa,衬底温度为200℃,入射功率为200W,溅射为30min,得到氮氟掺杂氧化锌薄。得到氮氟共掺杂氧化锌薄膜后在空气氛围中进行退火,退火温度为200℃,退火时间为30min。氮氟掺杂氧化锌薄的电阻率降为3×10-4Ωcm,可见光透射率为87%。
实施例4
本发明在具体实施中,也可由以下方法实现:将质量纯度为99.99%锌靶和清洗烘干后的玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去靶材表面的杂物,然后通入反应气体氧气和氮氟气混合气体,氩气、氧气、氮氟混合气的标准毫升/分钟通入量比例为23:14:9,氮氟混合气中氮气与氟气的体积比为96:4,溅射时***压强为1.5Pa,衬底温度为300℃,入射功率为400W,溅射为40min,得到氮氟掺杂氧化锌薄。得到氮氟共掺杂氧化锌薄膜后在空气氛围中进行退火,退火温度为250℃,退火时间为40min。氮氟掺杂氧化锌薄的电阻率降为5×10-4Ωcm,可见光透射率为89%。
实施例5
本发明在具体实施中,也可由以下方法实现:将质量纯度为99.99%锌靶和清洗烘干后的玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去靶材表面的杂物,然后通入反应气体氧气和氮氟气混合气体,氩气、氧气、氮氟混合气的标准毫升/分钟通入量比例为24:15:10,氮氟混合气中氮气与氟气的体积比为99:1,溅射时***压强为2Pa,衬底温度为400℃,入射功率为600W,溅射为50min,得到氮氟掺杂氧化锌薄。得到氮氟共掺杂氧化锌薄膜后在空气氛围中进行退火,退火温度为300℃,退火时间为50min。氮氟掺杂氧化锌薄的电阻率降为2×10-4Ωcm,可见光透射率为86%。
本发明经实地应用和试验,证明采用了反应磁控溅射方法,直接一步制得氮氟掺杂氧化锌薄膜,工艺简单,稳定可靠,生产效率高,适合工业规模化生产。
本发明采用的反应气体氧气、氮气和氟气来源广泛,价格低廉,成本可降低50%以上。
本发明易操作,通过工艺参数控制提高氧化锌薄膜中活性氮和氟的含量,同时提高空穴和电子载流子的浓度和迁移率,获得氮氟掺杂氧化锌薄膜具有低的电阻率,电阻率只有5×10-4Ωcm,导电性能好,透射率(透光率)高,光区透射率达80%以上,大大提高了产品的使用效率和商业价值,而且生产中没有环境污染,经注和社会效益显著。

Claims (6)

1.一种氮氟共掺杂氧化锌薄膜的制备方法,其特征在于,将锌靶和玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去锌靶表面的杂物,然后通入氧气和氮氟气混合成的反应气体,在入射功率为100~600W、压强0.5~2 Pa、玻璃衬底温度100~400℃下,溅射20~50min,得到氮氟掺杂氧化锌薄膜,在温度150~500℃下退火20~90min,得成品氮氟共掺杂氧化锌薄膜;
所述的氩气、氧气、氮氟混合气的通入量的体积比为(21~24)∶(12~15) ∶(7~10);
所述的氮氟混合气中氮气与氟气的体积比(90~99)∶ (1~10)。
2.根据权利要求1所述的氮氟共掺杂氧化锌薄膜的制备方法,其特征在于,将锌靶和玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去锌靶表面的杂物,然后通入氧气和氮氟气混合成的反应气体,在入射功率为200~300W、压强0.8~1.2 Pa、玻璃衬底温度220~280℃下,溅射32~38min,得到氮氟掺杂氧化锌薄膜,在温度250~350℃下退火30~80min,得成品氮氟共掺杂氧化锌薄膜;
所述的氩气、氧气、氮氟混合气的通入量的体积比为(22~23)∶(13~14) ∶(8~9);
所述的氮氟混合气中氮气与氟气的体积比(92~97)∶ (3~8)。
3.根据权利要求1所述的氮氟共掺杂氧化锌薄膜的制备方法,其特征在于,将质量纯度为99.99%锌靶和清洗烘干后的玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去锌靶表面的杂物,然后通入反应气体氧气和氮氟气混合气体,氩气、氧气、氮氟混合气的标准毫升/分钟通入量比例为21:12:7,氮氟混合气中氮气与氟气的体积比为90:10,溅射时***压强为0.5Pa,衬底温度为100℃,入射功率为100W,溅射为20min,得到氮氟掺杂氧化锌薄膜,得到氮氟共掺杂氧化锌薄膜后在空气氛围中进行退火,退火温度为150℃,退火时间为20min。
4.根据权利要求1所述的氮氟共掺杂氧化锌薄膜的制备方法,其特征在于,将质量纯度为99.99%锌靶和清洗烘干后的玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去靶材表面的杂物,然后通入反应气体氧气和氮氟气混合气体,氩气、氧气、氮氟混合气的标准毫升/分钟通入量比例为22:13:8,氮氟混合气中氮气与氟气的体积比为93:7,溅射时***压强为1 Pa,衬底温度为200℃,入射功率为200W,溅射为30min,得到氮氟掺杂氧化锌薄膜,得到氮氟掺杂氧化锌薄膜后在空气氛围中进行退火,退火温度为200℃,退火时间为30min。
5.根据权利要求1所述的氮氟共掺杂氧化锌薄膜的制备方法,其特征在于,将质量纯度为99.99%锌靶和清洗烘干后的玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去靶材表面的杂物,然后通入反应气体氧气和氮氟气混合气体,氩气、氧气、氮氟混合气的标准毫升/分钟通入量比例为23:14:9,氮氟混合气中氮气与氟气的体积比为96:4,溅射时***压强为1.5Pa,衬底温度为300℃,入射功率为400W,溅射为40min,得到氮氟掺杂氧化锌薄膜,得到氮氟掺杂氧化锌薄膜后在空气氛围中进行退火,退火温度为250℃,退火时间为40min。
6.根据权利要求1所述的氮氟共掺杂氧化锌薄膜的制备方法,其特征在于,将质量纯度为99.99%锌靶和清洗烘干后的玻璃基底分别置于磁控溅射设备真空室内的阴极上和样品台中,待真空室的真空度≤5.0×10-4Pa后,先通入溅射气体氩气,除去靶材表面的杂物,然后通入反应气体氧气和氮氟气混合气体,氩气、氧气、氮氟混合气的标准毫升/分钟通入量比例为24:15:10,氮氟混合气中氮气与氟气的体积比为99:1,溅射时***压强为2Pa,衬底温度为400℃,入射功率为600W,溅射为50min,得到氮氟掺杂氧化锌薄膜,得到氮氟掺杂氧化锌薄膜后在空气氛围中进行退火,退火温度为300℃,退火时间为50min。
CN201610155287.4A 2016-03-18 2016-03-18 一种氮氟共掺杂氧化锌薄膜的制备方法 Expired - Fee Related CN105671507B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610155287.4A CN105671507B (zh) 2016-03-18 2016-03-18 一种氮氟共掺杂氧化锌薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610155287.4A CN105671507B (zh) 2016-03-18 2016-03-18 一种氮氟共掺杂氧化锌薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105671507A CN105671507A (zh) 2016-06-15
CN105671507B true CN105671507B (zh) 2017-10-17

Family

ID=56214886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610155287.4A Expired - Fee Related CN105671507B (zh) 2016-03-18 2016-03-18 一种氮氟共掺杂氧化锌薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105671507B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461044A (zh) * 2003-06-11 2003-12-10 浙江大学 一种制备p型氧化锌薄膜的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461044A (zh) * 2003-06-11 2003-12-10 浙江大学 一种制备p型氧化锌薄膜的方法

Also Published As

Publication number Publication date
CN105671507A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
US8932495B1 (en) Transparent conductor materials and processes for forming such materials
ATE440385T1 (de) Verfahren zur grosstechnischen herstellung von cdte/cds dünnschicht-solarzellen
CN106229392A (zh) 一种提高led抗esd能力的ito薄膜的制作方法
KR101790497B1 (ko) 도핑된 ZnO막을 자외선 화학기상증착법에 의해 고분자 기판 상에 증착시키는 방법
CN105671507B (zh) 一种氮氟共掺杂氧化锌薄膜的制备方法
CN103031556A (zh) 一种 ZnO/Al/ZnO光电透明导电薄膜的沉积制备方法
CN105420696B (zh) 一种氧化锡基薄膜材料的制备方法
CN111705306A (zh) 一种锌掺杂氧化锡透明导电薄膜及其制备方法和用途
JP2015124117A (ja) 金属酸化物薄膜の製造方法
KR101466842B1 (ko) 투명전극용 산화아연계 박막 제조방법
CN103952678B (zh) 一种高迁移率的掺氟氧化锌基透明导电薄膜的制备方法
CN103014705B (zh) Cu/ZnO/Al光电透明导电薄膜的沉积方法
CN106024110B (zh) 一种锡酸锶基柔性透明导电电极及其制备方法
CN105390178B (zh) 一种氧化锌基透明导电薄膜及其制备方法与应用
CN109599470B (zh) 一种降低掺镁氧化锌薄膜电阻率的方法
KR102109344B1 (ko) 투명전극 및 그 제조방법
CN106637204A (zh) Ag/ZnO/Mg光电透明导电薄膜的沉积方法
CN103103479B (zh) 一种硫氮共掺杂制备p型氧化锌薄膜的方法
CN105449035A (zh) 一种提高透明导电氧化物ITiO薄膜性能的方法
CN107195389B (zh) 金属氮氧化物透明导电薄膜的制备方法
KR102118859B1 (ko) 투명전극 및 그 제조방법
US20130243967A1 (en) Fto thin film preparation using magnetron sputtering deposition with pure tin target
Vimalkumar et al. Enhancement of electrical conductivity in sprayed ZnO thin film through zero-energyprocess
KR101540035B1 (ko) 스퍼터링 증착을 이용한 황화카드뮴 박막의 제조방법
CN110981215B (zh) 一种提高铝掺杂氧化锌导电玻璃热稳定性的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171017