CN105603395B - 一种CaCu3Ti4O12薄膜的制备方法 - Google Patents

一种CaCu3Ti4O12薄膜的制备方法 Download PDF

Info

Publication number
CN105603395B
CN105603395B CN201610031323.6A CN201610031323A CN105603395B CN 105603395 B CN105603395 B CN 105603395B CN 201610031323 A CN201610031323 A CN 201610031323A CN 105603395 B CN105603395 B CN 105603395B
Authority
CN
China
Prior art keywords
film
cacu
substrate
calcic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610031323.6A
Other languages
English (en)
Other versions
CN105603395A (zh
Inventor
林媛
姚光
高敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610031323.6A priority Critical patent/CN105603395B/zh
Publication of CN105603395A publication Critical patent/CN105603395A/zh
Application granted granted Critical
Publication of CN105603395B publication Critical patent/CN105603395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种CaCu3Ti4O12薄膜的制备方法,属于功能材料技术领域。包括以下步骤:1)通过高分子辅助沉积法配制含钙铜钛的前驱液;2)将斜切的LaAlO3基片在800~1000℃下热处理1~6小时,得到表面为台阶结构的基片;3)采用旋涂法将前驱液均匀涂覆于步骤2)处理后的基片表面,烘干,得到含钙铜钛的薄膜样品;4)对上步得到的含钙铜钛的薄膜样品热处理,随炉冷却至室温,得到CaCu3Ti4O12薄膜。本发明通过不同斜切角度的斜切基片调控CCTO薄膜的应力,使得制得的薄膜的介电损耗明显降低;且方法简单,成本低廉,具有良好的工艺可控性和重复性,有利于大规模批量化生产。

Description

一种CaCu3Ti4O12薄膜的制备方法
技术领域
本发明属于功能材料技术领域,具体涉及一种通过调控LaAlO3斜切基片应力来制备低介电损耗CaCu3Ti4O12薄膜的方法。
背景技术
高介电常数材料(ε﹥1000)的开发和研究对实现大容量电容器的应用和电子元件的小型化、微型化具有重要的意义。迄今为止,一些高介电常数材料已经在实际器件中得到应用。2000年人们发现CaCu3Ti4O12(CCTO)材料在1kHz 交流电场作用下介电常数可达到12000,且在一定的温度(100K~600K)和频域 (0Hz~1MHz)范围内介电常数基本保持不变。CCTO的高介电特性一经发现,立即引起了人们的广泛关注,但是CCTO在具有高介电常数的同时也具有较大的介电损耗,这也限制了CCTO的广泛应用。CCTO多晶陶瓷样品在室温下损耗为0.067(100kHz)、0.1(1kHz),CCTO薄膜室温下损耗为0.2(10~100kHz),单晶样品的损耗则更高。然而,在实际应用中,电介质材料的损耗一般需要控制在0.05以下,因此在保持高介电常数的同时,如何降低CCTO材料的介电损耗对于实际应用有着重大的意义。
目前,制备CaCu3Ti4O12(CCTO)薄膜常见的方法有物理气相沉积(如射频磁控溅射、激光脉冲沉积和分子束外延等)、化学气相沉积、溶胶凝胶法和高分子辅助沉积法等。高分子辅助沉积法首先用水溶性的高分子将金属离子绑定形成均匀稳定的前驱物溶液,然后将前驱物溶液均匀涂覆到基片上,最后通过热处理使高分子与金属离子之间的键合断开,高分子分解而形成固体薄膜。相较于制备 CCTO薄膜的物理气相沉积和化学气相沉积方法而言,高分子辅助沉积法对真空度要求不高,且具有操作简便、设备简单、低成本等优点。相较于溶胶凝胶方法,高分子辅助沉积法避免了前驱物的水解和缩合反应,因而更容易获得精确化学计量比的稳定前驱液。
目前,降低CaCu3Ti4O12(CCTO)介电损耗的方法主要为掺杂改性,掺杂主要分为A位掺杂(掺杂离子取代Cu2+和Ca2+)和B位掺杂(掺杂离子取代Ti4+)。但掺杂后的效果并不理想,例如,Kobayashi(Kobayashi W,Terasaki I.Unusual impurity effects on thedielectric properties of CaCu3-xMnxTi4O12[J].Physica B: Condensed Matter,2003,329:771-772.)等用Mn离子取代Cu离子对CCTO进行了A位掺杂,材料的介电损耗基本没变而材料的介电常数却大幅降低;Bueno (Ribeiro W C,Araujo R G C,Bueno P R.Thedielectric suppress and the control of semiconductor non-Ohmic feature ofCaCu3Ti4O12by means of tin doping[J]. Applied Physics Letters,2011:3.)等用Sn进行B位掺杂,介电损耗降低的同时,介电常数也明显下降。另外,Grubbs(Grubbs R K,Venturini E L,Clem P G,et al. Dielectric and magnetic properties of Fe-andNb-doped CaCu3Ti4O12[J].Physical Review B,2005,72(10):104111.)等用Nb和Fe离子取代Ti离子对CCTO进行B 位掺杂,测试结果表明,介电常数和损耗均下降且受温度和频率的调控。掺杂改性对工艺可控性要求较高,工艺条件稍微改变可能会影响实验的重复性。因此,急需寻找一种操作简单、低成本的制备低介电损耗CCTO薄膜的制备方法。
发明内容
本发明提供了一种低介电损耗CaCu3Ti4O12(CCTO)薄膜的制备方法,该方法操作简单、成本低,制备出的CaCu3Ti4O12薄膜介电损耗有大幅度的降低。
本发明的技术方案如下:
一种CaCu3Ti4O12薄膜的制备方法,包括以下步骤:
步骤1、通过高分子辅助沉积法配制CaCu3Ti4O12的前驱液;
步骤2、LaAlO3斜切基片的热处理:将LaAlO3斜切基片放入管式炉中,升温至800~1000℃并保持1~6小时,随炉降温至室温,即得到表面为台阶结构的基片;
步骤3、采用旋涂的方法将步骤1配制的前驱液均匀涂覆于步骤2处理后得到的表面为台阶结构的基片表面,烘干,得到含钙铜钛的薄膜样品;
步骤4、对步骤3得到的含钙铜钛的薄膜样品进行热处理,然后随炉自然冷却至室温,得到本发明所述的CaCu3Ti4O12薄膜。
进一步地,步骤2所述LaAlO3斜切基片的斜切角度为1.0°、2.5°、5.0°。
进一步地,步骤1所述高分子辅助沉积法配制CaCu3Ti4O12的前驱液的具体过程为:分别将含钙盐、铜盐、钛盐的混合液与水溶性高分子混合,得到含钙络合物混合液、含铜络合物混合液、含钛络合物混合液,然后按照含钙络合物、含铜络合物、含钛络合物的摩尔比为1:3:4的比例,配制得到含钙铜钛的混合液,作为制备CaCu3Ti4O12薄膜的前驱液。所述水溶性高分子为带有氨基或者亚氨基的水溶性聚合物等。所述含钙络合物混合液的浓度为0.0002~0.02mol/L。
进一步地,步骤4所述热处理的气体气氛为氧化气氛,具体为以体积百分比计纯度不低于99.99%的纯氧,热处理温度为800~1000℃,热处理时间为1~6小时。
本发明的有益效果为:本发明采用高分子辅助沉积法配制摩尔比为1:3:4的含钙络合物、含铜络合物、含钛络合物的混合液作为前驱液,然后通过在LaAlO3斜切基片上旋涂、热处理最终成膜。本发明通过不同斜切角度的斜切基片调控 CaCu3Ti4O12薄膜的应力,使得制得的薄膜的介电损耗明显降低;且方法简单,成本低廉,具有良好的工艺可控性和重复性,有利于大规模批量化生产。
附图说明
图1为本发明的流程示意图。
图2为实施例CaCu3Ti4O12(CCTO)薄膜的X射线衍射谱;(a)CCTO(004) 衍射峰扫描图谱;(b)CCTO(004)衍射峰小范围精细扫描图谱;(c)CCTO(022) 衍射峰扫描图谱;(d)CCTO(202)衍射峰扫描图谱。
图3为实施例CaCu3Ti4O12薄膜的晶格常数的计算结果;(a)沿a-axis ([100])、b-axis([010])和c-axis([001])方向的晶格常数;(b)面外晶格常数 (c-axis)和平均面内晶格常数(a×b)1/2
图4为实施例CaCu3Ti4O12薄膜的X射线φ扫描衍射谱,FWHM为衍射峰的平均半高宽。
图5为实施例制备的CaCu3Ti4O12薄膜的介电常数与频率的关系曲线。
图6为实施例制备的CaCu3Ti4O12薄膜的介电损耗与频率的关系曲线。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
一种CaCu3Ti4O12薄膜的制备方法,包括以下步骤:
步骤1、通过高分子辅助沉积法配制CaCu3Ti4O12的前驱液:分别将含钙盐、铜盐、钛盐的混合液与水溶性高分子混合,得到含钙络合物混合液、含铜络合物混合液、含钛络合物混合液,然后按照含钙络合物、含铜络合物、含钛络合物的摩尔比为1:3:4的比例均匀混合,配制得到含钙铜钛的混合液,作为制备 CaCu3Ti4O12薄膜的前驱液;
步骤2、LaAlO3斜切基片的热处理:将LaAlO3斜切基片放入管式炉中,升温至800~1000℃并保持1~6小时,随炉降温至室温,即得到表面为台阶结构的基片;
步骤3、采用旋涂的方法将步骤1配制的前驱液均匀涂覆于步骤2处理后得到的表面为台阶结构的基片表面,烘干,得到含钙铜钛的薄膜样品;
步骤4、将步骤3得到的含钙铜钛的薄膜样品在氧化气氛中热处理,热处理温度为800~1000℃,热处理时间为1~6小时,然后随炉自然冷却至室温,得到本发明所述的CaCu3Ti4O12薄膜。
进一步地,步骤2所述LaAlO3斜切基片的斜切角度为1.0°、2.5°、5.0°。
进一步地,步骤1所述水溶性高分子为带有氨基或者亚氨基的水溶性聚合物等。所述含钙络合物混合液的浓度为0.0002~0.02mol/L。
进一步地,步骤4所述氧化气氛为以体积百分比计纯度不低于99.99%的纯氧。
实施例1
一种CaCu3Ti4O12薄膜的制备方法,包括以下步骤:
步骤1、配制含钙铜钛的前驱物溶液,具体过程为:
(1)常温下,在40mL去离子水中加入1.68g硝酸钙,搅拌混合均匀,然后加入3.0g乙二胺四乙酸和3g水溶性聚合物PEI(聚乙烯亚胺),搅拌、超声至溶液均一,得到混合液A;采用美国Millipore公司生产的Amicon 8050型超滤装置,滤去混合液A中游离的离子,并蒸发浓缩得到浓度为291.6mmol/L的含钙混合液;
(2)常温下,在40mL去离子水中加入1.93g硝酸铜,搅拌混合均匀,然后加入3.0g乙二胺四乙酸和3g水溶性聚合物PEI(聚乙烯亚胺),搅拌、超声至溶液均一,得到混合液B;采用美国Millipore公司生产的Amicon 8050型超滤装置,滤去混合液B中游离的离子,并蒸发浓缩得到浓度为395.1mmol/L的含铜混合液;
(3)常温下,在40mL去离子水中加入2mL四氯化钛,搅拌混合均匀,然后加入2.0g乙二胺四乙酸和3g水溶性聚合物PEI(聚乙烯亚胺),搅拌、超声至溶液均一,得到混合液C;采用美国Millipore公司生产的Amicon 8050型超滤装置,滤去混合液C中游离的离子,并蒸发浓缩得到浓度为311.8mmol/L 的含钛混合液;
(4)将上述配制的含钙混合液、含铜混合液、含钛混合液按照Ca:Cu:Ti= 1:3:4的摩尔比混合均匀,得到含钙铜钛的前驱物溶液;
步骤2、LaAlO3斜切基片的热处理:取斜切角度为1.0°的LaAlO3(001)基片,依次分别在丙酮、乙醇和去离子水中超声清洗15分钟,氮气吹干;将清洁干净的基片,放入陶瓷舟并推送到管式炉的恒温区,由室温经过40分钟升温到 900℃,保温2小时,然后管式炉自然降温至室温,取出,即得到表面为台阶结构的基片;
步骤3、取步骤1配制的含钙铜钛的前驱物溶液,在步骤2处理得到的表面为台阶结构的基片表面采用旋涂的方法涂覆含钙铜钛的前驱物溶液,得到均匀分布的含钙铜钛前驱物的薄膜样品,然后将薄膜样品放入恒温箱中80℃保温30分钟,取出待用;其中,旋涂的主要过程为:首先经过低速旋转,转速为800r/min,时间为6s;然后进入高速旋转,转速为3000r/min,时间为30s;
步骤4、将步骤3烘干后的薄膜样品放入陶瓷舟内,并置于高温管式炉(科晶GSL-1200X)的恒温区内,进行热处理,热处理温度为900℃,时间为120min,热处理过程中气体气氛为以体积百分比计纯度为99.999%的纯氧;具体热处理过程为:以1℃/min的升温速率由室温升温到510℃,在510℃保温120min;然后以10℃/min的升温速率由510℃升温至900℃,在900℃保温120min;最后以 10℃/min的降温速率由900℃降至室温,取出样品,即得到本发明所述 CaCu3Ti4O12薄膜。
实施例2
本实施例与实施例1的区别为:步骤2中采用的LaAlO3(001)基片的斜切角度为2.5°,其余步骤与实施例1相同。
实施例3
本实施例与实施例1的区别为:步骤2中采用的LaAlO3(001)基片的斜切角度为5°,其余步骤与实施例1相同。
对比例
一种CaCu3Ti4O12薄膜的制备方法,包括以下步骤:
步骤1、配制含钙铜钛的前驱物溶液,具体过程为:
(1)常温下,在40mL去离子水中加入1.68g硝酸钙,搅拌混合均匀,然后加入3.0g乙二胺四乙酸和3g水溶性聚合物PEI(聚乙烯亚胺),搅拌、超声至溶液均一,得到混合液A;采用美国Millipore公司生产的Amicon 8050型超滤装置,滤去混合液A中游离的离子,并蒸发浓缩得到浓度为291.6mmol/L的含钙混合液;
(2)常温下,在40mL去离子水中加入1.93g硝酸铜,搅拌混合均匀,然后加入3.0g乙二胺四乙酸和3g水溶性聚合物PEI(聚乙烯亚胺),搅拌、超声至溶液均一,得到混合液B;采用美国Millipore公司生产的Amicon 8050型超滤装置,滤去混合液B中游离的离子,并蒸发浓缩得到浓度为395.1mmol/L的含铜混合液;
(3)常温下,在40mL去离子水中加入2mL四氯化钛,搅拌混合均匀,然后加入2.0g乙二胺四乙酸和3g水溶性聚合物PEI(聚乙烯亚胺),搅拌、超声至溶液均一,得到混合液C;采用美国Millipore公司生产的Amicon 8050型超滤装置,滤去混合液C中游离的离子,并蒸发浓缩得到浓度为311.8mmol/L 的含钛混合液;
(4)将上述配制的含钙混合液、含铜混合液、含钛混合液按照Ca:Cu:Ti= 1:3:4的摩尔比混合均匀,得到含钙铜钛的前驱物溶液;
步骤2、LaAlO3基片的热处理:取斜切角度为0°的LaAlO3(001)基片,依次分别在丙酮、乙醇和去离子水中超声清洗15分钟,氮气吹干;将清洁干净的基片,放入陶瓷舟并推送到管式炉的恒温区,由室温经过40分钟升温到900℃,保温2小时,然后管式炉自然降温至室温,取出;
步骤3、取步骤1配制的含钙铜钛的前驱物溶液,在步骤2处理得到的基片表面采用旋涂的方法涂覆含钙铜钛的前驱物溶液,得到均匀分布的含钙铜钛前驱物的薄膜样品,然后将薄膜样品放入恒温箱中80℃保温30分钟,取出待用;其中,旋涂的主要过程为:首先经过低速旋转,转速为800r/min,时间为6s;然后进入高速旋转,转速为3000r/min,时间为30s;
步骤4、将步骤3烘干后的薄膜样品放入陶瓷舟内,并置于高温管式炉(科晶GSL-1200X)的恒温区内,进行热处理,热处理温度为900℃,时间为120min,热处理过程中气体气氛为以体积百分比计纯度为99.999%的纯氧;具体热处理过程为:以1℃/min的升温速率由室温升温到510℃,在510℃保温120min;然后以10℃/min的升温速率由510℃升温至900℃,在900℃保温120min;最后以 10℃/min的降温速率由900℃降至室温,取出样品,得到CaCu3Ti4O12薄膜。
下面对实施例1、2、3及对比例得到的CCTO薄膜的性能进行分析;
采用XRD对实施例1、2、3及对比例中在单晶基片LaAlO3(001)基片上生长的CCTO薄膜进行θ-2θ扫描,结果如图2所示;通过XRD的θ-2θ扫描对 CaCu3Ti4O12/LaAlO3薄膜的结构与成分进行分析,可计算面内和面外晶格常数,结果如图3所示;通过XRD的φ扫描对CaCu3Ti4O12薄膜和LaAlO3基片的外延关系进行表征,结果如图4所示;通过Agilent 4294A阻抗分析仪对CaCu3Ti4O12薄膜的介电性能进行测试分析,结果如图5和图6所示。
如图2所示,通过对CaCu3Ti4O12(CCTO)(004)衍射峰扫描、CCTO(022)衍射峰扫描、CCTO(202)衍射峰扫描,表明在不同斜切角度(0°、1.0°、2.5°和5.0°) 的斜切基片上均制备得到了CaCu3Ti4O12薄膜。根据图2的测试结果,可计算得到薄膜沿a-axis([100])、b-axis([010])和c-axis([001])方向的晶格常数(图3(a)所示),以及面内晶格常数的平均值(图3(b)所示),表明薄膜沿a-axis、b-axis 和c-axis方向具有不同的的晶格常数,当斜切角度为2.5°时,面内面外晶格常数变化最大,且面内晶格常数的平均值在斜切角度为2.5°时达到最小值。如图 4所示,外延CCTO薄膜的φ扫描谱线中的半高宽不同,衍射峰的半高宽能表明薄膜中的位错密度,半高宽越小,位错密度越小,进而可以减小介电材料的损耗。如图5所示,薄膜介电常数的变化趋势和面内平均晶格常数变化趋势相同,这是由于不同角度的斜切基片具有不同的表面台阶尺寸,CCTO薄膜和台阶尺寸的适配会引入拉伸或压缩应力,导致CCTO薄膜的晶粒尺寸增大或减小。如图6所示,实施例1得到的薄膜在10KHz~100KHz频率范围内的介电损耗为 0.0013~0.005,实施例2得到的薄膜在10KHz~100KHz频率范围内的介电损耗为0.0006~0.005,实施例3得到的薄膜在10KHz~100KHz频率范围内的介电损耗为0.003~0.016,对比例得到的薄膜在10KHz~100KHz频率范围内的介电损耗为0.081~0.02;生长于1.0°和5.0°斜切基片上的薄膜与对比例生长于普通基片上的薄膜相比,介电损耗明显减小,且由于CCTO在压缩应力下介电损耗会明显降低,生长于2.5°斜切基片上的薄膜面内所受的压应力最大,因而具有最低的介电损耗。本发明采用不同角度的斜切基片,能有效降低CCTO薄膜中的位错密度,从而降低介电损耗,能在保证CCTO薄膜高介电常数的前提下,有效降低薄膜的介电损耗。

Claims (4)

1.一种CaCu3Ti4O12薄膜的制备方法,包括以下步骤:
步骤1、配制CaCu3Ti4O12的前驱液;
步骤2、LaAlO3斜切基片的热处理:将LaAlO3斜切基片放入管式炉中,升温至800~1000℃并保持1~6小时,随炉降温至室温,即得到表面为台阶结构的基片;
步骤3、采用旋涂的方法将步骤1配制的前驱液均匀涂覆于步骤2处理后得到的表面为台阶结构的基片表面,烘干,得到含钙铜钛的薄膜样品;
步骤4、对步骤3得到的含钙铜钛的薄膜样品进行热处理,然后随炉自然冷却至室温,得到所述的CaCu3Ti4O12薄膜。
2.根据权利要求1所述的CaCu3Ti4O12薄膜的制备方法,其特征在于,步骤2所述LaAlO3斜切基片的斜切角度为1.0°、2.5°或5.0°。
3.根据权利要求1所述的CaCu3Ti4O12薄膜的制备方法,其特征在于,步骤1所述配制CaCu3Ti4O12的前驱液的具体过程为:分别将含钙盐、铜盐、钛盐的混合液与水溶性高分子混合,得到含钙络合物混合液、含铜络合物混合液、含钛络合物混合液,然后按照含钙络合物、含铜络合物、含钛络合物的摩尔比为1:3:4的比例,配制得到含钙铜钛的混合液,作为制备CaCu3Ti4O12薄膜的前驱液。
4.根据权利要求1所述的CaCu3Ti4O12薄膜的制备方法,其特征在于,步骤4所述热处理的气体气氛为氧化气氛,热处理温度为800~1000℃,热处理时间为1~6小时。
CN201610031323.6A 2016-01-18 2016-01-18 一种CaCu3Ti4O12薄膜的制备方法 Active CN105603395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610031323.6A CN105603395B (zh) 2016-01-18 2016-01-18 一种CaCu3Ti4O12薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610031323.6A CN105603395B (zh) 2016-01-18 2016-01-18 一种CaCu3Ti4O12薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105603395A CN105603395A (zh) 2016-05-25
CN105603395B true CN105603395B (zh) 2018-07-27

Family

ID=55983723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610031323.6A Active CN105603395B (zh) 2016-01-18 2016-01-18 一种CaCu3Ti4O12薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105603395B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794516A (zh) * 2017-10-27 2018-03-13 周燕红 一种高介电常数薄膜的制备方法
CN109721353A (zh) * 2019-03-15 2019-05-07 上海朗研光电科技有限公司 一种巨介电常数ccto基薄膜材料的制备方法
CN113121221B (zh) * 2021-04-22 2022-07-19 郑州轻工业大学 一种高介电性能钛酸铜钙外延薄膜的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695872A (zh) * 2013-12-23 2014-04-02 电子科技大学 一种低介电损耗CaCu3Ti4O12薄膜的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695872A (zh) * 2013-12-23 2014-04-02 电子科技大学 一种低介电损耗CaCu3Ti4O12薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
斜切基片上台阶流动生长的YBCO薄膜及BST/YBCO双层薄膜;王天生等;《稀有金属材料与工程》;20060430;第35卷(第4期);542-545 *

Also Published As

Publication number Publication date
CN105603395A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
Chien et al. Electrical characterization of BaTiO3 heteroepitaxial thin films by hydrothermal synthesis
CN105603395B (zh) 一种CaCu3Ti4O12薄膜的制备方法
CN106012014A (zh) 二氧化钒薄膜生长方法
CN103695872A (zh) 一种低介电损耗CaCu3Ti4O12薄膜的制备方法
Hayashi et al. Preparation and Properties of Ferroelectric BaTiO Thin Films by Sol-Gel Process
CN108892503B (zh) 一种高电卡效应薄膜材料及其制备方法
CN113121221B (zh) 一种高介电性能钛酸铜钙外延薄膜的制备方法
Wang et al. Properties of highly (100) oriented Ba 0.9 Sr 0.1 TiO 3/LaNiO 3 heterostructures prepared by chemical solution routes
CN103805969B (zh) 一种掺锆的CaCu3Ti4O12薄膜的制备方法
Li et al. Preparation of single-crystalline BaTi5O11 nanocrystals by hydrothermal method
CN105200404A (zh) 外延生长的具有垂直相界的铌酸钾钠-锆酸钡-钛酸铋钠无铅压电薄膜的制备方法
Wang et al. The influence of substrate temperature and annealing on phase formation and crystalline properties of bismuth titanate film by APMOCVD
CN114411124B (zh) 一种化学液相沉积法制备氧化铪薄膜的方法
CN102888586A (zh) 一种钛酸锶铅薄膜的制备方法及制备的钛酸锶铅薄膜
Arakawa et al. Synthesis of lanthanum lithium tantalate powders and thin films by the sol–gel method
Rousseau et al. Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0. 6Nb0. 4O3 potassium tantalate niobate ferroelectric thin films
Kim et al. Preparation of PbTiO 3 thin films using an alkoxide-alkanolamine sol-gel system
Lane et al. The metal–organic chemical vapor deposition of lanthanum nickelate electrodes for use in ferroelectric devices
Polli et al. Processing magnetoresistive thin films via chemical solution deposition
Kim et al. Dense and smooth epitaxial BaTiO 3 thin films by the dipping-pyrolysis process
CN109338321A (zh) 一种异质结薄膜的制备方法
CN113122819B (zh) 一种钽掺杂大面积二维二硫化铌材料的制备方法
Sun et al. The influence of Mg doping on the dielectric and tunable properties of (Ba0. 6Sr0. 4) 0.925 K0. 075TiO3 thin films fabricated by sol–gel method
CN117945459A (zh) 铌酸铋锌复合溶胶及其制备方法、铌酸铋锌复合薄膜及其制备方法
CN114182211B (zh) 一种带有底电极的超四方相铁酸铋薄膜材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant