CN105656453B - 一种基于时间序列的光纤电流互感器随机噪声实时滤波方法 - Google Patents

一种基于时间序列的光纤电流互感器随机噪声实时滤波方法 Download PDF

Info

Publication number
CN105656453B
CN105656453B CN201610006839.5A CN201610006839A CN105656453B CN 105656453 B CN105656453 B CN 105656453B CN 201610006839 A CN201610006839 A CN 201610006839A CN 105656453 B CN105656453 B CN 105656453B
Authority
CN
China
Prior art keywords
model
time series
optical fiber
mutual inductor
current mutual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610006839.5A
Other languages
English (en)
Other versions
CN105656453A (zh
Inventor
王立辉
魏广进
黄嘉宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610006839.5A priority Critical patent/CN105656453B/zh
Publication of CN105656453A publication Critical patent/CN105656453A/zh
Application granted granted Critical
Publication of CN105656453B publication Critical patent/CN105656453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0025Particular filtering methods
    • H03H21/0029Particular filtering methods based on statistics
    • H03H21/003KALMAN filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0025Particular filtering methods
    • H03H21/0029Particular filtering methods based on statistics
    • H03H21/0032ARMA filters

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本发明公开了一种基于时间序列的光纤电流互感器随机噪声实时滤波方法,依次采集光纤电流互感器输出的某相电流数据{x0(t)}、电流序列平均滤波处理、建立时间序列模型、写出与确定的时间序列模型相对应的卡尔曼滤波方程的状态空间模型。本发明的有益效果为:通过平均值滤波方法的处理,提高了数据的有效性;经过平稳性、周期性和正态性检验,保证了建模的可行性;AR模型和ARMA模型的建立、阶次选择及模型检验,确保了数据模型的普适性;卡尔曼滤波算法处理光纤电流互感器的输出数据,有效的滤除随机噪声,提高了测量的精确性。

Description

一种基于时间序列的光纤电流互感器随机噪声实时滤波方法
技术领域
本发明涉及电流互感器噪声滤波领域,尤其是一种基于时间序列的光纤电流互感器随机噪声实时滤波方法。
背景技术
电子式互感器是智能变电站中一种重要的过程层设备,为智能变电站间隔层设备提供电流、电压信息,实现电力***继电保护、电能计量、故障录波、状态监测等功能。光纤电流互感器实现了电流信号的实时测量和监测,为电力***继电保护、电能计量等设备提供输入信号。
光纤电流互感器技术已经日趋成熟,但仍存在输出噪声和随机误差等参数值偏高的问题,严重影响了光纤电流互感器的工程应用。为降低光纤电流互感器输出信号的噪声和随机误差,可采用滤波的方法。有效滤波的前提是能够精确建立光纤电流互感器的输出模型,尤其对于卡尔曼滤波,光纤电流互感器的输出模型精确程度直接关系着滤波效果的好坏。目前,在针对光纤电流互感器输出信号的模型建立,可采用固定的模型,如AR(2)、ARMA(2,1),然后加以滤波,但不能忽略光纤电流互感器输出序列的模型统计分析以及数据分析过程输出序列的非平稳性、非随机和非正态等特性,对输出序列进行独立、平稳、正态、零均值以及趋势项处理,而直接采用ARMA时间序列模型分析从基础上不符合时间序列适用平稳序列这一特性,因此直接建立的模型误差较大。卡尔曼滤波是一种利用线性***状态方程,通过***输入输出观测数据,对***状态进行最优估计的算法。在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态***的状态,在求出模型参数和噪声统计特性的基础上,经过卡尔曼滤波器,可达到良好的消噪效果,现已在通信、导航、制导与控制等多领域得到了较好的应用。
发明内容
本发明所要解决的技术问题在于,提供一种基于时间序列的光纤电流互感器随机噪声实时滤波方法,可克服现有光纤电流互感器随机噪声滤波方法的不足。
为解决上述技术问题,本发明提供一种基于时间序列的光纤电流互感器随机噪声实时滤波方法,包括如下步骤:
(1)采集光纤电流互感器输出的某相电流数据{x0(t)};
(2)电流序列平均滤波处理;对有效序列进行平均滤波处理,计算每十个数据的均值作为新的序列{x1(t)};
(3)建立时间序列模型;
(a)平稳性检验;采用单位根检验法则,不满足平稳性要求则进行差分处理,以获取平稳的电流序列{xn};
(b)正态性检验;采用偏峰态检验法,电流序列{xn}具有以下4个表示其总体概率密度函数的参数如下:
当g1和g2约等于0时,可以认为电流序列{xn}为正态时序;
(c)周期性检验;周期性检验用来识别光纤电流互感器输出数据中是否包含有随机量以外的周期性分量,这样在解释数据分析的结果时可以避免出现错误;周期性检验的方法是直接考察从输出数据中得到的概率密度函数或自相关函数或功率谱密度函数的图形;
(d)建立时间序列模型;依次选取p和q值计算各模型的AIC值,然后选择最小的AIC值,确定时间序列模型的阶次,即p和q值,采用最小二乘法拟合出模型参数,写出时间序列数学模型;
(4)写出与确定的时间序列模型相对应的卡尔曼滤波方程的状态空间模型;
状态方程:Xk=AXk+BVk
输出方程:Yk=CXk+Wk
其中,Vk和Wk的统计特性为:
***的状态方程为过程噪声为Vk=[rk,0]T
对于AR(p)模型,
Vk=[rk,0]T
对于ARMA(p,q)模型,
Vk=[rk,...,rk-q]T
卡尔曼滤波处理,采用以下卡尔曼滤波器对光纤电流互感器的时间序列输出信号进行滤波处理
Kk=Pk,k-1CT[CPk,k-1CT+Rk]-1
pk,k-1=APk,k-1AT+BQk-1,kBT
Pk,k=[I-KkC]Pk,k-1
式中,为滤波状态的进一步估计,为k时刻滤波器的状态,Kk为k时刻滤波器的增益矩阵,R为***量测噪声误差,Q为***过程噪声方差,Pk,k为滤波器误差协方差矩阵,为k时刻滤波器的输出。
优选的,步骤(2)中采用平均值滤波的方法对原始数据进行处理。
优选的,步骤(3)中采用AIC信息准则来确定时间序列模型的阶次,计算各个模型的AIC值,取AIC值最小的模型为使用模型;采用快速算法RLS进行AR模型的参数估计,采用长自归白噪声估计法建立ARMA模型;采用检验模型残差是否为白噪声来确定模型的可用性。
优选的,步骤(3)中建立时间序列模型包括以下步骤:
(a)确定模型阶次;光纤电流互感器的建模采用AR模型和ARMA模型:AR模型指任一时刻k上的数值yk表示过去p个时刻上数值的线性组合加上k时刻的白噪声,表示为:
yk=a1yk-1+…+apyk-p+rk
式中,常整数p为模型的阶次,常系数a1,…,ap为模型参数,{rk}为均值为0、方差为σ2的白噪声,p阶模型记为AR(p);
ARMA模型是在AR模型的基础上减去过去q个时刻上白噪声的线性组合,表示为:
yk=a1yk-1+…+apyk-p+rk1rk-12rk-2-…-θqrk-q
式中,常整数p、q为模型的阶次,常系数a1,…,ap1,…θq为模型参数,模型记为ARMA(p,q);
一般首先对数据序列进行AR(p)建模,若找不到适用模型,再进行ARMA(p,q)建模;估计模型参数之前,需要确定模型的阶次;采用AIC信息准则来确定模型阶次;AIC信息准则的简化公式为:
式中,p、q为ARMA模型阶次;n为序列中数据个数;为噪声a(t)的方差;建立AR或ARMA时间序列模型,计算各个模型的AIC值,取AIC值最小的模型为使用模型,确定模型阶次;
(b)AR模型参数估计;采用快速算法RLS进行AR模型的参数估计;基于已知观测值(yk,yk-1,…,y0,…,y1-p)求估计值式可写成如下向量形式:
式中,T表示矩阵的转置,αT=a1,…,ap
定义 AR(p)模型参数α的估计公式如下:
初值是利用少量观测数据(y1,…,y20)通过以下两式求得:
其中,
(c)ARMA模型参数估计;采用长自回归白噪声估计法建立ARMA模型,主要步骤为:
①建立长自回归模型AR(pN);阶次取lgN的适当倍数,即pN=(lgN)1+δ,选δ为一个0到1之间的正数;AR(pN)的自回归参数为
由线性最小二乘估计得到
其中,YpN=(xpN+1,...,xN)T
②求长回归模型残差,检验其独立性;用步骤①所得即样本值x=(x1,…,xN)T,计算残差检验的独立性;若不独立,则增大pN,再重新进行①、②两步,否则进行下一步;
③估计ARMA模型参数,联合白噪声估计值t=pN+1,...,N,N和样本值xt,t=1,...,N,按线性最小二乘估计ARMA(p,q)模型的各参数值:
其中,Ypq=(xpN+1,xpN+2,...,xN)T
上式中在步骤②由长自回归估计得到,所以该算法不涉及非线性求解问题,只用到线性最小二乘估计;
(d)模型适用性检验;检验残差是否为白噪声,如果模型残差为白噪声,则认为模型可用;反之,不可用;检验是否为白噪声通过分析自相关函数图和偏自相关函数图来确定。
优选的,步骤(4)中采用卡尔曼滤波的方法对建立的时间序列模型进行滤波处理。
本发明的有益效果为:通过平均值滤波方法的处理,提高了数据的有效性;经过平稳性、周期性和正态性检验,保证了建模的可行性;AR模型和ARMA模型的建立、阶次选择及模型检验,确保了数据模型的普适性;卡尔曼滤波算法处理光纤电流互感器的输出数据,有效的滤除随机噪声,提高了测量的精确性。
附图说明
图1是本发明的方法流程图。
具体实施方式
如图1所示,一种基于时间序列的光纤电流互感器随机噪声实时滤波方法,包括如下步骤:
步骤一:采集光纤电流互感器输出的某相电流数据{x0(t)};
步骤二:电流序列平均滤波处理
对有效序列进行平均滤波处理,计算每十个数据的均值作为新的序列{x1(t)};
步骤三:建立时间序列模型
(1)平稳性检验
采用单位根检验法则,不满足平稳性要求则进行差分处理,以获取平稳的电流序列{xn};
(2)正态性检验
采用偏峰态检验法,电流序列{xn}具有以下4个表示其总体概率密度函数的参数如下,
均值:
方差:
标准偏度系数:
标准峰度系数:
当g1和g2约等于0时,可以认为电流序列{xn}为正态时序。
(3)周期性检验
周期性检验用来识别光纤电流互感器输出数据中是否包含有随机量以外的周期性分量,这样在解释数据分析的结果时可以避免出现错误。周期性检验的方法是直接考察从输出数据中得到的概率密度函数或自相关函数或功率谱密度函数的图形。
(4)建立时间序列模型,依次选取p和q值计算各模型的AIC值,然后选择最小的AIC值,确定时间序列模型的阶次,即p和q值,采用最小二乘法拟合出模型参数,写出时间序列数学模型;
a)确定模型阶次
光纤电流互感器的建模采用AR模型和ARMA模型:AR模型指任一时刻k上的数值yk表示过去p个时刻上数值的线性组合加上k时刻的白噪声,表示为:
yk=a1yk-1+…+apyk-p+rk
式中,常整数p为模型的阶次,常系数a1,…,ap为模型参数,{rk}为均值为0、方差为σ2的白噪声,p阶模型记为AR(p);
ARMA模型是在AR模型的基础上减去过去q个时刻上白噪声的线性组合,表示为:
yk=a1yk-1+…+apyk-p+rk1rk-12rk-2-…-θqrk-q
式中,常整数p、q为模型的阶次,常系数a1,…,ap,θ1,…θq为模型参数,模型记为ARMA(p,q);
一般首先对数据序列进行AR(p)建模,若找不到适用模型,再进行ARMA(p,q)建模;估计模型参数之前,需要确定模型的阶次;采用AIC信息准则来确定模型阶次;AIC信息准则的简化公式为:
式中,p、q为ARMA模型阶次;n为序列中数据个数;为噪声a(t)的方差。建立AR或ARMA时间序列模型,计算各个模型的AIC值,取AIC值最小的模型为使用模型,确定模型阶次;
b)AR模型参数估计
采用快速算法RLS进行AR模型的参数估计;基于已知观测值(yk,yk-1,…,y0,…,y1-p)求估计值式可写成如下向量形式:
式中,T表示矩阵的转置,αT=a1,…,ap
定义AR(p)模型参数α的估计公式如下:
初值和P0是利用少量观测数据(y1,…,y20)通过以下两式求得:
其中,
c)ARMA模型参数估计
采用长自回归白噪声估计法建立ARMA模型,主要步骤为:
①建立长自回归模型AR(pN);阶次取lgN的适当倍数,即pN=(lgN)1+δ,选δ为一个0到1之间的正数;AR(pN)的自回归参数为
由线性最小二乘估计得到
其中,YpN=(xpN+1,...,xN)T
②求长回归模型残差,检验其独立性;用步骤①所得即样本值x=(x1,…,xN)T,计算残差检验的独立性;若不独立,则增大pN,再重新进行①、②两步,否则进行下一步;
③估计ARMA模型参数,联合白噪声估计值t=pN+1,...,N,N和样本值xt,t=1,...,N,按线性最小二乘估计ARMA(p,q)模型的各参数值:
其中,Ypq=(xpN+1,xpN+2,...,xN)T
上式中在步骤②由长自回归估计得到,所以该算法不涉及非线性求解问题,只用到线性最小二乘估计。
d)模型适用性检验
检验残差是否为白噪声,如果模型残差为白噪声,则认为模型可用;反之,不可用。检验是否为白噪声通过分析自相关函数图和偏自相关函数图来确定。
步骤四:写出与确定的时间序列模型相对应的卡尔曼滤波方程的状态空间模型
状态方程:Xk=AXk+BVk
输出方程:Yk=CXk+Wk
其中,Vk和Wk的统计特性为:
***的状态方程为过程噪声为Vk=[rk,0]T
Vk=[rk,0]T
对于ARMA(p,q)模型,
Vk=[rk,…,rk-q]T
卡尔曼滤波处理,采用以下卡尔曼滤波器对光纤电流互感器的时间序列输出信号进行滤波处理
Kk=Pk,k-1CT[CPk,k-1CT+Rk]-1
Pk,k-1=APk,k-1AT+BQk-1,kBT
Pk,k=[I-KkC]Pk,k-1
式中,为滤波状态的进一步估计,为k时刻滤波器的状态,Kk为k时刻滤波器的增益矩阵,R为***量测噪声误差,Q为***过程噪声方差,Pk,k为滤波器误差协方差矩阵,为k时刻滤波器的输出。
尽管本发明就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本发明的权利要求所限定的范围,可以对本发明进行各种变化和修改。

Claims (4)

1.一种基于时间序列的光纤电流互感器随机噪声实时滤波方法,其特征在于,包括如下步骤:
(1)采集光纤电流互感器输出的某相电流数据{x0(t)};
(2)电流序列平均滤波处理;对有效序列进行平均滤波处理,计算每十个数据的均值作为新的序列{x1(t)};
(3)建立时间序列模型;
(a)平稳性检验;采用单位根检验法则,不满足平稳性要求则进行差分处理,以获取平稳的电流序列{xn};
(b)正态性检验;采用偏峰态检验法,电流序列{xn}具有以下4个表示其总体概率密度函数的参数如下:
均值:
方差:
标准偏度系数:
标准峰度系数:
当g1和g2约等于0时,可以认为电流序列{xn}为正态时序;
(c)周期性检验;周期性检验用来识别光纤电流互感器输出数据中是否包含有随机量以外的周期性分量,这样在解释数据分析的结果时可以避免出现错误;周期性检验的方法是直接考察从输出数据中得到的概率密度函数或自相关函数或功率谱密度函数的图形;
(d)建立时间序列模型;依次选取p和q值计算各模型的AIC值,然后选择最小的AIC值,确定时间序列模型的阶次,即p和q值,采用最小二乘法拟合出模型参数,写出时间序列模型;
(4)写出与确定的时间序列模型相对应的卡尔曼滤波方程的状态空间模型;
状态方程:Xk=AXk+BVk
输出方程:Yk=CXk+Wk
其中,Vk和Wk的统计特性为:
***的状态方程为过程噪声为Vk=[rk,0]T
对于AR(p)模型,
Vk=[rk,0]T
对于ARMA(p,q)模型,
Vk=[rk,…,rk-q]T
卡尔曼滤波处理,采用以下卡尔曼滤波器对光纤电流互感器的时间序列输出信号进行滤波处理
Kk=Pk,k-1CT[CPk,k-1CT+Rk]-1
Pk,k-1=APk,k-1AT+BQk-1,kBT
Pk,k=[I-KkC]Pk,k-1
式中,为滤波状态的进一步估计,为k时刻滤波器的状态,Kk为k时刻滤波器的增益矩阵,R为***量测噪声误差,Q为***过程噪声方差,Pk,k为滤波器误差协方差矩阵,为k时刻滤波器的输出。
2.如权利要求1所述的基于时间序列的光纤电流互感器随机噪声实时滤波方法,其特征在于,步骤(2)中采用平均值滤波的方法对原始数据进行处理。
3.如权利要求1所述的基于时间序列的光纤电流互感器随机噪声实时滤波方法,其特征在于,步骤(3)中采用AIC信息准则来确定时间序列模型的阶次,计算各个模型的AIC值,取AIC值最小的模型为使用模型;采用快速算法RLS进行AR模型的参数估计,采用长自归白噪声估计法建立ARMA模型;采用检验模型残差是否为白噪声来确定模型的可用性。
4.如权利要求1所述的基于时间序列的光纤电流互感器随机噪声实时滤波方法,其特征在于,步骤(4)中采用卡尔曼滤波的方法对建立的时间序列模型进行滤波处理。
CN201610006839.5A 2016-01-06 2016-01-06 一种基于时间序列的光纤电流互感器随机噪声实时滤波方法 Active CN105656453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610006839.5A CN105656453B (zh) 2016-01-06 2016-01-06 一种基于时间序列的光纤电流互感器随机噪声实时滤波方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610006839.5A CN105656453B (zh) 2016-01-06 2016-01-06 一种基于时间序列的光纤电流互感器随机噪声实时滤波方法

Publications (2)

Publication Number Publication Date
CN105656453A CN105656453A (zh) 2016-06-08
CN105656453B true CN105656453B (zh) 2018-09-21

Family

ID=56491725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610006839.5A Active CN105656453B (zh) 2016-01-06 2016-01-06 一种基于时间序列的光纤电流互感器随机噪声实时滤波方法

Country Status (1)

Country Link
CN (1) CN105656453B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404016A (zh) * 2016-08-29 2017-02-15 深圳艾瑞斯通技术有限公司 光纤采样信号的滤波方法及装置、光纤传感***
CN111002858B (zh) * 2019-12-18 2023-06-20 中兴新能源汽车有限责任公司 一种无线充电引导定位***及方法、车载设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509774A (zh) * 2009-03-16 2009-08-19 浙江大学 一种基于光纤陀螺的arma时间序列的寻北方法
CN102650527A (zh) * 2012-05-25 2012-08-29 北京航空航天大学 一种基于时间序列分析消噪的光纤陀螺温度补偿方法
CN104168005A (zh) * 2014-08-25 2014-11-26 北京理工大学 带有未知观测噪声协方差阵递推估计的卡尔曼滤波方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707443B2 (ja) * 2002-03-28 2005-10-19 日本電気株式会社 適応忘却係数制御適応フィルタ、および忘却係数適応制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509774A (zh) * 2009-03-16 2009-08-19 浙江大学 一种基于光纤陀螺的arma时间序列的寻北方法
CN102650527A (zh) * 2012-05-25 2012-08-29 北京航空航天大学 一种基于时间序列分析消噪的光纤陀螺温度补偿方法
CN104168005A (zh) * 2014-08-25 2014-11-26 北京理工大学 带有未知观测噪声协方差阵递推估计的卡尔曼滤波方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
光纤电流互感器噪声抑制技术研究;李园园;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20150415(第04期);全文 *
光纤电流互感器噪声特征及建模方法研究;王立辉 等;《电力***保护与控制》;20110101;第39卷(第1期);全文 *
平方根Kalman自适应滤波及其在OCT中的应用;李岩松 等;《电力***自动化》;20050610;第29卷(第11期);全文 *

Also Published As

Publication number Publication date
CN105656453A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN112098915B (zh) 双母线分段接线下多台电压互感器继发性误差的评估方法
CN110336377B (zh) 一种基于云计算的智能配电***
US7107187B1 (en) Method for modeling system performance
Tate et al. Line outage detection using phasor angle measurements
CN106505557B (zh) 一种遥测错误辨识方法及装置
CN111796233B (zh) 双母线接线形式下多台电压互感器继发性误差的评估方法
JP2023525946A (ja) 単一の負荷ジャンプに基づいて測定領域の誤差解析を行う方法及びシステム、記憶媒体
CN113239132B (zh) 一种电压互感器的超差在线辨识方法
Wang et al. Failure rate prediction model of substation equipment based on Weibull distribution and time series analysis
CN110838075A (zh) 电网***暂态稳定的预测模型的训练及预测方法、装置
CN113821938B (zh) 一种互感器计量误差状态短期预测方法及装置
CN105259398B (zh) 一种基于总方差的光纤电流互感器随机误差特性分析方法
CN109063885A (zh) 一种变电站异常量测数据预测方法
US11042134B2 (en) Power system status estimation device and status estimation method
CN105656453B (zh) 一种基于时间序列的光纤电流互感器随机噪声实时滤波方法
CN109901022B (zh) 基于同步量测数据的配电网区域定位方法
CN113945801B (zh) 一种配电网故障定位方法、装置、设备和存储介质
CN117332205B (zh) 压电阻抗温度补偿高精度自动优化方法及装置
CN115113125A (zh) 一种多通道任意波形发生器的校正***
CN109359822A (zh) 电子式电压互感器测量状态评估方法及***
CN107918704A (zh) 电荷放大器贮存寿命预测方法、装置、存储介质和计算机设备
CN115267641B (zh) 同塔双回输电线路中电流互感器误差异常识别方法、***
CN109193639B (zh) 一种电力***抗差估计方法
CN115754772A (zh) 一种电池容量衰减处理方法、装置、设备和存储介质
CN113777497B (zh) 一种退化电池在线soc、soh联合估计方法、装置、存储介质和电子设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant