CN105623616A - 柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷及余热回收方法 - Google Patents

柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷及余热回收方法 Download PDF

Info

Publication number
CN105623616A
CN105623616A CN201610111325.6A CN201610111325A CN105623616A CN 105623616 A CN105623616 A CN 105623616A CN 201610111325 A CN201610111325 A CN 201610111325A CN 105623616 A CN105623616 A CN 105623616A
Authority
CN
China
Prior art keywords
working medium
heat
organic working
pentafluoropropane
enter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610111325.6A
Other languages
English (en)
Inventor
张文平
侯胜亚
张新玉
明平剑
柳贡民
曹贻鹏
国杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201610111325.6A priority Critical patent/CN105623616A/zh
Publication of CN105623616A publication Critical patent/CN105623616A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明提供的是一种柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷及余热回收方法。二元混合工质1,1,2,2,3-五氟丙烷和七氟丙烷物理混合,1,1,2,2,3-五氟丙烷和七氟丙烷质量百分数为(0.3-0.9):(0.1-0.7)。采用带有回热器的有机朗肯循环***回收柴油机排气余热和中冷器的热量,通过采用所选择的二元混合工质,效果非常明显。通过回收柴油机排气余热能量和中冷器余热能量,将其转化为电能,达到综合回收柴油机余热,显著提高柴油机的热效率,降低燃油耗指标,减少碳排放。

Description

柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷及余热回收方法
技术领域
本发明涉及的是一种用于回收柴油机余热的低温朗肯循环***的二元混合工质。本发明也涉及采用二元混合工质的柴油机余热回收方法。
背景技术
能源问题己经成为经济发展中一个头等重要问题。柴油机以其经济性和热效率高的优势,广泛应用于工业生产和运输产业的各个领域,但其废热占到燃烧总能量的55%-70%,大部分的能量通过冷却水散热和高温尾气排放到大气中。随着能源供应日益紧张,节能、降耗、提高能源利用率越来越引起人们的重视,所以发动机排气余热的利用是必然趋势。
目前,针对于回收柴油机余热,有机朗肯循环***采用纯工质,对于纯工质循环动力***来说,蒸发器的损失最高,限制了循环效率及循环净功的提高,其主要原因在于夹点温差导致纯工质和热源的匹配效果差,夹点温差是蒸发器过程中温差最小的点,它出现在纯工质泡点位置,纯工质的泡点温度和露点温度相同,而混合工质的泡点温度和露点温度不同,存在温度滑移,这对于混合工质与冷热源的匹配有很大的益处。因此,开发环境友好、热力学性能好的新型可靠的工质,对柴油机余热利用***技术的发展至关重要。
有关柴油机余热利用的混合工质的公开报道也较多,例如“采用非共沸混合工质变组分的低温朗肯循环***”的专利文件中,采用七氟丙烷和异丁烷混合用于利用地热能,热源为85℃的地热水。循环热效率为9.41%,但其中的异丁烷易燃,安全性能差,不能用于柴油机余热回收;再例如“一种太阳能有机朗肯循环发电***”的专利文件中,采用二氯一氟乙烷和正丁烷混合用于利用太阳能,但二氯一氟乙烷会破坏臭氧层,正丁烷易燃易爆。
发明内容
本发明的目的在于提供一种适用于回收柴油机排气能量,减少碳排放,保护环境的柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷。本发明的目的还在于提供一种利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法。
本发明的柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷由1,1,2,2,3-五氟丙烷和七氟丙烷物理混合而成,1,1,2,2,3-五氟丙烷和七氟丙烷的质量百分数为0.3-0.9:0.1-0.7,组元物质质量分数之和等于100%。
本发明的柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的临界压力范围为3120kPa-3628kPa,临界温度范围为123℃-167℃。
利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法之一是:1,1,2,2,3-五氟丙烷和七氟丙烷二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法之二是:1,1,2,2,3-五氟丙烷和七氟丙烷二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法之三是:1,1,2,2,3-五氟丙烷和七氟丙烷二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体,其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法之四是:1,1,2,2,3-五氟丙烷和七氟丙烷二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体,其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
本发明基于解决能源问题及温室效应引起的环境问题,充分考虑柴油机排气的特点,综合提高柴油机余热利用潜力,通过二元混合工质有机朗肯***,回收柴油机排气能量,减少碳排放,保护环境。
本发明总体方案的指导思想是:通过研究发现,临界温度相差70℃的工质混合后表现出很高的热效率,在此范围内筛选出冷却水温度为25℃时,热源温度为200℃柴油机排气温度条件下,热效率超过20%的工质配比。
本***所采用的两种二元混合工质混合物其临界压力相近,相变时滑移温度大,符合环保要求,循环性能优良,本发明在环境温度25℃柴油机额定工况下的朗肯循环效率大于20%,循环热效率高,回热循环效率相对于目前其他二元混合工质混合物及纯工质都要高,产生这种效果的原因在于采用这种配比,回热时,高压回热出口可跨越过高压下的泡点温度,低压回热出口可跨越低压下的露点温度。避免了纯工质朗肯循环的温度夹点问题,有利于循环效率的提高。
采用上述技术方案具有如下显著优点:
(1)采用二元混合工质混合物作为有机朗肯循环的工质,能够有效地回收柴油机余热,采用1,1,2,2,3-五氟丙烷/七氟丙烷的混合方式相对于其他的混合物有更高的热效率,有效地降低柴油机的排气。其原因在于采用这种配比,回热时,高压回热出口可跨越过高压下的泡点温度,低压回热出口可跨越低压下的露点温度。
(2)通过中冷器-有机工质预热器可以有效地利用中冷器的热量,提高工质进入烟气-有机工质换热器的温度,工质自中冷器-有机工质预热器出来后进入烟气-有机工质换热器继续升温,成为饱和蒸汽或过热蒸汽。通过中冷器-有机工质预热器和烟气-有机工质换热器联合传热,可以增大有机工质的流量,提高输出轴功。
(3)二元混合工质混合物经由烟气-有机工质换热器后成为高温高压的蒸汽,进入膨胀机中膨胀做功,膨胀机出口的有机工质通过回热器将热量传递给工质泵出口的有机工质,提高热效率。
附图说明
图1至图4为本发明的四种二元混合工质有机朗肯循环装置结构示意图。
图5为亚临界温熵图。
图6为跨临界温熵图。
具体实施方式
下面举例对本发明做更详细的描述。
本发明的二元混合工质有机朗肯循环***循环工质选用1,1,2,2,3-五氟丙烷和七氟丙烷物理混合为二元混合工质,1,1,2,2,3-五氟丙烷和七氟丙烷质量百分数为(0.3-0.9):(0.1-0.7)。两组元物质质量分数之和等于100%,两组元物质的基本参数如表1所示。
表1二元混合工质有机工质中所含组元的基本参数
Tc:临界温度,Pc:临界压力,ODP:臭氧损耗潜能值(半经验数值),GWP:全球温室效应潜能值(累计时间基准100年)
结合图1,利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法之一所涉及的***由1-柴油机,2-排气管,3-烟气-有机工质换热器,4-膨胀机,5-功率传递设备,6-回热器,7-冷凝器,8-工质泵,9-中冷器-有机工质预热器构成。二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
结合图2,利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法之一所涉及的***由1-柴油机,2-排气管,3-烟气-有机工质换热器,4-膨胀机,5-功率传递设备,6-回热器,7-冷凝器,8-工质泵构成。二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
结合图3,利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法之一所涉及的***由1-柴油机,2-排气管,3-烟气-水或导热油换热器,4-膨胀机,5-功率传递设备,6-回热器,7-冷凝器,8-工质泵,9-中冷器-有机工质预热器,10-水-有机工质换热器构成。该实施方案属于间接换热方案,采用水或导热油作为传导介质,将烟气的热量传递给混合工质,二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
结合图4,利用柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法之一所涉及的***由1-柴油机,2-排气管,3-烟气-水或导热油换热器,4-膨胀机,5-功率传递设备,6-回热器,7-冷凝器,8-工质泵,10-水或导热油-有机工质换热器构成。该实施方案属于间接换热方案,采用水或导热油作为中间传递介质,将烟气的热量传递给混合工质,二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
上述四种方法中:柴油机余热为排气余热和中冷器余热。排气作为热源温度范围为200℃-350℃,与二元混合工质通过换热器直接进行换热,或柴油机余热产生温度范围100℃-170℃的热水与二元混合工质通过中间换热器进行间接换热。冷却水温度为10℃到36℃之间。冷凝压力为二元混合工质临界压力的大约4%到20%之间,冷凝器温度滑移为7℃到17℃之间。冷凝温度比冷凝压力下的泡点温度低0℃到5℃之间,即过冷度为0℃到5℃之间。有机朗肯循环采用亚临界循环或者跨临界循环之中的一种循环。其中所述亚临界循环,对于二元混合工质通过换热器直接进行换热的情况,蒸发压力为二元混合工质临界压力的大约25%到96%之间,蒸发滑移温度在3到11℃之间;对于二元混合工质通过中间换热器进行间接换热的情况,蒸发压力为二元混合工质临界压力的大约8%到45%之间,蒸发滑移温度在5到15℃之间。其中所述跨临界循环,蒸发压力为工作流体混合物临界压力的大约1.01到1.3之间,循环最高温度比临界温度高5℃到77℃之间。
图5为亚临界温熵图,具体表示出循环工质的做功过程,与图6的区别在于其蒸发压力低于临界压力。过程3-4:凝结后的有机工质经工质泵8后压力提高,饱和液态有机工质经工质泵8的升压过程可视为定熵压缩过程。过程4-a:有机工质经回热器6吸收热量,回收了部分热量。过程a-1:有机工质在中冷器-有机工质预热器9、烟气-有机工质换热器3中吸热,由未饱和态变为过热或饱和有机工质蒸汽。过程中工质与外界无技术功交换。忽略了工质流动过程的阻力,该过程为定压吸热过程。过程1-2:过热或饱和的有机工质蒸汽在膨胀机4中膨胀并对外输出功。在膨胀机4出口工质达到低压状态,主要由饱和的蒸汽组成,称为乏汽。忽略工质的摩擦与散热,该过程为等熵膨胀过程。过程2-b:膨胀机4出口的有机工质进入回热器6把热量传递给过冷态的有机工质。过程b-1:在冷凝器7中乏汽放热给冷却水,凝结成为冷凝器乏汽压力下的饱和液态或过冷态的有机工质。该过程可视为定压放热过程。由该T-S图可以明显看出高压回热出口a点跨越过高压下的泡点温度点5,低压回热出口b点可跨越低压下的露点温度点7。温度夹点出现在蒸发器和冷凝器的进出口端。这也是该种混合物相对于其他朗肯循环工质的优势。
图6为跨临界温熵图,具体表示出循环工质的做功过程,过程3-4:凝结后的有机工质经工质泵8后压力提高,饱和液态有机工质经工质泵8的升压过程可视为定熵压缩过程。过程4-a:有机工质经回热器6吸收热量,回收了部分热量。过程a-1:有机工质在中冷器-有机工质预热器9、烟气-有机工质换热器3中吸热,由未饱和态变为过热或饱和有机工质蒸汽。过程中工质与外界无技术功交换。忽略了工质流动过程的阻力,该过程为定压吸热过程。过程1-2:过热或饱和的有机工质蒸汽在膨胀机4中膨胀并对外输出功。在膨胀机4出口工质达到低压状态,主要由饱和的蒸汽组成,称为乏汽。忽略工质的摩擦与散热,该过程为等熵膨胀过程。过程2-b:膨胀机4出口的有机工质进入回热器6把热量传递给过冷态的有机工质.过程b-1:在冷凝器7中乏汽放热给冷却水,凝结成为冷凝器乏汽压力下的饱和液态或过冷态的有机工质。该过程可视为定压放热过程。由该T-S图可以明显看低压回热出口b点可跨越低压下的露点温度点7。这也是该种混合物相对于其他朗肯循环工质的优势。

Claims (6)

1.一种柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷,其特征是由1,1,2,2,3-五氟丙烷和七氟丙烷物理混合而成,1,1,2,2,3-五氟丙烷和七氟丙烷的质量百分数为0.3-0.9:0.1-0.7,组元物质质量分数之和等于100%。
2.根据权利要求1所述的柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷,其特征是临界压力范围为3120kPa-3628kPa,临界温度范围为123℃-167℃。
3.一种利用权利要求1所述柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法,其特征是:1,1,2,2,3-五氟丙烷和七氟丙烷二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
4.一种利用权利要求1所述柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法,其特征是:1,1,2,2,3-五氟丙烷和七氟丙烷二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
5.一种利用权利要求1所述柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法,其特征是:1,1,2,2,3-五氟丙烷和七氟丙烷二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体,其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
6.一种利用权利要求1所述柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷的余热回收方法,其特征是:1,1,2,2,3-五氟丙烷和七氟丙烷二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体,其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
CN201610111325.6A 2016-02-29 2016-02-29 柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷及余热回收方法 Pending CN105623616A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610111325.6A CN105623616A (zh) 2016-02-29 2016-02-29 柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷及余热回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610111325.6A CN105623616A (zh) 2016-02-29 2016-02-29 柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷及余热回收方法

Publications (1)

Publication Number Publication Date
CN105623616A true CN105623616A (zh) 2016-06-01

Family

ID=56038979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610111325.6A Pending CN105623616A (zh) 2016-02-29 2016-02-29 柴油机余热回收朗肯循环混合工质1,1,2,2,3-五氟丙烷和七氟丙烷及余热回收方法

Country Status (1)

Country Link
CN (1) CN105623616A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302839A (zh) * 1999-12-31 2001-07-11 中国科学院广州能源研究所 一种用于蓄热或蓄冷***的储热介质
CN101430144A (zh) * 2007-02-06 2009-05-13 西安交通大学 具有可变蒸发温度的多温制冷机的制备方法
CN102127397A (zh) * 2011-01-19 2011-07-20 天津大学 用于螺杆膨胀机的有机工质朗肯循环***的混合工质
CN102816555A (zh) * 2012-08-31 2012-12-12 天津大学 含HFC-227ea的低温有机朗肯循环***混合工质
CN102900562A (zh) * 2012-09-28 2013-01-30 北京工业大学 变蒸发器面积的发动机排气余热回收有机朗肯循环***
CN103906821A (zh) * 2011-08-19 2014-07-02 纳幕尔杜邦公司 用于由热产生机械能的有机朗肯循环的方法和组合物
CN104031611A (zh) * 2012-08-31 2014-09-10 天津大学 一种含HFC-227ea的有机朗肯循环***混合工质
CN104762065A (zh) * 2015-03-10 2015-07-08 光大环保(中国)有限公司 有机朗肯循环混合工质及其制备方法
CN104879177A (zh) * 2015-04-21 2015-09-02 同济大学 一种有机朗肯循环与热泵循环的耦合***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302839A (zh) * 1999-12-31 2001-07-11 中国科学院广州能源研究所 一种用于蓄热或蓄冷***的储热介质
CN101430144A (zh) * 2007-02-06 2009-05-13 西安交通大学 具有可变蒸发温度的多温制冷机的制备方法
CN102127397A (zh) * 2011-01-19 2011-07-20 天津大学 用于螺杆膨胀机的有机工质朗肯循环***的混合工质
CN103906821A (zh) * 2011-08-19 2014-07-02 纳幕尔杜邦公司 用于由热产生机械能的有机朗肯循环的方法和组合物
CN102816555A (zh) * 2012-08-31 2012-12-12 天津大学 含HFC-227ea的低温有机朗肯循环***混合工质
CN104031611A (zh) * 2012-08-31 2014-09-10 天津大学 一种含HFC-227ea的有机朗肯循环***混合工质
CN102900562A (zh) * 2012-09-28 2013-01-30 北京工业大学 变蒸发器面积的发动机排气余热回收有机朗肯循环***
CN104762065A (zh) * 2015-03-10 2015-07-08 光大环保(中国)有限公司 有机朗肯循环混合工质及其制备方法
CN104879177A (zh) * 2015-04-21 2015-09-02 同济大学 一种有机朗肯循环与热泵循环的耦合***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王为术等: "《节能与节能技术(第1版)》", 31 August 2012, 中国水利水电出版社 *

Similar Documents

Publication Publication Date Title
Li et al. Cascade utilization of low temperature geothermal water in oilfield combined power generation, gathering heat tracing and oil recovery
Yang et al. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions
Liu et al. A review of research on the closed thermodynamic cycles of ocean thermal energy conversion
Shengjun et al. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation
Li et al. A Kalina cycle with ejector
Chen et al. Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle
CN102003827B (zh) 吸收式冷功联供循环***和吸收式冷功联供方法
AU2013240243B2 (en) System and method for recovery of waste heat from dual heat sources
Li et al. Comparative analysis of series and parallel geothermal systems combined power, heat and oil recovery in oilfield
CN102797525A (zh) 采用非共沸混合工质变组分的低温朗肯循环***
Bao et al. Exergy analysis and parameter study on a novel auto-cascade Rankine cycle
CN101298843B (zh) 超临界朗肯循环回收低温余热动力的方法
US20210207499A1 (en) Organic rankine cycle system with supercritical double-expansion and two-stage heat recovery
CN102518491A (zh) 一种利用二氧化碳及作为循环工质的热力循环***
CN104762065A (zh) 有机朗肯循环混合工质及其制备方法
CN101929361A (zh) 一种带吸收器的低温动力循环***
CN105713576A (zh) 柴油机余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和五氟乙烷及余热回收方法
CN104791030A (zh) 一种天然工质的朗肯循环余热发电***及发电方法
CN102635416B (zh) 一种带喷射器的低品位热驱动朗肯发电装置
CN103937459B (zh) 以co2为主要组元新型动力循环混合工质及其***和方法
CN103446774A (zh) 一种基于热泵技术的蒸馏冷凝节能工艺
Li et al. Thermodynamic optimization of a neoteric geothermal poly‐generation system in an oilfield
CN105670566A (zh) 余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法
CN105694818A (zh) 柴油机余热回收朗肯循环混合工质六氟丙烷和五氟乙烷及余热回收方法
Mocarski et al. Selected aspects of operation of supercritical (transcritical) organic Rankine cycle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160601