CN105622092A - 一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法 - Google Patents

一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法 Download PDF

Info

Publication number
CN105622092A
CN105622092A CN201511015937.7A CN201511015937A CN105622092A CN 105622092 A CN105622092 A CN 105622092A CN 201511015937 A CN201511015937 A CN 201511015937A CN 105622092 A CN105622092 A CN 105622092A
Authority
CN
China
Prior art keywords
powder
energy storage
tio
ceramic
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511015937.7A
Other languages
English (en)
Inventor
吴勇军
邱维君
刘小强
陈湘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201511015937.7A priority Critical patent/CN105622092A/zh
Publication of CN105622092A publication Critical patent/CN105622092A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法,该方法首先将原料BaCO3,SrCO3和TiO2按Ba0.4Sr0.6TiO3化学式配料,制得Ba0.4Sr0.6TiO3粉料;然后将Ba0.4Sr0.6TiO3粉料与ZnO粉末按质量比(100-x):x进行配料,制得陶瓷粉料;最后将陶瓷粉料装入模具,利用放电等离子烧结***在真空环境中1000℃进行烧结,制得陶瓷烧结体,热处理后制得高储能密度钛酸锶钡复相陶瓷。本发明方法制备的具高储能密度的钛酸锶钡-氧化锌复相陶瓷,其储能密度提高,介电击穿场强大幅提高,可用于高密度储能电容器等元器件,在大功率和脉冲功率领域有着极大的应用价值。

Description

一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法
技术领域
本发明涉及储能电容器用介质材料技术领域,尤其涉及一种高储能密度复相电介质陶瓷的制备方法。
背景技术
电介质电容器以其超高的功率密度,极其适合应用于功率波动快速且不稳定的领域,其储能方式是将电能以电容器对极板间的富集电荷电势场的形式储存。与传统的燃料电池、锂电池相比,电介质储能电容器的特点是响应速度快、功率密度高、使用寿命长、全固态安全结构、使用温度范围广等,在大功率和脉冲功率器件中有着非常广泛的应用。探索具有高介电常数、高介电击穿场强和低介电损耗的介电材料作为储能电容器用介质材料,是提高储能密度、实现器件小型化的关键。在储能方面,较低的介电损耗、较高的介电常数和击穿场强,使得钛酸锶钡陶瓷在储能领域受到广泛关注。但较低的击穿场强制约了其性能,可以通过复合第二相来实现对钛酸锶钡介质材料的改性。
申请号为201310681668.2的中国专利公开了一种高储能密度钛酸锶钡陶瓷的制备方法,其步骤如下:(1)将原料BaCO3,SrCO3和TiO2按Ba1-xSrxTiO3化学式配料,研磨后烘干,过筛;(2)将步骤(1)制得的粉料于1100~1250℃煅烧1~5小时后,过筛;(3)将步骤(2)制得的粉料装入模具,利用放电等离子烧结***在真空环境中900~1050℃进行烧结,制得陶瓷烧结体;(4)空气气氛下,将所述的陶瓷烧结体于800~1100℃热处理1~5小时,制得所述钛酸锶钡陶瓷。该方法制备的纯Ba0.4Sr0.6TiO3陶瓷最高储能密度可达到1.20J/cm3
发明内容
本发明的目的在于针对现有技术的不足,提供一种高储能密度钛酸锶钡-氧化锌复相陶瓷及其制备方法,制备的复相陶瓷在室温下储能密度可达到1.55J/cm3
本发明的目的是通过以下技术方案来实现的:一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法,包括以下步骤:
(1)将原料BaCO3,SrCO3和TiO2按Ba0.4Sr0.6TiO3化学式配料,研磨至粒径为100nm~500nm后烘干,过筛;
(2)将步骤(1)制得的粉料1150℃煅烧3小时后,过筛,制得Ba0.4Sr0.6TiO3粉料;
(3)将步骤(2)制得的Ba0.4Sr0.6TiO3粉料与ZnO粉末按质量比(100-x):x进行配料,研磨后烘干,过筛,制得陶瓷粉料;
(4)将步骤(3)制得的陶瓷粉料装入模具,利用放电等离子烧结***在真空环境中1000℃进行烧结,制得陶瓷烧结体;
(5)空气气氛下,将步骤(4)制得的陶瓷烧结体1000℃热处理3小时,制得所述高储能密度钛酸锶钡-氧化锌复相陶瓷。
进一步地,步骤(1)、(3)中,研磨的方法为:将原料放入球磨罐,加入氧化锆球和去离子水进行球磨。
进一步地,步骤(3)中,Ba0.4Sr0.6TiO3粉料与氧化锌粉末的质量比(100-x):x,x=0.5~3.0。
进一步地,步骤(3)中,Ba0.4Sr0.6TiO3粉料与氧化锌粉末的质量比(100-x):x,x=0.5、1.0或3.0。
本发明通过采用放电等离子烧结方法,提高复相陶瓷的介电击穿强度,通过添加氧化锌来提高复相陶瓷的介电常数,从而提高复相陶瓷的储能密度。
在制备前,原料需要研磨至一定的细度,研磨时,可将原料放入球磨罐,加入氧化锆球和去离子水中进行球磨。
本发明的有益效果在于:采用本发明的制备方法,将Ba0.4Sr0.6TiO3粉料与氧化锌粉末按质量比99:1配比时制得的复相陶瓷在室温下介电击穿场强达到260kV/cm,而采用放电等离子烧结方法制备的纯Ba0.4Sr0.6TiO3电介质陶瓷的介电击穿场强仅为230kV/cm,介电击穿场强提高了13%;此时,放电等离子烧结温度为1000℃,而采用放电等离子烧结方法制备的纯Ba0.4Sr0.6TiO3电介质陶瓷烧结温度为1050℃,烧结温度降低了4%以上;制得的复相陶瓷在室温下储能密度达到了1.55J/cm3,而采用放电等离子烧结方法制备的纯Ba0.4Sr0.6TiO3电介质陶瓷的储能密度仅为1.28J/cm3左右,储能密度提高了21%以上。本发明制备的高储能密度钛酸锶钡-氧化锌复相陶瓷,可用于高密度储能电容器等元器件,在大功率和脉冲功率领域有着极大的应用价值。
附图说明
图1为钛酸锶钡-氧化锌复相陶瓷样品的XRD衍射图谱;
图2为钛酸锶钡-氧化锌复相陶瓷样品的断面SEM照片,放大倍数为10k:(a)Ba0.4Sr0.6TiO3(对比例1);(b)99.5wt.%Ba0.4Sr0.6TiO3–0.5wt.%氧化锌(实施例1);(c)99wt.%Ba0.4Sr0.6TiO3–1wt.%氧化锌(实施例2);(d)97wt.%Ba0.4Sr0.6TiO3–3wt.%氧化锌(实施例3);
图3为钛酸锶钡-氧化锌复相陶瓷样品在不同频率下的介电常数和介电损耗随温度的变化曲线:(a)、(b)Ba0.4Sr0.6TiO3(对比例1);(c)、(d)99.5wt.%Ba0.4Sr0.6TiO3–0.5wt.%氧化锌(实施例1);(e)、(f)99wt.%Ba0.4Sr0.6TiO3–1wt.%氧化锌(实施例2);(g)(h)97wt.%Ba0.4Sr0.6TiO3–3wt.%氧化锌(实施例3);
图4钛酸锶钡基氧化锌复相陶瓷样品室温60Hz时最高电场强度下的电滞回线:(a)Ba0.4Sr0.6TiO3(对比例1);(b)99.5wt.%Ba0.4Sr0.6TiO3–0.5wt.%氧化锌(实施例1);(c)99wt.%Ba0.4Sr0.6TiO3–1wt.%氧化锌(实施例2);(d)97wt.%Ba0.4Sr0.6TiO3–3wt.%氧化锌(实施例3)。
具体实施方式
下面结合具体实施例进一步阐释本发明。
实施例1
(1)将BaCO3,SrCO3和TiO2原料粉末分别按Ba0.4Sr0.6TiO3化学式称量配料;
(2)将步骤(1)配制好的化学原料放入球磨罐,加入氧化锆球和去离子水中球磨24小时(粒径为100nm~500nm),将球磨后的粉料在干燥箱中烘干后120目过筛。将制得的粉料1150℃煅烧3小时后,过120目筛,制得Ba0.4Sr0.6TiO3粉料;
(3)将步骤(2)制得的Ba0.4Sr0.6TiO3粉料与氧化锌分明按质量比99.5:0.5进行配料,研磨后烘干,120目过筛,制得陶瓷粉料;
(4)将步骤(3)制得的粉末装入直径为10mm的石墨模具,放入放电等离子烧结***在1000℃、30MPa机械压力下烧结5分钟。从室温到900℃的升温速率为100℃/min,从900℃到980℃升温速率为40℃/min,980℃到1000℃升温速率为20℃/min,1000℃保温5min,烧结完成后,卸去压力并随炉冷。
SPS烧结原理:SPS利用直流脉冲电流直接进行通电加压烧结,通过调节直流脉冲电流的功率大小来控制升温速率。整个烧结过程既可在真空环境下进行,也以在保护气氛中进行。脉冲电流直接作用于样品及模具上,快速发热,快速传热,快速升温,大幅缩短样品烧结时间
(5)将步骤(4)制得的陶瓷样品在磨去粘附的石墨纸后在空气中1000℃下热处理3小时。从室温到1000℃的升温速率为5℃/min,1000℃保温3h,处理完成后随炉冷。并在空气气氛下,将其在1000℃下热处理3小时得到具有高储能密度的99.5wt.%Ba0.4Sr0.6TiO3–1.0wt.%氧化锌复相陶瓷。
实施例2
(1)将BaCO3,SrCO3和TiO2原料粉末分别按Ba0.4Sr0.6TiO3化学式称量配料;
(2)将步骤(1)配制好的化学原料放入球磨罐,加入氧化锆球和去离子水中球磨24小时(粒径为100nm~500nm),将球磨后的粉料在干燥箱中烘干后120目过筛。将制得的粉料1150℃煅烧3小时后,过120目筛,制得Ba0.4Sr0.6TiO3粉料;
(3)将步骤(2)制得的Ba0.4Sr0.6TiO3粉料与氧化锌分明按质量比99:1进行配料,研磨后烘干,120目过筛,制得陶瓷粉料;
(4)将步骤(3)制得的粉末装入直径为10mm的石墨模具,放入放电等离子烧结***在1000℃、30MPa机械压力下烧结5分钟。从室温到900℃的升温速率为100℃/min,从900℃到980℃升温速率为40℃/min,980℃到1000℃升温速率为20℃/min,1000℃保温5min,烧结完成后,卸去压力并随炉冷。
(5)将步骤(4)制得的陶瓷样品在磨去粘附的石墨纸后在空气中1000℃下热处理3小时。从室温到1000℃的升温速率为5℃/min,1000℃保温3h,处理完成后随炉冷。并在空气气氛下,将其在1000℃下热处理3小时得到具有高储能密度的99wt.%Ba0.4Sr0.6TiO3–1wt.%氧化锌复相陶瓷。
实施例3
(1)将BaCO3,SrCO3和TiO2原料粉末分别按Ba0.4Sr0.6TiO3化学式称量配料;
(2)将步骤(1)配制好的化学原料放入球磨罐,加入氧化锆球和去离子水中球磨24小时(粒径为100nm~500nm),将球磨后的粉料在干燥箱中烘干后120目过筛。将制得的粉料1150℃煅烧3小时后,过120目筛,制得Ba0.4Sr0.6TiO3粉料;
(3)将步骤(2)制得的Ba0.4Sr0.6TiO3粉料与氧化锌分明按质量比97:3进行配料,研磨后烘干,120目过筛,制得陶瓷粉料;
(4)将步骤(3)制得的粉末装入直径为10mm的石墨模具,放入放电等离子烧结***在1000℃、30MPa机械压力下烧结5分钟。从室温到900℃的升温速率为100℃/min,从900℃到980℃升温速率为40℃/min,980℃到1000℃升温速率为20℃/min,1000℃保温5min,烧结完成后,卸去压力并随炉冷。
(5)将步骤(4)制得的陶瓷样品在磨去粘附的石墨纸后在空气中1000℃下热处理3小时。从室温到1000℃的升温速率为5℃/min,1000℃保温3h,处理完成后随炉冷。并在空气气氛下,将其在1000℃下热处理3小时得到具有高储能密度的97wt.%Ba0.4Sr0.6TiO3–3wt.%氧化锌复相陶瓷。
对比例1
提供纯Ba0.4Sr0.6TiO3陶瓷的放电等离子烧结制备过程:
(1)将BaCO3,SrCO3和TiO2原料粉末分别按Ba0.4Sr0.6TiO3化学式称量配料;
(2)将步骤(1)配制好的化学原料放入球磨罐,加入氧化锆球和去离子水球磨24小时(粒径为100nm~500nm),将球磨后的粉料在干燥箱中烘干后120目过筛。随后在1150℃煅烧3小时后再次120目过筛;
(3)将步骤(2)制得的粉末装入直径为10mm的石墨模具,放入放电等离子烧结***在1050℃、30MPa机械压力下烧结5分钟。从室温到950℃的升温速率为100℃/min,从950℃到1030℃升温速率为40℃/min,1030℃到1050℃升温速率为20℃/min,1050℃保温5min,烧结完成后,卸去压力并随炉冷。
(4)将步骤(3)制得的陶瓷样品在磨去粘附的石墨纸后在空气中1000℃下热处理3小时。从室温到1000℃的升温速率为5℃/min,1000℃保温2h,处理完成后随炉冷,得到Ba0.4Sr0.6TiO3陶瓷。
将实施例1~3和对比例1制备得到的圆柱形电介质陶瓷样品用砂纸磨至0.20mm厚度,表面喷上金电极后,利用铁电分析仪测量其60Hz频率下的电滞回线,利用积分法计算其储能密度。
表1
表1示出了利用本发明的制备方法制得的(100-x)wt.%Ba0.4Sr0.6TiO3–xwt.%氧化锌(x=0.5,1,3)复相陶瓷和利用放电等离子烧结方法制备的Ba0.4Sr0.6TiO3陶瓷在室温、60Hz频率下的介电击穿强度和储能密度,由表1可知,本发明制得的高储能密度钛酸锶钡-氧化锌复相陶瓷在室温下最高储能密度为1.55J/cm3,而利用放电等离子烧结方法制备的纯Ba0.4Sr0.6TiO3陶瓷的室温下储能密度仅为1.28J/cm3
由图2,3,4可证明,添加氧化锌相后,复合陶瓷的击穿场强、储能密度显著提高。相比于纯钛酸锶钡陶瓷,添加了质量分数为0.5%、1.0%、3%的氧化锌相后,击穿场强从230kV/cm增大到240kV/cm、260kV/cm、260kV/cm。因此其储能密度也相应提高,在添加量为1.0%时达到最高为1.55J/cm3,较纯钛酸锶钡陶瓷提高了21%。

Claims (4)

1.一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法,其特征在于,包括以下步骤:
(1)将原料BaCO3,SrCO3和TiO2按Ba0.4Sr0.6TiO3化学式配料,研磨至粒径为100nm~500nm后烘干,过筛;
(2)将步骤(1)制得的粉料1150℃煅烧3小时后,过筛,制得Ba0.4Sr0.6TiO3粉料;
(3)将步骤(2)制得的Ba0.4Sr0.6TiO3粉料与ZnO粉末按质量比(100-x):x进行配料,研磨后烘干,过筛,制得陶瓷粉料;
(4)将步骤(3)制得的陶瓷粉料装入模具,利用放电等离子烧结***在真空环境中1000℃进行烧结,制得陶瓷烧结体;
(5)空气气氛下,将步骤(4)制得的陶瓷烧结体1000℃热处理3小时,制得所述高储能密度钛酸锶钡-氧化锌复相陶瓷。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)、(3)中,研磨的方法为:将原料放入球磨罐,加入氧化锆球和去离子水进行球磨。
3.如权利要求1所述的制备方法,其特征在于,步骤(3)中,Ba0.4Sr0.6TiO3粉料与ZnO粉末的质量比(100-x):x,x=0.5~3.0。
4.如权利要求3所述的制备方法,其特征在于,步骤(3)中,Ba0.4Sr0.6TiO3粉料与ZnO粉末的质量比(100-x):x,x=0.5、1.0或3.0。
CN201511015937.7A 2015-12-29 2015-12-29 一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法 Pending CN105622092A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511015937.7A CN105622092A (zh) 2015-12-29 2015-12-29 一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511015937.7A CN105622092A (zh) 2015-12-29 2015-12-29 一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN105622092A true CN105622092A (zh) 2016-06-01

Family

ID=56037489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511015937.7A Pending CN105622092A (zh) 2015-12-29 2015-12-29 一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN105622092A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542821A (zh) * 2016-10-18 2017-03-29 陕西科技大学 一种Bi2O3‑B2O3‑ZnO玻璃添加Ba0.4Sr0.6TiO3基储能陶瓷及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739283A (zh) * 2013-12-13 2014-04-23 浙江大学 一种钛酸锶钡陶瓷的制备方法
CN104725036A (zh) * 2015-02-10 2015-06-24 景德镇陶瓷学院 一种高温低损耗钛酸锶钡基储能陶瓷及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739283A (zh) * 2013-12-13 2014-04-23 浙江大学 一种钛酸锶钡陶瓷的制备方法
CN104725036A (zh) * 2015-02-10 2015-06-24 景德镇陶瓷学院 一种高温低损耗钛酸锶钡基储能陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
董桂霞 等: ""低介电损耗高耐压强度BST 介电陶瓷的研究"", 《稀有金属》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106542821A (zh) * 2016-10-18 2017-03-29 陕西科技大学 一种Bi2O3‑B2O3‑ZnO玻璃添加Ba0.4Sr0.6TiO3基储能陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN109133915B (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN103922734B (zh) 一种宽温稳定储能介质陶瓷及其制备方法
CN109942292B (zh) 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN103739283A (zh) 一种钛酸锶钡陶瓷的制备方法
CN106588006B (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
Wang et al. Dielectric and tunable properties of Zr doped BST ceramics prepared by spark plasma sintering
Vuong et al. The sintering behavior and physical properties of Li2CO3-doped Bi0. 5 (Na0. 8K0. 2) 0.5 TiO3 lead-free ceramics
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN105753471A (zh) 一种高电卡效应铌酸锶钡陶瓷的制备方法
CN108863348A (zh) 一种超宽温度稳定性的介电陶瓷材料及其制备方法
CN102976748A (zh) 高致密钛酸锶钡陶瓷及其制备方法
CN105198409B (zh) 一种高储能密度钛酸锶钡基玻璃复相陶瓷的制备方法
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
Pal et al. Crystal structure, microstructure, and ultra-high energy storage properties of lead-free (x) Bi (Mg0. 5Ti0. 5O3-(1-x)[0.50 Ba (Zr0. 2Ti0. 8) O3-0.50 (Ba0. 7Ca0. 3) TiO3] ternary ceramics
CN113213923A (zh) 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
CN105439560A (zh) 一种高储能密度陶瓷材料及制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN105622092A (zh) 一种高储能密度钛酸锶钡-氧化锌复相陶瓷的制备方法
CN111072065A (zh) 一种[111]取向的钛酸锶模板材料及其制备方法
CN105198410A (zh) 一种核壳结构高储能密度电介质陶瓷的制备方法
CN112142466A (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN105272217A (zh) 一种高储能密度钛酸锶钡基氧化铝复相陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160601

RJ01 Rejection of invention patent application after publication