CN105622974B - 一种高阻隔高透明pet复合薄膜及其制备方法 - Google Patents

一种高阻隔高透明pet复合薄膜及其制备方法 Download PDF

Info

Publication number
CN105622974B
CN105622974B CN201610059986.9A CN201610059986A CN105622974B CN 105622974 B CN105622974 B CN 105622974B CN 201610059986 A CN201610059986 A CN 201610059986A CN 105622974 B CN105622974 B CN 105622974B
Authority
CN
China
Prior art keywords
boron nitride
barrier
high transparency
laminated films
pet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610059986.9A
Other languages
English (en)
Other versions
CN105622974A (zh
Inventor
谢少波
韩忠强
段文锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong jinsinan membrane material Co.,Ltd.
Beijing Oriental Yuhong Waterproof Technology Co Ltd
Original Assignee
Beijing Oriental Yuhong Waterproof Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Oriental Yuhong Waterproof Technology Co Ltd filed Critical Beijing Oriental Yuhong Waterproof Technology Co Ltd
Priority to CN201610059986.9A priority Critical patent/CN105622974B/zh
Publication of CN105622974A publication Critical patent/CN105622974A/zh
Application granted granted Critical
Publication of CN105622974B publication Critical patent/CN105622974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Abstract

一种高阻隔高透明PET复合薄膜及其制备方法,包括PET薄膜基材和涂覆在PET薄膜基材上表面的一层高阻隔高透明涂层,所述涂层包括以下重量分数的原料制成,浓度为6~18%水溶性聚合物水溶液55.4~66.5%,氮化硼纳米片0.003~0.03%,干燥调节剂33.5~44.6%。本发明还包括高阻隔高透明PET复合薄膜的制备方法。本发明之高阻隔高透明PET复合薄膜具有对气体高的阻隔性能和PET薄膜优异的机械性能,可显著地提高包装材料的阻隔性能,提高商品的保质期;同时还能保持PET复合薄膜材料的高透明性,广泛应用于包装领域,可产生良好的社会效益和经济效益。

Description

一种高阻隔高透明PET复合薄膜及其制备方法
技术领域
本发明涉及一种PET复合薄膜,具体涉及一种基于氮化硼纳米片的高阻隔高透明PET复合薄膜及其制备方法。
背景技术
PET薄膜具有很好的透明性、较好的气密性和中等的防潮性;同时它在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120℃,电绝缘性优良;还具有很好的抗蠕变性、耐疲劳性和尺寸稳定性,是一种性能优异的包装薄膜,被广泛应用于各行各业。但就包装领域而言,还要求所使用的PET包装薄膜具有更高的阻气防潮的阻隔性能,以延长产品的保质期。目前,PET薄膜所使用的多层复合的方法不仅工艺复杂,还往往影响了PET薄膜的透明性。
六方氮化硼(h-BN)是石墨烯的同构体,被称作白石墨烯,具有与石墨烯类似的层状结构,其层间靠范德华力结合,易于滑动和剥离,从而得到单片或数个片层的氮化硼纳米片。这些氮化硼纳米片虽然很薄,只有一个和数个纳米厚,但其本身具有很好的阻隔性,不透水汽和各种气体;同时,氮化硼纳米片具有宽的带隙和很好的绝缘性能,使其在降低材料渗透性的同时不影响材料的光学或电学性能。至今为止,未见将氮化硼纳米片应用于高阻隔高透明薄膜的报道;同时,相对石墨,由于六方氮化硼中的相邻两个片层之间具有离子键,导致其层间的作用力比石墨层间的范德华力要强一些。因此,如何通过功能化或掺杂等手段来提高氮化硼纳米片的应用性能也是一个极具挑战性的问题。
发明内容
本发明所要解决的技术问题是,提供一种基于氮化硼纳米片的高阻隔高透明的PET复合薄膜。
本发明解决其技术问题采用的技术方案是,一种高阻隔高透明PET复合薄膜,是由上下两层复合结构构成,下层为PET薄膜基材,上层为涂覆在PET薄膜基材上表面的一层高阻隔高透明涂层,所述涂层包括以下重量分数的原料制成,浓度为6~18%水溶性聚合物水溶液55.4~66.5%,氮化硼纳米片0.003~0.03%,干燥调节剂33.5~44.6%。
进一步,所述涂层还包括石墨烯纳米片0.0005~0.001%。
进一步,所述氮化硼纳米片是由原料氮化硼粉末置于有机溶剂或水溶性聚合物水溶液中,配成浓度为1mg/ml~50mg/ml的悬浮液,超声并经离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的氮化硼纳米片。
进一步,所述有机溶剂为N-十二烷基吡咯烷酮、N-环己基吡咯烷酮、异丙醇、N-甲基吡咯烷酮、N-乙烯基吡咯烷酮、N-辛基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、氯仿、二甲亚砜、环己酮或N-甲基甲酰胺。
进一步,所述水溶性聚合物为聚乙烯醇、淀粉、改性淀粉、纤维素及其衍生物中的一种或两种以上的混合物,其中,聚乙烯醇的分子量为12000~75000,醇解度为85~99.5wt%。
进一步,所述干燥调节剂为甲醇、乙醇、异丙醇、仲丁醇和异丁醇中的一种或两种以上的混合物。
进一步,所述石墨烯纳米片是由原料石墨粉末置于有机溶剂或水溶性聚合物水溶液中,配成浓度为1mg/ml~50mg/ml的悬浮液,超声并经离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的石墨烯纳米片。
进一步,所述有机溶剂为N-甲基吡咯烷酮、γ-丁内酯、N,N-二甲基乙酰胺、1,3-二甲基-2-咪唑啉酮、N-乙烯基吡咯烷酮、N-十二烷基吡咯烷酮、二甲基甲酰胺、二甲亚砜、异丙醇、N-辛基吡咯烷酮或丙酮。
本发明进一步解决其技术问题采用的技术方案是,一种高阻隔高透明PET复合薄膜的制备方法,包括以下步骤:
(1)涂层料的制备:将氮化硼纳米片加入干燥调节剂中分散均匀,得到氮化硼纳米片的分散液,然后加入到水溶性聚合物水溶液中混合均匀,即得涂层料,备用。
(2)将步骤(1)所述涂层料涂布在PET薄膜上表面,经60~80℃热风干燥,即成。
进一步,步骤(1)中,将氮化硼纳米片加入干燥调节剂中分散均匀,得到氮化硼纳米片的分散液,然后将石墨烯纳米片加入到水性聚合物水溶液中分散均匀,得到石墨烯纳米片的分散液,最后将氮化硼纳米片的分散液加入到石墨烯纳米片的分散液中混合均匀,即得涂层料。
进一步,步骤(1)中,将石墨烯纳米片加入到干燥调节剂中分散均匀,得到石墨烯纳米片的分散液,然后将氮化硼纳米片加入到水性聚合物水溶液中分散均匀,得到氮化硼纳米片的分散液,最后将石墨烯纳米片的分散液加入到氮化硼纳米片的分散液中混合均匀,即得涂层料。
本发明利用氮化硼纳米片的不可透过性及其纳米尺度,制得的高阻隔高透明PET复合薄膜具有对气体高的阻隔性能和PET薄膜优异的机械性能,可显著地提高包装材料的阻隔性能,提高商品的保质期;同时还能保持PET复合薄膜材料的高透明性,广泛应用于包装领域,可产生良好的社会效益和经济效益。
实验证明,本发明之高阻隔高透明PET复合薄膜(12μm)的氧气渗透量可达0.63cm3/(m2·day),透光率达到86%以上。
附图说明
图1是氮化硼纳米片的透射电镜(TEM)图。
图2是实施例1制备的基于氮化硼纳米片的高阻隔高透明PET复合薄膜的剖面图。其中,1为PET薄膜基材;2为高阻隔高透明涂层。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
实施例1:
1、氮化硼纳米片的制备:称取3g原料氮化硼粉末于60ml异丙醇中,用超声仪器进行超声处理48h,随后离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的氮化硼纳米片,见图1。
2、聚乙烯醇PVOH水溶液的制备:将18份醇解度为88%的PVOH加入82份92℃的水中,400rpm搅拌60min,降温至室温。
3、涂层料的制备:将6mg的氮化硼纳米片加入89.2g异丙醇中分散均匀,得到氮化硼纳米片的分散液,然后加入110.8g的PVOH水溶液中混合均匀,即得到所需的涂层料。
4、高阻隔高透明PET复合薄膜的制备:将涂层料涂布在表面张力50达因的12μm厚的BOPET亮光薄膜表面,经70℃热风干燥,即成,见图2。
测量涂层厚度约3μm,测量含有涂层的PET复合薄膜的氧气透过率和透光率,其中,透氧率采用GB/T19789-2005标准进行测试,透光率采用GB/T2410-2008标准进行测试,测试结果见表1。
实施例2:
1、氮化硼纳米片的制备:称取3g原料氮化硼粉末于60ml异丙醇中,用超声仪器进行超声处理48h,随后离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的氮化硼纳米片,见图1。
2、PVOH水溶液的制备:将15份醇解度为88%的PVOH加入85份92℃的水中,400rpm搅拌60min,降温至室温。
3、涂层料的制备:将12mg氮化硼纳米片加入67.6g异丙醇中分散均匀,然后加入132.4g PVOH水溶液中混合均匀,即得到所需的涂层料。
4、高阻隔高透明PET复合薄膜的制备:将涂层料涂布在表面张力50达因的12μm厚的BOPET亮光薄膜表面,经70℃热风干燥,即成,见图2。
测量涂层厚度约3μm,测量含有涂层的PET复合薄膜的氧气透过率和透光率,其中,透氧率采用GB/T19789-2005标准进行测试,透光率采用GB/T2410-2008标准进行测试,测试结果见表1。
实施例3:
1、氮化硼纳米片的制备:称取3g原料氮化硼粉末于60ml异丙醇中,用超声仪器进行超声处理48h,随后离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的氮化硼纳米片,见图1。
2、PVOH水溶液的制备:将6份醇解度为88%的PVOH加入94份92℃的水中,400rpm搅拌60min,降温至室温。
3、涂层料的配制:将0.03g氮化硼纳米片加入185.1g异丙醇中分散均匀,然后加入328.25g的上述PVOH水溶液中混合均匀,即得到所需的涂层料。
4、高阻隔高透明PET复合薄膜的制备:将涂层料涂布在表面张力50达因的12μm厚的BOPET亮光薄膜表面,经70℃热风干燥,即成,见图2。
测量涂层厚度约3μm,测量含有涂层的PET复合薄膜的氧气透过率和透光率,其中,透氧率采用GB/T19789-2005标准进行测试,透光率采用GB/T2410-2008标准进行测试,测试结果见表1。
实施例4:
1、氮化硼纳米片的制备:称取3g原料氮化硼粉末于60ml异丙醇中,用超声仪器进行超声处理48h,随后离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的氮化硼纳米片,见图1。
2、PVOH水溶液的制备:将15份醇解度为88%的PVOH加入85份92℃的水中,400rpm搅拌60min,降温至室温。
3、涂层料的制备:将0.06g氮化硼纳米片加入70.6g异丙醇中分散均匀,然后加入129.3g PVOH水溶液中混合均匀,即得到所需的涂层料。
4、高阻隔高透明PET复合薄膜的制备:将涂层料涂布在表面张力50达因的12μm厚的BOPET亮光薄膜表面,经70℃热风干燥,即成,见图2。
测量涂层厚度约3μm,测量含有涂层的PET复合薄膜的氧气透过率和透光率,其中,透氧率采用GB/T19789-2005标准进行测试,透光率采用GB/T2410-2008标准进行测试,测试结果见表1。
实施例5:
1、氮化硼纳米片的制备:称取3g原料氮化硼粉末于60ml异丙醇中,用超声仪器进行超声处理48h,随后离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的氮化硼纳米片,见图1。
2、PVOH水溶液的制备:将15份醇解度为88%的PVOH加入85份92℃的水中,400rpm搅拌60min,降温至室温。
3、石墨烯纳米片的制备:称取2.4g原料石墨粉末于100ml PVOH水溶液中,用超声仪器进行超声处理48h,随后离心、过滤、干燥,得到厚度在10nm以下,径厚比在100~4000之间的石墨烯纳米片。
4、涂层料的制备:将1mg石墨烯纳米片加入129.3g PVOH水溶液中分散均匀,得到石墨烯纳米片的分散液;将0.059g的氮化硼纳米片加入70.6g异丙醇中分散均匀,得到氮化硼纳米片的分散液;最后将氮化硼纳米片的分散液加入石墨烯纳米片的分散液中,并混合均匀,即得到所需的涂层料。
5、高阻隔高透明PET复合薄膜的制备:将涂层料涂布在表面张力50达因的12μm厚的BOPET亮光薄膜表面,经70℃热风干燥,即成,见图2。
测量涂层厚度约3μm,测量含有涂层的PET复合薄膜的氧气透过率和透光率,其中,透氧率采用GB/T19789-2005标准进行测试,透光率采用GB/T2410-2008标准进行测试,测试结果见表1。
实施例6:
1、氮化硼纳米片的制备:称取3g原料氮化硼粉末于60ml异丙醇中,用超声仪器进行超声处理48h,随后离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的氮化硼纳米片,见图1。
2、PVOH水溶液的制备:将15份醇解度为88%的PVOH加入85份92℃的水中,400rpm搅拌60min,降温至室温。
3、石墨烯纳米片的制备:称取2.4g原料石墨粉末于100ml上述PVOH水溶液中,用超声仪器进行超声处理48h,随后离心、过滤、干燥,得到厚度在10nm以下,径厚比在100~4000之间的石墨烯纳米片。
4、涂层料的制备:将1mg石墨烯纳米片加入67.6g异丙醇中分散均匀,得到石墨烯纳米片的分散液;将11mg的氮化硼纳米片加入132.4g PVOH水溶液中分散均匀,得到氮化硼纳米片的分散液;最后将石墨烯纳米片的分散液加入氮化硼纳米片的分散液中,并混合均匀,即得到所需的涂层料。
5、高阻隔高透明PET复合薄膜的制备:将涂层料涂布在表面张力50达因的12μm厚的BOPET亮光薄膜表面,经70℃热风干燥,即成,见图2。
测量涂层厚度约3μm,测量含有涂层的PET复合薄膜的氧气透过率和透光率,其中,透氧率采用GB/T19789-2005标准进行测试,透光率采用GB/T2410-2008标准进行测试,测试结果见表1。
对比实施例:
1、PVOH水溶液的制备:将15份醇解度为88%的PVOH加入85份92℃的水中,400rpm搅拌60min,降温至室温。
2、涂层料的制备:将133.3g PVOH水溶液与66.7g异丙醇混合均匀,即得到所需的涂层料。
3、PET复合薄膜的制备:将涂层料涂布在表面张力50达因的12μm厚的BOPET亮光薄膜表面,经70℃热风干燥,即成。
测量涂层厚度约3μm,测量含有涂层的PET复合薄膜的氧气透过率和透光率,其中,透氧率采用GB/T19789-2005标准进行测试,透光率采用GB/T2410-2008标准进行测试,测试结果见表1。
表1-PET薄膜性能测试结果
由表1可知,采用氮化硼纳米片的涂层料可使PET复合薄膜氧气的透过率最低降到0.63cc/(day·m2),而PET复合薄膜的透光率仍然可以维持在86%的高水平。可见,氮化硼纳米片的涂层料在PET薄膜表面形成具有高透明性和高阻隔性的涂层,适用于高透明高氧气阻隔材料的制备。

Claims (5)

1.一种高阻隔高透明PET复合薄膜,其特征在于,所述PET薄膜是由上下两层复合结构构成,下层为PET薄膜基材,上层为涂覆在PET薄膜基材上表面的一层高阻隔高透明涂层;
所述涂层包括以下重量份数的原料:浓度为6~18%水溶性聚合物水溶液55.4~66.5%,氮化硼纳米片0.003~0.03%,干燥调节剂33.5~44.6%,石墨烯纳米片0.0005~0.001%;
所述氮化硼纳米片是由原料氮化硼粉末置于有机溶剂或水溶性聚合物水溶液中,配成浓度为1mg/ml~50mg/ml的悬浮液,超声并经离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的氮化硼纳米片;
所述石墨烯纳米片是由原料石墨粉末置于有机溶剂或水溶性聚合物水溶液中,配成浓度为1mg/ml~50mg/ml的悬浮液,超声并经离心干燥,得到厚度在50nm以下,径厚比在100~4000之间的石墨烯纳米片。
2.根据权利要求1所述的高阻隔高透明PET复合薄膜,其特征在于,所述有机溶剂为N-十二烷基吡咯烷酮、N-环己基吡咯烷酮、异丙醇、N-甲基吡咯烷酮、N-乙烯基吡咯烷酮、N-辛基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、氯仿、二甲亚砜、环己酮或N-甲基甲酰胺。
3.根据权利要求1所述的高阻隔高透明PET复合薄膜,其特征在于,所述水溶性聚合物为聚乙烯醇、淀粉、改性淀粉、纤维素及其衍生物中的一种或两种以上的混合物,其中,聚乙烯醇的分子量为12000~75000,醇解度为85~99.5wt%。
4.根据权利要求1所述的高阻隔高透明PET复合薄膜,其特征在于,所述干燥调节剂为甲醇、乙醇、异丙醇、仲丁醇和异丁醇中的一种或两种以上的混合物。
5.一种如权利要求1~4之一所述的高阻隔高透明PET复合薄膜的制备方法,其特征在于,包括以下步骤:
(1)涂层料的制备:将石墨烯纳米片加入到干燥调节剂或水性聚合物水溶液中分散均匀,得到石墨烯纳米片的分散液;
将氮化硼纳米片加入到干燥调节剂或水性聚合物水溶液中分散均匀,得到氮化硼纳米片的分散液;
将石墨烯纳米片的分散液加入到氮化硼纳米片的分散液中混合均匀,即得涂层料;
(2)将步骤(1)所述涂层料涂布在PET薄膜上表面,经60~80℃热风干燥,即成。
CN201610059986.9A 2016-01-28 2016-01-28 一种高阻隔高透明pet复合薄膜及其制备方法 Active CN105622974B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610059986.9A CN105622974B (zh) 2016-01-28 2016-01-28 一种高阻隔高透明pet复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610059986.9A CN105622974B (zh) 2016-01-28 2016-01-28 一种高阻隔高透明pet复合薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN105622974A CN105622974A (zh) 2016-06-01
CN105622974B true CN105622974B (zh) 2018-10-23

Family

ID=56038349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610059986.9A Active CN105622974B (zh) 2016-01-28 2016-01-28 一种高阻隔高透明pet复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN105622974B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106281126B (zh) * 2016-08-31 2017-12-29 广东纳路纳米科技有限公司 中空玻璃用改性白石墨烯复合丁基密封胶及其密封方法
CN108556426B (zh) * 2017-04-21 2019-11-15 王建锋 一种无机纳米片/塑料叠层阻隔薄膜的制备方法
CN107022099B (zh) * 2017-05-05 2019-12-06 北京化工大学 一种透明阻氧阻水薄膜及其制备方法
CN112280087A (zh) * 2020-09-30 2021-01-29 浙江大学衢州研究院 一种高气体阻隔性取向复合薄膜
CN112210107A (zh) * 2020-10-27 2021-01-12 银金达(上海)新材料有限公司 一种高阻隔pet膜的制备方法及其应用
CN117141077A (zh) * 2023-11-01 2023-12-01 南通金丝楠膜材料有限公司 一种阻隔型聚乙烯基单一材质复合抗菌膜及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115566A (zh) * 2011-01-06 2011-07-06 西安理工大学 高阻隔性氧化石墨烯和聚合物纳米复合膜的制备方法
CN103275629A (zh) * 2013-06-18 2013-09-04 上海第二工业大学 一种高导热胶膜及其制备方法
CN103642176A (zh) * 2013-12-02 2014-03-19 北京化工大学 一种高阻隔性复合材料的制备方法
CN104194022A (zh) * 2014-08-20 2014-12-10 中山大学 一种生物降解高阻隔塑料薄膜材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115566A (zh) * 2011-01-06 2011-07-06 西安理工大学 高阻隔性氧化石墨烯和聚合物纳米复合膜的制备方法
CN103275629A (zh) * 2013-06-18 2013-09-04 上海第二工业大学 一种高导热胶膜及其制备方法
CN103642176A (zh) * 2013-12-02 2014-03-19 北京化工大学 一种高阻隔性复合材料的制备方法
CN104194022A (zh) * 2014-08-20 2014-12-10 中山大学 一种生物降解高阻隔塑料薄膜材料及其制备方法

Also Published As

Publication number Publication date
CN105622974A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN105622974B (zh) 一种高阻隔高透明pet复合薄膜及其制备方法
Liu et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels
Pan et al. Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method
Song et al. Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles
Song et al. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity
Li et al. New application of MXene in polymer composites toward remarkable anti-dripping performance for flame retardancy
Chen et al. Superhydrophobic graphene‐based materials: surface construction and functional applications
Priolo et al. Precisely tuning the clay spacing in nanobrick wall gas barrier thin films
Damari et al. Graphene-induced enhancement of water vapor barrier in polymer nanocomposites
Damari et al. Graphene and boron nitride nanoplatelets for improving vapor barrier properties in epoxy nanocomposites
Duan et al. Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency
Dassios et al. Polymer–nanotube interaction in MWCNT/poly (vinyl alcohol) composite mats
Lim et al. Barrier and structural properties of polyethylene terephthalate film coated with poly (acrylic acid)/montmorillonite nanocomposites
Zhu et al. Assembly of graphene nanosheets and SiO2 nanoparticles towards transparent, antireflective, conductive, and superhydrophilic multifunctional hybrid films
KR102464398B1 (ko) 그래핀 분산액 및 그래핀-고분자 복합체 제조방법, 및 이를 이용한 배리어 필름 제조방법
Santagiuliana et al. Breaking the nanoparticle loading–dispersion dichotomy in polymer nanocomposites with the art of croissant-making
Tang et al. Flame retardancy of carbon nanofibre/intumescent hybrid paper based fibre reinforced polymer composites
Najafi et al. Preparation and characterization of poly (Ether block amide)/graphene membrane for recovery of isopropanol from aqueous solution via pervaporation
Su et al. Synthesis of high-k and low dielectric loss polymeric composites from crosslinked divinylbenzene coated carbon nanotubes
Sahiner Conductive polymer containing graphene aerogel composites as sensor for CO2
KR101400406B1 (ko) 탄소나노튜브 복합체의 제조방법
Choe et al. Nanoconfinement effects of chemically reduced graphene oxide nanoribbons on poly (vinyl chloride)
Mahmoudian et al. Graphene reinforced regenerated cellulose nanocomposite fibers prepared by lyocell process
Liu et al. Ultra-transparent nanostructured coatings via flow-induced one-step coassembly
Liu et al. Electrically insulating PBO/MXene film with superior thermal conductivity, mechanical properties, thermal stability, and flame retardancy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200925

Address after: 101300 Shunyi District Shunping road section of Beijing City Area No. 2

Patentee after: Beijing Oriental Yuhong Waterproof Technologies Co.,Ltd.

Patentee after: SHANGHAI ORIENTAL YUHONG WATERPROOF TECHNOLOGY Co.,Ltd.

Address before: 101309 Shunyi District Shunping road section of Beijing City Area No. 2

Patentee before: Beijing Oriental Yuhong Waterproof Technologies Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210414

Address after: 101309 Sha Ling section 2, Shunping Road, Shunyi District, Beijing

Patentee after: Beijing Oriental Yuhong Waterproof Technologies Co.,Ltd.

Patentee after: Nantong jinsinan membrane material Co.,Ltd.

Address before: 101300 a 2, Shaling section, Shunping Road, Shunyi District, Beijing

Patentee before: Beijing Oriental Yuhong Waterproof Technologies Co.,Ltd.

Patentee before: SHANGHAI ORIENTAL YUHONG WATERPROOF TECHNOLOGY Co.,Ltd.