CN105629112A - 一种故障电弧检测装置及方法 - Google Patents

一种故障电弧检测装置及方法 Download PDF

Info

Publication number
CN105629112A
CN105629112A CN201610086371.5A CN201610086371A CN105629112A CN 105629112 A CN105629112 A CN 105629112A CN 201610086371 A CN201610086371 A CN 201610086371A CN 105629112 A CN105629112 A CN 105629112A
Authority
CN
China
Prior art keywords
circuit
fault
electric arc
signal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610086371.5A
Other languages
English (en)
Other versions
CN105629112B (zh
Inventor
吴其勇
姚少军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHUHAI PILOT TECHNOLOGY Co Ltd
Original Assignee
ZHUHAI PILOT TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHUHAI PILOT TECHNOLOGY Co Ltd filed Critical ZHUHAI PILOT TECHNOLOGY Co Ltd
Priority to CN201610086371.5A priority Critical patent/CN105629112B/zh
Publication of CN105629112A publication Critical patent/CN105629112A/zh
Application granted granted Critical
Publication of CN105629112B publication Critical patent/CN105629112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明提供一种故障电弧检测装置和方法,通过识别被保护线路的高频信号的包络线的分布特征,有效识别故障电弧。在初步判断为故障电弧时,进一步通过判断被保护线路的工频电流大小变化是否与故障电弧发生一致,能够有效避免误判。

Description

一种故障电弧检测装置及方法
技术领域
本发明涉及一种故障电弧检测装置及方法。
背景技术
随着社会经济的飞速发展以及电气化程度不断提高,用电量也在不断的增加。电气火灾事件的发生越来越频繁,给人身及财产造成巨大的损失。电弧故障是近些年被意识到的一种导致电气火灾的原因,在发生故障电弧时,故障点具有很高的温度,能够迅速引燃周围的可燃物。
故障电弧可分为两大类,一是串联电弧,二是并联电弧。串联电弧发生时,具有较小的电流,一般低于额定工作电流。并联电弧发生时,由于受线路阻抗和电弧阻抗的影响,其电流大小小于短路电流。因此,传统的保护装置不能有效预防故障电弧引起的电气火灾。因此,开发一种预防电弧故障引发火灾的装置和方法尤为重要。
现有技术中,一种方法是通过对电流波形信号进行采集,利用小波变换分解信号的离散小波系数,计算小波系数的和,并与阈值进行比较,如果大于阈值,则判定为并联电弧。但是,配电***电源以及负载正常工作时本身具有较大谐波含量,在进行故障识别时,阈值难于选取,并且,计算过程较为复杂,成本高。
另一种方法是利用电流波形的特征进行识别,如电流的过零点长度,电流周波有效值变化等。但是,由于负载的多样性,不同负载的电流波形差异较大,并且某些特征与正常工作负载类似,因此,在灵敏度和误动作上具有一定的局限性。
发明内容
为克服上述缺陷,本发明提出了一种故障电弧检测装置及方法。
该种故障电弧检测装置,包括二总线电路、罗氏线圈、采样电阻、信号处理电路、微处理器、测试电路,声光报警电路和按键;其中二总线电路为所述装置提供供电电源,罗氏线圈检测被保护线路的电流信号,并通过采样电阻将电流信号转换为电压信号,信号处理电路将所述电压信号分离出高频信号和工频信号,最后输出高频信号的包络线和工频电流波形至微处理器,通过微处理器处理进行故障电弧识别,当微处理器判断为故障电弧时,声光报警电路将产生声光报警,并将报警状态通过二总线电路上传,并且按键和微处理器连接,测试电路连接在罗氏线圈和微处理器之间。
一种故障电弧检测方法,主要包括如下步骤:
第一步,以正弦波的一个半波为单位,采集被保护线路的电流信号,并对所述电流信号进行处理,分离得到高频信号的包络线和工频电流波形;
第二步,将固定时间移动窗移动一位用于保存采集的电流信号的判断结果;
第三步,计算所述半波内工频电流波形数据的有效值,并保存至固定时间移动窗中当前所指位置,判断所述半波内高频信号的包络线的最大值MaxValue和所述半波所有高频信号的包络线采样点数值的累加值AddValue是否都大于相应的阈值,如果都大于相应的阈值,进一步判断高频信号的包络线是否为递增-递减-递增-递减的变化,若符合该特征,则判断在所述半波中存在电弧,在固定时间移动窗中写入1,反之,写入0;
第四步,统计固定时间移动窗内电弧的总数,如果统计固定时间移动窗内的电弧总数超过所设定的阈值,初步判断为故障,进一步的确认工频电流值发生变化时是否为与检测到的故障电弧发生的时刻一致,若一致,则判断为故障电弧。
附图说明
下面结合附图对本发明作进一步详细的说明。
图1为本发明实施例故障电弧检测装置硬件电路***示意图。
图2为正常工作时的波形分离得到的工频电流波形。
图3为正常工作时的波形分离得到的高频信号波形。
图4为发生电弧时的波形信号分离得到的工频电流波形。
图5为发生电弧时的波形信号分离得到的高频信号波形。
图6为用于根据本发明实施例的电弧故障检测方法的固定时间移动窗。
图7为本发明实施例电弧故障检测主程序示意图。
图8为本发明实施例电弧故障检测微处理器电弧判断程序示意图。
具体实施方式
为了更好的理解本发明的技术方案,下面结合附图详细描述本发明提供的实施例。
一种低压电弧故障检测装置,包括二总线电路、罗氏线圈、采样电阻、信号处理电路、测试电路、微处理器、声光报警电路和按键。所述二总线电路可以是POWERBUS二总线电路。
POWERBUS二总线电路包括了通讯电路以及DC-DC电路。其中,通讯电路用于提取POWERBUS二总线中的通讯信号,转换为RS232接口信号并与微处理器的串行口相接,实现主机与检测装置的通讯。POWERBUS二总线的总线电压为36V,通过DC-DC电路转换成3.3V为微处理器及运放等集成电路供电。
罗氏线圈检测被保护线路的电流信号,并通过采样电阻将电流信号转换为电压信号。通过信号处理电路对其进行分离,输出高频信号的包络线和工频(50Hz)电流波形。其中信号处理电路包括高通滤波电路、高频运算放大电路、检波电路、低通滤波电路、和差分运算放大电路。
信号处理电路输出的高频信号的包络线和工频电流波形,通过微处理器处理进行故障电弧识别。进一步,为了避免发生不必要的误判,当判断为故障电弧时,确认工频电流发生变化的时间是否与高频信号发生的时间一致。若一致,则声光报警电路将产生声光报警,并将报警状态通过POWERBUS二总线电路上传。
故障电弧检测装置含有复位、消音和测试按键,其中复位按键用于在报警后消除报警状态。消音按键用于故障电弧发生时,关闭声音报警,保存光报警。测试按键,用于发出模拟电弧故障信号,该信号通过测试电路耦合到罗氏线圈,罗氏线圈输出的信号经过所述的信号处理电路,最终输入至微处理器采集端口,微处理器采集到模拟电弧故障信号,能够进行故障报警,则表明该检测装置正常。该功能用于在安装时或者定期测试故障电弧检测装置是否正常运行。
以下以阻性负载举例说明,正常工作和发生故障电弧时的电流波形和对应的高频信号。图2为阻性负载正常工作时,罗氏线圈输出信号经过低通滤波电路得到的工频信号。图3为阻性负载正常工作时,罗氏线圈输出信号经过高通滤波电路后得到的高频信号。从图2和图3可以看出,阻性负载在正常工作时,电流波形信号为正弦波波形,没有明显的高频信号。图4为阻性负载发生电弧时,罗氏线圈输出信号经过低通滤波电路得到的工频信号。图5为阻性负载发生电弧时,罗氏线圈输出信号经过高通滤波电路后得到的高频信号。从图4和图5可以看出,在发生电弧时,有明显的高频信号,并且高频信号的轮廓为马鞍型。同时,高频信号的分布与电流的周期性一致。高频在电流过零点附近最大,随着电流逐渐上升高频幅值减小。当电流幅值下降时,高频信号幅值逐渐上升,至电流过零点达到最大值。因此,高频信号作为判别故障电弧的一个主要依据,将高频信号的马鞍形分布的高频信号作为故障电弧识别的主要特征。
参照图6-8所示,提供一种故障电弧检测方法。所述的电弧故障检测算法程序包括主程序、电弧故障检测程序两部分,其程序运行流程如下:
所述的固定时间移动窗如图6所示。该固定时间移动窗为1s,对应1s内工频50Hz的100个半波,每个半波单元内的数据表示对应半波的电弧的状态以及相应的半波电流有效值,如下所示的程序为保存的1s的数据结构体Record_1s。其中结构体内的ArcFlag[100]数组成员用于保存每个工频半波(10ms)的电弧状态,CurrentRMS[100]数组成员用于保存每个工频半波(10ms)电流半波有效值。
typedefstructRecord_1s
{U8ArcFlag[100];
U32CurrentRMS[100];
}ArcRecord_1s;
ArcFlag[n]单元内的数据为0时,对应的半波为非电弧;单元内的数据为1时,对应的半波为电弧。CurrentRMS[n]单元对应的是该时刻的半波电流有效值,固定时间移动窗将根据时间实时移动,每次存储最新半波状态时,固定时间移动窗当前所指位置右移动,即删除最早(图4中的最左边)的单元,添加最新的单元(图4中的最右边)。当达到最后一个单元时,当前所指位置跳至第一个单元。如图4所示,移动时,最早保存状态的单元被最新的半波数据覆盖,如此反复,即实现了实时检测任意固定时间内的故障电弧发生情况。
所述的程序流程图如图5和图6所示。
第一步,以正弦波的一个半波为单位,采集被保护线路的电流信号,并对所述电流信号进行处理,分离得到高频信号的包络线和工频电流波形;
第二步,将固定时间移动窗移动一位用于保存采集的电流信号的判断结果;
第三步,计算所述半波内工频电流波形的有效值,并保存至固定时间移动窗中当前所指位置。判断所述半波内高频信号的包络线的最大值MaxValue和所述半波所有高频信号的包络线采样点数值的累加值AddValue是否都大于相应的阈值,如果都大于相应的阈值,进一步判断高频信号的包络线是否为递增-递减-递增-递减的变化,若符合该特征,则判断在所述半波中存在电弧,在固定时间移动窗中写入1,反之,写入0;
第四步,统计固定时间移动窗内电弧的总数,如果统计固定时间移动窗内的电弧总数超过所设定的阈值,初步判断为故障,进一步的确认工频电流值发生变化时是否为与检测到的故障电弧发生的时刻一致,若一致,则判断为故障电弧。所谓变化是否一致的方法为:首先,计算第一个电弧发生前(未发生电弧时),CurrentRMS[100]数组中记录的各个半波的电流有效值的方差与平均值Vaver_P,进一步计算电流有效值的方差与平均值加权和Vwp,其中加权值表达式为:
(其中,a,b分别为权重系数,通过实验数据所得,S2 RMS_P为未发生电弧时电流有效值的方差,Vaver_P为未发生电弧时电流有效值的平均值)。
然后,计算从第一个电弧发生起,CurrentRMS[100]数组中记录的各个半波的电流有效值的方差与平均值Vaver_C,进一步计算电流有效值的方差与平均值加权和Vwc,其中加权值表达式为:
(其中,a,b分别为权重系数,通过实验数据所得,S2 RMS_C为发生电弧时电流有效值的方差,Vaver_C为发生电弧时电流有效值的平均值)。
若Vwp与Vwc的差值大于所设定的阈值,则最终判断为故障电弧,并进行声光报警,并通过POWERBUS将报警信号传输至监控***。
以上实施例是本发明较优选具体实施方式的一种,本领域技术人员在本技术方案范围内进行的通常变化和替换应包含在本发明的保护范围内。

Claims (5)

1.一种故障电弧检测装置,包括二总线电路、罗氏线圈、采样电阻、信号处理电路、微处理器、测试电路,声光报警电路和按键;其中二总线电路为所述装置提供供电电源,罗氏线圈检测被保护线路的电流信号,并通过采样电阻将电流信号转换为电压信号,信号处理电路将所述电压信号分离出高频信号和工频信号,最后输出高频信号的包络线和工频电流波形至微处理器,通过微处理器处理进行故障电弧识别,当微处理器判断为故障电弧时,声光报警电路将产生声光报警,并将报警状态通过二总线电路上传,并且按键和微处理器连接,测试电路连接在罗氏线圈和微处理器之间。
2.如权利要求1所述的故障电弧检测装置,其中所述信号处理电路包括高通滤波电路、高频运算放大电路、检波电路、低通滤波电路和差分运算放大电路,其中高通滤波电路和低通滤波电路与所述罗氏线圈输出端连接,差分运算放大电路和低通滤波电路输出端连接,高频运算放大电路输入端和高通滤波电路输出端连接,高频运算放大电路输出端和检波电路输入端连接。
3.如权利要求1所述的故障电弧检测装置,所述按键包括复位、消音和测试按键。
4.一种故障电弧检测方法,主要包括如下步骤:
第一步,以正弦波的一个半波为单位,采集被保护线路的电流信号,并对所述电流信号进行处理,分离得到高频信号的包络线和工频电流波形;
第二步,将固定时间移动窗移动一位用于保存采集的电流信号的判断结果;
第三步,计算所述半波内工频电流波形数据的有效值,并保存至固定时间移动窗中当前所指位置,判断所述半波内高频信号的包络线的最大值MaxValue和所述半波所有高频信号的包络线采样点数值的累加值AddValue是否都大于相应的阈值,如果都大于相应的阈值,进一步判断高频信号的包络线是否为递增-递减-递增-递减的变化,若符合该特征,则判断在所述半波中存在电弧,在固定时间移动窗中写入1,反之,写入0;
第四步,统计固定时间移动窗内电弧的总数,如果统计固定时间移动窗内的电弧总数超过所设定的阈值,初步判断为故障,进一步的确认工频电流值发生变化时是否为与检测到的故障电弧发生的时刻一致,若一致,则判断为故障电弧。
5.如权利要求4所述的故障电弧检测方法,其中判断所述一致的方法为:
首先,计算第一个电弧发生前,固定时间移动窗中记录的各个半波的电流有效值的第一方差与第一平均值Vaver_P,进一步计算电流有效值的第一方差与第一平均值Vaver_P的第一加权和Vwp,其中表达式为:
其中,a,b分别为权重系数;
然后,计算从第一个电弧发生起,固定时间移动窗中记录的各个半波的电流有效值的第二方差与第二平均值Vaver_C,进一步计算电流有效值的第二方差与第二平均值Vaver_C的第二加权和Vwc,其中表达式为:
其中,a,b分别为权重系数;
若第一加权和Vwp与第二加权和Vwc的差值大于所设定的阈值,则最终判断为故障电弧,并进行声光报警,以及将报警信号传输至监控***。
CN201610086371.5A 2016-02-15 2016-02-15 一种故障电弧检测装置及方法 Active CN105629112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610086371.5A CN105629112B (zh) 2016-02-15 2016-02-15 一种故障电弧检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610086371.5A CN105629112B (zh) 2016-02-15 2016-02-15 一种故障电弧检测装置及方法

Publications (2)

Publication Number Publication Date
CN105629112A true CN105629112A (zh) 2016-06-01
CN105629112B CN105629112B (zh) 2018-04-06

Family

ID=56044234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610086371.5A Active CN105629112B (zh) 2016-02-15 2016-02-15 一种故障电弧检测装置及方法

Country Status (1)

Country Link
CN (1) CN105629112B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037343A (zh) * 2017-06-20 2017-08-11 浙江中科城安消防科技有限公司 一种嵌入sim卡通信的故障电弧检测装置及其方法
CN109061414A (zh) * 2018-08-17 2018-12-21 上海岩芯电子科技有限公司 光伏***直流故障电弧检测方法
CN109917241A (zh) * 2019-03-19 2019-06-21 德力西电气有限公司 一种故障电弧的检测方法和故障电弧断路器
CN110568329A (zh) * 2019-09-16 2019-12-13 珠海格力电器股份有限公司 电弧检测方法、家用电器及计算机可读存储介质
CN111095712A (zh) * 2017-10-11 2020-05-01 力特保险丝公司 基于电流方差的电弧检测
CN112305376A (zh) * 2020-10-28 2021-02-02 国网山东省电力公司青岛供电公司 一种低压配电线路故障电弧检测及识别方法
CN112636299A (zh) * 2020-12-29 2021-04-09 珠海铠湾智电科技有限公司 一种串联电弧打火检测方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163267A1 (en) * 2002-02-22 2003-08-28 Premy Amit Kumar Method for measuring PLL lock time
KR20090095215A (ko) * 2008-03-05 2009-09-09 대림대학 산학협력단 비선형 부하에서의 아크 검출장치
CN102749533A (zh) * 2012-04-23 2012-10-24 华侨大学 一种低压电弧故障检测方法
US20130226479A1 (en) * 2012-02-29 2013-08-29 Innovative Scientific Solutions, Inc. Arc Fault Detection
CN104251945A (zh) * 2013-06-28 2014-12-31 上海电科电器科技有限公司 电弧故障检测装置
CN104635133A (zh) * 2015-03-14 2015-05-20 北京芯同汇科技有限公司 一种新型故障电弧检测方法及装置
CN104793112A (zh) * 2015-04-03 2015-07-22 莱茵斯(厦门)科技有限公司 一种低压电弧故障检测方法和装置
CN205880068U (zh) * 2016-02-15 2017-01-11 珠海派诺科技股份有限公司 一种故障电弧检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030163267A1 (en) * 2002-02-22 2003-08-28 Premy Amit Kumar Method for measuring PLL lock time
KR20090095215A (ko) * 2008-03-05 2009-09-09 대림대학 산학협력단 비선형 부하에서의 아크 검출장치
US20130226479A1 (en) * 2012-02-29 2013-08-29 Innovative Scientific Solutions, Inc. Arc Fault Detection
CN102749533A (zh) * 2012-04-23 2012-10-24 华侨大学 一种低压电弧故障检测方法
CN104251945A (zh) * 2013-06-28 2014-12-31 上海电科电器科技有限公司 电弧故障检测装置
CN104635133A (zh) * 2015-03-14 2015-05-20 北京芯同汇科技有限公司 一种新型故障电弧检测方法及装置
CN104793112A (zh) * 2015-04-03 2015-07-22 莱茵斯(厦门)科技有限公司 一种低压电弧故障检测方法和装置
CN205880068U (zh) * 2016-02-15 2017-01-11 珠海派诺科技股份有限公司 一种故障电弧检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马征 等: "一种基于高频电流频谱分析的故障电弧检测方法", 《低压电器》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037343A (zh) * 2017-06-20 2017-08-11 浙江中科城安消防科技有限公司 一种嵌入sim卡通信的故障电弧检测装置及其方法
CN111095712A (zh) * 2017-10-11 2020-05-01 力特保险丝公司 基于电流方差的电弧检测
CN109061414A (zh) * 2018-08-17 2018-12-21 上海岩芯电子科技有限公司 光伏***直流故障电弧检测方法
CN109917241A (zh) * 2019-03-19 2019-06-21 德力西电气有限公司 一种故障电弧的检测方法和故障电弧断路器
CN110568329A (zh) * 2019-09-16 2019-12-13 珠海格力电器股份有限公司 电弧检测方法、家用电器及计算机可读存储介质
CN112305376A (zh) * 2020-10-28 2021-02-02 国网山东省电力公司青岛供电公司 一种低压配电线路故障电弧检测及识别方法
CN112636299A (zh) * 2020-12-29 2021-04-09 珠海铠湾智电科技有限公司 一种串联电弧打火检测方法及***

Also Published As

Publication number Publication date
CN105629112B (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
CN105629112A (zh) 一种故障电弧检测装置及方法
CN205880068U (zh) 一种故障电弧检测装置
CN109239558A (zh) 一种直流故障电弧检测及保护装置
CN105676088A (zh) 一种故障电弧探测装置的测试设备和方法
CN104061851A (zh) 基于过电压响应的变压器绕组变形在线监测方法
CN106771922A (zh) 一种高压电力设备局部放电检测***及局部放电识别方法
CN203929969U (zh) 电弧故障检测装置
CN106549366B (zh) 用电安全检测防护电路、开关设备或插座
CN105510760A (zh) 一种基于小波分析的短路故障数据检测方法
CN106501588A (zh) 一种变压器近区短路电流监测方法
CN109669104A (zh) 一种基于注入信号监测船舶电网***智能绝缘状态的方法及其监测装置
CN111398750B (zh) 电弧识别方法和用于电弧识别的***
CN204044977U (zh) 一种无线近电报警式接地线
CN102323508A (zh) 感应式氧化物避雷器性能在线检测装置
CN205353294U (zh) 一种故障电弧探测装置的测试设备
KR20220145582A (ko) 화재 위험도 예측을 위한 아크 감지기 및 이의 동작 방법
CN103472349A (zh) 一种通信线缆运行状态的智能化在线分析方法
KR101954273B1 (ko) 스마트 분전반 시스템
CN203310362U (zh) 一种真空断路器触头分合闸位置检测的装置
CN104241008B (zh) 一种真空断路器触头分合闸位置检测的方法与装置
CN109856495A (zh) 一种便携式电缆检修接地状态辅助检测***及方法
WO2023045008A1 (zh) 基于小波分解的智能自适应电弧检测方法及其应用装置
CN2758782Y (zh) 非接触式发电机局部放电在线监测方向传感装置
CN104793165A (zh) 一种基于Labview的用于电弧故障检测装置AFDD测试设备及其方法
CN104698369A (zh) 一种模拟链路硬件失效检测电路及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant