CN105602650B - 一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用 - Google Patents

一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用 Download PDF

Info

Publication number
CN105602650B
CN105602650B CN201510961886.0A CN201510961886A CN105602650B CN 105602650 B CN105602650 B CN 105602650B CN 201510961886 A CN201510961886 A CN 201510961886A CN 105602650 B CN105602650 B CN 105602650B
Authority
CN
China
Prior art keywords
preparation
mwcnt
nanometer additive
peho
walled carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510961886.0A
Other languages
English (en)
Other versions
CN105602650A (zh
Inventor
刘维民
王晓波
吴新虎
刘伟生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201510961886.0A priority Critical patent/CN105602650B/zh
Publication of CN105602650A publication Critical patent/CN105602650A/zh
Application granted granted Critical
Publication of CN105602650B publication Critical patent/CN105602650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了一种基于碳纳米管修饰的纳米添加剂,该纳米添加剂为多壁碳纳米管‑聚合物磷酸酯。本发明还公开了该纳米添加剂的制备方法及其在聚醚中的应用。本发明所述纳米添加剂能在聚醚中形成稳定的分散体系,具有很好的热稳定性,在高温150 oC表现出优异的减摩抗磨特性。

Description

一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用
技术领域
本发明涉及一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用。
背景技术
随着涡轮发动机、汽车工业、农用设备以及微电子机械工业设备等的快速发展,对于在高温环境下能够有效使用的润滑剂的需求也在逐步增加,并且这种高温环境也导致了基于矿物油的润滑剂不能够长时间承受在这种工况下使用。为了解决这些问题,许多高效的合成润滑剂如聚α烯烃(PAO)和聚醚(PAG)等被开发出来以满足对高温环境的需求。另外,能够用于高温润滑剂的减摩抗磨添加剂也很少,这在很大程度上限制了高温润滑剂的应用。
之前的研究表明通过在润滑剂中添加纳米材料(诸如碳纳米管、石墨烯、富勒烯和石墨纳米片)可以改善润滑剂的摩擦学性能。这是一个快速发展的新兴领域,因为纳米材料极小的尺寸以及很大的比表面积,使得纳米材料不同于传统的润滑材料。另外,为了制备出能够多分散、长时间稳定存在于不同溶剂或油基润滑剂中的纳米材料,已经有好几种方法被用来将聚合物通过共价键连接到纳米材料中。在这些方法中,原子转移自由基聚合(ATRP)是采用最多的一种方法。例如,裴小维等使用这种方法将聚合物离子液体嫁接到碳纳米管上(裴小维等,J. Polym. Sci., Part A, Polym. Chem. 2008, 46, 7225)。摩擦学测试结果表明这种纳米材料能够在一种离子液体中稳定分散,并且能够显著改善这种离子液体的摩擦学性能。除了ATRP外,Kerscher 等(Benjamin Kerscher, et. al.Macromolecules 2013, 46, 4395)通过开环聚合作用以及链终端修饰的方法将树状离子液体聚合物嫁接到石墨烯上。这种树状功能化的石墨烯离子液体纳米薄片能够很容易的在水中分散并且能稳定的分散好几个星期。
对碳纳米管进行修饰并将其用作润滑添加剂的研究已经有很多报道。然而,几乎没有报道涉及到将聚合物磷酸酯(PPEs)通过共价键连接到碳纳米材料上,并将这种修饰后的碳纳米材料用作高温润滑油添加剂。我们之前的工作表明磷酸酯在高温情况下可以在很多润滑剂油脂中表现出优异的减摩抗磨特性(吴新虎等,RSC Adv. 2014, 4, 6074;RSCAdv., 2014, 4, 54760; Ind. Eng. Chem. Res. 2014, 53, 5660),因此将树状聚合物磷酸酯(PPEs)通过共价键结合到碳纳米管(CNT)上也许会很有意义。通过将PPEs与CNT键合,我们可以设计出的CNT-PPEs纳米材料应该会具有良好的导电性能、突出的热稳定性和机械稳定性、好的摩擦学特性以及在润滑油中能够稳定分散的特性。
发明内容
本发明的目的在于提供一种可以在高温环境下使用的基于碳纳米管修饰的纳米添加剂及其制备方法和应用,该纳米添加剂通过共价键将聚合物磷酸酯键合到碳纳米管上,结合后的纳米材料在润滑油中能够大量分散,并且能够稳定分散好几个星期,另外在高温下能够显著改善润滑油的减摩抗磨性能。
基于碳纳米管修饰的纳米添加剂,其特征在于该纳米添加剂为多壁碳纳米管-聚合物磷酸酯(简称MWCNT-PPEs),其具体结构式如式I所示。
如上所述纳米添加剂的制备方法,其特征在于该制备方法包括以下步骤:
1)羟基化多壁碳纳米管-聚3-乙基-3-羟甲基氧杂环丁烷(简称MWCNT-PEHO)的制备
将羟基化多壁碳纳米管(简称MWCNT-OH)在氩气保护下加入CH2Cl2 和三氟化硼***(BF3·OEt2)中,超声处理15~30 min,然后缓慢滴加3-乙基-3-羟甲基氧杂环丁烷(EHO),在氩气保护下室温搅拌反应40~50 h,反应结束后用乙醇淬灭,洗涤,干燥即得MWCNT-PEHO;
2)多壁碳纳米管-聚合物磷酸酯的制备
在氩气保护下将MWCNT-PEHO、氯化磷酸二苯酯以及路易斯酸催化剂加入甲苯中,在90~110 oC搅拌反应12~15 h,过滤除去溶剂,洗涤,干燥即得MWCNT-PPEs。
所述羟基化多壁碳纳米管与3-乙基-3-羟甲基氧杂环丁烷的质量体积比为4~6mg/mL。
所述CH2Cl2和三氟化硼***的体积比为10~30。
所述MWCNT-PEHO与氯化磷酸二苯酯的质量体积比为20~33 mg/mL。
所述路易斯酸催化剂为无水氯化铝或无水氯化镁,其所用质量为MWCNT-PEHO质量的10%~30%。
如上所述纳米添加剂在聚醚中的应用,其特征在于所述纳米添加剂占聚醚质量的0.04~0.10%。
所述纳米添加剂的最佳浓度为聚醚质量的0.08%。
本发明所述MWCNT-PPEs在聚醚(PAG)中有很好的分散性,可以稳定分散好几个星期。
本发明所述MWCNT-PPEs添加到聚醚中,在150 oC,载荷25N,添加量0.04-0.10%时可以显著提高基础油PAG的减摩抗磨性能。
本发明所述MWCNT-PPEs添加到聚醚中,在150 oC,最佳浓度0.08%的MWCNT-PPEs在PAG中的最大承受载荷是100N。
附图说明
图1为实施例1中的原料MWCNT-OH、中间体MWCNT-PEHO以及最终产物MWCNT-PPEs的热分解温度曲线。
图2为浓度分别是0%,0.04%,0.06%,0.08%,0.10% 的实施例1产物(MWCNT-PPEs)添加到聚醚(PAG)中,在SRV-IV 微振动摩擦磨损试验机上于150℃,频率25Hz,载荷25N,振幅1mm的工况下摩擦系数随时间变化的关系曲线。
图3 为浓度分别是0%,0.04%,0.06%,0.08% 和0.10%的实施例1产物(MWCNT-PPEs)添加到聚醚(PAG)中,在SRV-IV 微振动摩擦磨损试验机上于150℃,频率25Hz,载荷25N,振幅1 mm,长磨30min工况下磨斑的磨损体积。
图4 为浓度分别是0%和0.08% MWCNT -PPEs添加到聚醚(PAG)中,在SRV-IV 微振动摩擦磨损试验机上于150℃,频率25Hz,载荷从25N增加至200N时摩擦系数随载荷变化的关系曲线。
具体实施方式
实施例1
步骤(1)多壁碳纳米管-聚3-乙基-3-羟甲基氧杂环丁烷(MWCNT-PEHO)的制备:将100 mg MWCNT-OH在氩气保护下加入到50 mL CH2Cl2 和2 mL三氟化硼***(BF3·OEt2)中,超声处理20 min。然后通过进样泵将20 mL 3-乙基-3-羟甲基氧杂环丁烷(EHO)历时2 h 滴加到反应体系中。反应混合物在氩气保护下室温搅拌反应48 h,反应完后用乙醇淬灭。为了除去没有与MWCNT-OH键合的PEHO,过滤后的产物重新分散在乙醇中,过滤,用乙醇洗涤数次,最后用CHCl3洗涤一次。产物在60 oC真空干燥4h。
步骤(2)多壁碳纳米管-聚合物磷酸酯(MWCNT-PPEs)的制备:在氩气保护下将100mg MWCNT-PEHO, 3.5 mL氯化磷酸二苯酯以及 20 mg 无水氯化铝加入到50 mL甲苯中。反应混合物在110 oC搅拌反应15 h。过滤除去溶剂,再用甲苯洗涤三次。干燥后重新分散在去离子水中,过滤,洗涤数次,最后再用乙醇洗涤三次。真空60 oC干燥过夜。
实施例2
步骤(1)与实施例1相同。
步骤(2)多壁碳纳米管-聚合物磷酸酯(MWCNT-PPEs)的制备:在氩气保护下将100mg MWCNT-PEHO,3.5 mL 氯化磷酸二苯酯以及 20 mg 无水氯化镁加入到50 mL甲苯中。反应混合物在110 oC搅拌反应15 h。过滤除去溶剂,再用甲苯洗涤三次。干燥后重新分散在去离子水中,过滤,洗涤数次,最后再用乙醇洗涤三次。真空60 oC过夜干燥。
实施例3
步骤(1)与实施例1相同。
步骤(2)多壁碳纳米管-聚合物磷酸酯(MWCNT-PPEs)的制备:在氩气保护下将100mg MWCNT-PEHO,3.5 mL 氯化磷酸二苯酯以及20 mg 无水三氯化铝加入到50 mL甲苯中。反应混合物在90 oC搅拌反应15 h。过滤除去溶剂,再用甲苯洗涤三次。干燥后重新分散在去离子水中,过滤,洗涤数次,最后再用乙醇洗涤三次。真空60 oC过夜干燥。
热稳定性评价
热稳定性是通过STA 449 C Jupiter simultaneous TG-DSC测定。将实施例1中的原料MWCNT-OH,中间产物MWCNT-PEHO,产物MWCNT-PPEs各 5mg放入样品池中,测试温度从20~800 oC,温度增加速率是10 oC/min,在氮气环境下测定。结果如附图1所示。MWCNT-PPEs的热分解温度为369 oC,要高于原料MWCNT-PEHO(272 oC)。同时从附图1中也可以看出产物MWCNT-PPEs中不再含有中间体MWCNT-PEHO。
产物的摩擦学性能评价:
将实施例1制备的MWCNT-PPEs添加到聚醚(PAG)中,配制成浓度为0%,0.04%,0.06%,0.08%和0.10% 的分散体系,综合评价其摩擦学性能:
1. 采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试浓度分别为0%,0.04%,0.06%,0.08%和0.10% 的实施例1产物(MWCNT-PPEs)加入到聚醚(PAG)中,在150℃,频率25Hz,振幅1mm,载荷25N的工况下长磨30 min时的摩擦系数f,试验所用钢球为Φ=10mm的GCr15轴承钢,下试样为Φ24×7.9mm的GCr15钢块。结果见附图2。由图可以看出,在150℃温度,这种化合物作为添加剂能很好的润滑钢-钢摩擦副,摩擦系数大幅度降低,减摩效果极为明显。
2. 采用MicroXAM 3D 非接触的表面测试仪测试浓度分别为0%,0.04%,0.06%,0.08%和0.10%的实施例1产物(MWCNT-PPEs)加入到聚醚(PAG)中,在150oC,频率25Hz,振幅1mm,载荷25N的工况下长磨30min后的磨损体积。测试结果如附图3所示,加入该添加剂后,磨斑的磨损体积明显降低。表明该添加剂具有很好的抗磨效果。
3. 采用德国Optimol油脂公司生产的SRV-IV 微振动摩擦磨损试验机测试浓度分别为0%和0.08%的实施例1产物(MWCNT-PPEs)添加到聚醚PAG中,在150℃,频率25Hz,振幅1mm,载荷25~200 N的工况下摩擦系数f随载荷变化的关系曲线,试验所用钢球为Φ=10mm的GCr15轴承钢,下试样为Φ24×7.9mm的GCr15钢块。结果见附图4。由图可以看出,当载荷从25N增加至100N时,实施例1产物(MWCNT-PPEs)的摩擦系数显著降低。表明实例1产物的在150 oC下的最大承受载荷是100N。

Claims (8)

1.基于碳纳米管修饰的纳米添加剂,其特征在于该纳米添加剂为多壁碳纳米管-聚合物磷酸酯,其具体结构式如式I所示。
2.如权利要求1所述纳米添加剂的制备方法,其特征在于该制备方法包括以下步骤:
1)羟基化多壁碳纳米管-聚3-乙基-3-羟甲基氧杂环丁烷的制备
将羟基化多壁碳纳米管在氩气保护下加入CH2Cl2 和三氟化硼***中,超声处理15~30min,然后缓慢滴加3-乙基-3-羟甲基氧杂环丁烷,在氩气保护下室温搅拌反应40~50 h,反应结束后用乙醇淬灭,洗涤,干燥即得MWCNT-PEHO;
2)多壁碳纳米管-聚合物磷酸酯的制备
在氩气保护下将MWCNT-PEHO、氯化磷酸二苯酯以及路易斯酸催化剂加入甲苯中,在90~110 oC搅拌反应12~15 h,过滤除去溶剂,洗涤,干燥即得MWCNT-PPEs。
3.如权利要求2所述的制备方法,其特征在于所述羟基化多壁碳纳米管与3-乙基-3-羟甲基氧杂环丁烷的质量体积比为4~6 mg/mL。
4.如权利要求2所述的制备方法,其特征在于所述CH2Cl2和三氟化硼***的体积比为10~30。
5.如权利要求2所述的制备方法,其特征在于所述MWCNT-PEHO与氯化磷酸二苯酯的质量体积比为20~33 mg/mL。
6.如权利要求2所述的制备方法,其特征在于所述路易斯酸催化剂为无水氯化铝或无水氯化镁,其所用质量为MWCNT-PEHO质量的10%~30%。
7.如权利要求1所述纳米添加剂在聚醚中的应用,其特征在于所述纳米添加剂占聚醚质量的0.04~0.10%。
8.如权利要求7所述的应用,其特征在于所述纳米添加剂占聚醚质量的0.08%。
CN201510961886.0A 2015-12-18 2015-12-18 一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用 Active CN105602650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510961886.0A CN105602650B (zh) 2015-12-18 2015-12-18 一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510961886.0A CN105602650B (zh) 2015-12-18 2015-12-18 一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105602650A CN105602650A (zh) 2016-05-25
CN105602650B true CN105602650B (zh) 2018-09-25

Family

ID=55983009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510961886.0A Active CN105602650B (zh) 2015-12-18 2015-12-18 一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105602650B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108163838B (zh) * 2017-12-30 2020-01-14 武汉工程大学 一种西佛碱铜配合物修饰碳纳米管及其制备方法和应用
CN112080329B (zh) * 2020-09-21 2021-07-23 中国科学院兰州化学物理研究所 一种多壁碳纳米管类纳米减摩剂及其应用
CN114045184B (zh) * 2021-11-05 2022-12-06 中国科学院兰州化学物理研究所 一种碳-硅复合纳米流体减摩抗磨添加剂及其应用
CN115491242B (zh) * 2022-09-01 2023-04-21 兰州空间技术物理研究所 一种有机磷酸酯修饰的氧化石墨烯粉剂及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054442A (zh) * 2007-04-19 2007-10-17 上海交通大学 两亲性超支化聚醚纳米级自组装体的制备方法
CN101469143A (zh) * 2007-12-25 2009-07-01 中国科学院兰州化学物理研究所 一种多臂碳纳米管润滑油添加剂的制备方法
CN101863465A (zh) * 2010-06-18 2010-10-20 中国科学院上海有机化学研究所 一种可分散于有机溶剂石墨烯的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054442A (zh) * 2007-04-19 2007-10-17 上海交通大学 两亲性超支化聚醚纳米级自组装体的制备方法
CN101469143A (zh) * 2007-12-25 2009-07-01 中国科学院兰州化学物理研究所 一种多臂碳纳米管润滑油添加剂的制备方法
CN101863465A (zh) * 2010-06-18 2010-10-20 中国科学院上海有机化学研究所 一种可分散于有机溶剂石墨烯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites";Ping"an Song等;《Journal of Materials Chemistry》;The Royal Society of Chemistry;20090122;第19卷;第1305-1313页 *

Also Published As

Publication number Publication date
CN105602650A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN105602649B (zh) 一种基于氧化石墨烯修饰的纳米添加剂及其在润滑油中的应用
CN105602650B (zh) 一种基于碳纳米管修饰的纳米添加剂及其制备方法和应用
Yang et al. Synthesis of the liquid-like graphene with excellent tribological properties
Ye et al. Friction-induced transfer of carbon quantum dots on the interface: Microscopic and spectroscopic studies on the role of inorganic–organic hybrid nanoparticles as multifunctional additive for enhanced lubrication
Yu et al. Ionic liquid modified multi-walled carbon nanotubes as lubricant additive
Ye et al. Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives
Gong et al. Tribological properties of polymeric aryl phosphates grafted onto multi-walled carbon nanotubes as high-performances lubricant additive
Shang et al. Tuning of the hydrophilicity and hydrophobicity of nitrogen doped carbon dots: A facile approach towards high efficient lubricant nanoadditives
Guo et al. Solvent-free ionic nanofluids based on graphene oxide-silica hybrid as high-performance lubricating additive
Huang et al. Insight into the lubricating mechanism for alkylimidazolium phosphate ionic liquids with different alkyl chain length
Yao et al. Imidazolium hexafluorophosphate ionic liquids as high temperature lubricants for steel–steel contacts
Ye et al. Covalently attached strategy to modulate surface of carbon quantum dots: Towards effectively multifunctional lubricant additives in polar and apolar base fluids
Wang et al. Nitrogen-doped porous carbon nanospheres derived from hyper-crosslinked polystyrene as lubricant additives for friction and wear reduction
Fan et al. Ionic liquids gels with in situ modified multiwall carbon nanotubes towards high-performance lubricants
JP2947810B2 (ja) 新規な潤滑グリース
CN111944585B (zh) 亲油型碳量子点基纳米润滑油添加剂及其制备方法
Cao et al. Synthesis and tribological properties of polyaniline functionalized by ionic liquids
Song et al. Tribological performance of an imidazolium ionic liquid-functionalized SiO2@ graphene oxide as an additive
Wu et al. In situ formed ionic liquids in polyol esters as high performance lubricants for steel/steel contacts at 300° C
Wang et al. Synthesis of ionic liquid decorated muti-walled carbon nanotubes as the favorable water-based lubricant additives
Zhang et al. Mechanochemical preparation of zwitterionic polymer functionalized covalent organic frameworks as water-based lubricant additives
Lu et al. Boron–nitrogen codoped carbon nanosheets as oil-based lubricant additives for antioxidation, antiwear, and friction reduction
Zhang et al. Construction of a continuously layered structure of h-BN nanosheets in the liquid phase via sonication-induced gelation to achieve low friction and wear
Kumar et al. Ionic liquid stabilized Ag@ C composite for improvement of triboactivity
Zhang et al. A novel sonogel based on h-BN nanosheets for the tribological application under extreme conditions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant