CN105600835B - 一种宏量制备Fe3O4纳米棒的方法 - Google Patents

一种宏量制备Fe3O4纳米棒的方法 Download PDF

Info

Publication number
CN105600835B
CN105600835B CN201610207678.6A CN201610207678A CN105600835B CN 105600835 B CN105600835 B CN 105600835B CN 201610207678 A CN201610207678 A CN 201610207678A CN 105600835 B CN105600835 B CN 105600835B
Authority
CN
China
Prior art keywords
caso
solution
nanometer rods
feooh
presomas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610207678.6A
Other languages
English (en)
Other versions
CN105600835A (zh
Inventor
韩成良
庄林林
张凌云
周敏
谢畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei College
Original Assignee
Hefei College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei College filed Critical Hefei College
Priority to CN201610207678.6A priority Critical patent/CN105600835B/zh
Publication of CN105600835A publication Critical patent/CN105600835A/zh
Application granted granted Critical
Publication of CN105600835B publication Critical patent/CN105600835B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种宏量制备Fe3O4纳米棒的方法,涉及纳米材料技术领域。将FeSO4·7H2O溶解于蒸馏水中,加入CaSO4·2H2O后经超声分散得到悬浮液,调节pH值至7~14后进行快速氧化反应,然后过滤、烘干获得α‑FeOOH/CaSO4·2H2O前驱体;α‑FeOOH/CaSO4·2H2O前驱体在还原性气体氛围下进行还原反应,得到Fe3O4@CaSO4复合纳米粉体,接着通过后处理得到Fe3O4纳米棒。整个制备体系容易构建、操作简便、条件易控、成本低廉、产物组成易控、产物粒径分布均匀、不易团聚、适合于大规模工业生产。

Description

一种宏量制备Fe3O4纳米棒的方法
技术领域
本发明涉及纳米材料技术领域,具体是涉及一种宏量制备Fe3O4纳米棒的方法。
背景技术
四氧化三铁(Fe3O4)纳米棒是一种性能优良的功能材料,被广泛应用于涂料、塑料、橡胶、陶瓷、玻璃、化妆品、医药添加剂等领域,是仅次于钛白粉的第二大无机颜料。此外,它还被用作制备各种铁氧体的原料、催化剂、抛光剂、磁流体、磁记录材料、气敏元件等。以Fe3O4为主要成份的软磁铁氧体材料以及由它制成的磁性元件是一类应用极其广泛的功能材料和基础元器件,其应用涉及到电子、信息、机电、汽车、冶金、航天航空、交通运输***、工程、生物、医学等领域。
国内外已经报道了很多关于Fe3O4纳米棒的制备方法,主要包括水热法沉淀法、溶胶-凝胶法、微乳液法、水热与溶剂热法、热分解法、静电纺丝法和固相还原法。相对于固相还原法,其他方法制备出来的产物热稳定性能好,结晶度高,但通常很难进行实际的规模化生产。而固相还原法需要煅烧等后处理工艺,且制得的产物纯度较低。
发明内容
为了克服现有技术中存在的上述缺陷,本发明的目的在于提供了一种宏量制备Fe3O4纳米棒的方法,制备工艺简单、成本低、适合工业化连续生产,且产物纯度高。
为实现该目的,本发明采用了以下技术方案:
一种宏量制备Fe3O4纳米棒的方法,步骤如下:
步骤1,制备α-FeOOH/CaSO4·2H2O前驱体
先将FeSO4·7H2O溶解于蒸馏水中,加入CaSO4·2H2O后经超声分散得到悬浮液,调节pH值至7~14后进行快速氧化反应,然后过滤、烘干获得α-FeOOH/CaSO4·2H2O前驱体;
步骤2,固相还原反应制备Fe3O4纳米棒
α-FeOOH/CaSO4·2H2O前驱体在还原性气体氛围下进行还原反应,得到Fe3O4@CaSO4复合纳米粉体,接着通过后处理得到Fe3O4纳米棒。
作为上述制备方法的进一步改进,步骤1的悬浮液中FeSO4·7H2O、CaSO4·2H2O的质量浓度依次为1~27g/L、1~20g/L。步骤1中烘干温度为60~100℃,烘干时间为2~6h。步骤2中还原反应的反应温度为400~600℃,反应时间为1~4h。步骤2中后处理是将Fe3O4@CaSO4缓慢加入 到适量BaCl2溶液中,搅拌得到Fe3O4和BaSO4混合溶液,再经超声清洗和磁分离得到Fe3O4纳米棒。将Fe3O4@CaSO4加入到BaCl2溶液后搅拌温度为50~100℃,搅拌时间为1~3h。
本发明通过一系列的表征表明在一定质量CaSO4模板反应体系中获得的Fe3O4纳米棒具有粒度分布较窄、较高的长径比以及较强的铁磁性等特点。
与现有技术相比,本发明的有益效果表现在:
1、本发明实现了通过α-FeOOH/CaSO4·2H2O为前驱体,再通过磁分离在一定温度下快速得到Fe3O4纳米棒。制备的Fe3O4纳米棒具有较好的水溶性、良好的生物相容性、高吸附性、优异的催化以及磁学性能,可以应用在磁共振成像、数据存储、药物和基因靶向、细胞分离以及污水处理等方面,有较为广阔的应用前景。
2、本发明工艺简单,整个制备体系容易构建、操作简便、条件易控、成本低廉、产物组成易控、产物粒径分布均匀、不易团聚、适合于大规模工业生产。采用常规可溶性铁盐作为反应物,在制备过程中产生的副产物少,对环境污染较小,是一种环保型合成工艺。
附图说明
图1(a)为实施例1所得产物的XRD图。
图1(b)为实施例1所得产物的EDS谱图。
图2(a)为实施例1所得产物的TEM图。
图2(b)为实施例1所得产物的HRTEM图。
图2(c)是后处理前后产物的XRD谱图。
图3是后处理前后产物的室温磁滞回线。
图4为实施例1~4制备产物的XRD汇总谱图。
具体实施方式
以下结合实施例以及附图对本发明作进一步详细描述。
实施例1(FeSO4·7H2O和CaSO4·2H2O重量比为2:1)
步骤1,制备α-FeOOH/CaSO4·2H2O前驱体
(1)将2g的FeSO4·7H2O溶解在100mL的蒸馏水中,室温下磁力搅拌2分钟使之充分溶解得到溶液a。
(2)再将1g的CaSO4·2H2O溶液缓慢加入到溶液a中,继续磁力搅拌3分钟得到呈棕红色的悬浮液b。
(3)滴加少量氨水,调节悬浮液b的pH值至10,得到呈深褐色的溶液c。
(4)将溶液c过滤,接着在烘箱中于100℃干燥2h即可获得α-FeOOH/CaSO4·2H2O前驱体。
步骤2,固相还原反应制备Fe3O4@CaSO4,后处理得到Fe3O4纳米棒
(1)将一定量的α-FeOOH/CaSO4·2H2O前驱体放入烧舟中,再将烧舟置于管式炉中,在氢气气氛下进行还原反应,反应温度为550℃,反应时间为1h。然后在还原气氛下,自然冷却后得到呈黑色固态粉末的Fe3O4@CaSO4复合粉体。
(2)将Fe3O4@CaSO4缓慢加入到BaCl2溶液中,在100℃下磁力搅拌1h得到呈灰黑色的Fe3O4和BaSO4混合溶液。
(3)再将Fe3O4和BaSO4混合溶液进行超声清洗和磁分离,从而得到Fe3O4纳米棒。
图1(a)、图1(b)依次为实施例1所得产物的XRD、EDS谱图,与标准的Fe3O4谱图(JCPDS:76-1849)相比可得,所得产物为高纯度Fe3O4。从EDS能谱图中可以看出制备的产物中仅含有Fe元素和O元素,不含有其他元素,进一步表明该产物为高纯的Fe3O4纳米棒。此外,用Nano measurer分析软件对粒度进行统计分析后可知所得产物Fe3O4纳米棒的尺寸大小为200nm左右。
图2(a)和图2(b)依次为实施例1所得产物的TEM和HRTEM图,由图可得:产物的形态为类球形,且结晶程度高、分散性好,粒子的直径约200nm;每个颗粒都是单晶的,由(311)和(222)晶面间距进一步确认得到的产物为Fe3O4。图2(c)是后处理前后产物的XRD谱图,由图可以看出,后处理后所得产物为纯的Fe3O4纳米棒,而后处理前主要是Fe3O4@CaSO4
图3是后处理前后产物的室温磁滞回线,由图可以看出,后处理前产物Fe3O4@CaSO4的饱和磁化强度41emu/g,后处理后产物Fe3O4的饱和磁化强度约为71emu/g,表现出优异的磁性能。
实施例2(FeSO4·7H2O和CaSO4·2H2O重量比为1:1)
步骤1,制备α-FeOOH/CaSO4·2H2O前驱体
(1)将2g的FeSO4·7H2O溶解在100mL的蒸馏水中,室温下磁力搅拌3分钟使之充分溶解得到溶液a。
(2)再将2g的CaSO4·2H2O溶液缓慢加入到溶液a中,继续磁力搅拌2分钟得到呈棕红色的悬浮液b。
(3)滴加少量氨水,调节悬浮液b的pH值至7,得到呈深褐色的溶液c。
(4)将溶液c过滤,接着在烘箱中于60℃干燥6h即可获得α-FeOOH/CaSO4·2H2O前驱体。
步骤2,固相还原反应制备Fe3O4@CaSO4,后处理得到Fe3O4纳米棒
(1)将一定量的α-FeOOH/CaSO4·2H2O前驱体放入烧舟中,再将烧舟置于管式炉中,在氢气气氛下进行还原反应,反应温度为400℃,反应时间为4h。然后在还原气氛下,自然冷却后得到呈黑色固态粉末的Fe3O4@CaSO4复合粉体。
(2)将Fe3O4@CaSO4缓慢加入到BaCl2溶液中,在80℃下磁力搅拌2h得到呈灰黑色的Fe3O4和BaSO4混合溶液。
(3)再将Fe3O4和BaSO4混合溶液进行超声清洗和磁分离,从而得到Fe3O4纳米棒。
实施例3(FeSO4·7H2O和CaSO4·2H2O重量比为1:2)
步骤1,制备α-FeOOH/CaSO4·2H2O前驱体
(1)将1g的FeSO4·7H2O溶解在100mL的蒸馏水中,室温下磁力搅拌1分钟使之充分溶解得到溶液a。
(2)再将2g的CaSO4·2H2O溶液缓慢加入到溶液a中,继续磁力搅拌3分钟得到呈棕红色的悬浮液b。
(3)滴加少量氨水,调节悬浮液b的pH值至12,得到呈深褐色的溶液c。
(4)将溶液c过滤,接着在烘箱中于80℃干燥6h即可获得α-FeOOH/CaSO4·2H2O前驱体。
步骤2,固相还原反应制备Fe3O4@CaSO4,后处理得到Fe3O4纳米棒
(1)将一定量的α-FeOOH/CaSO4·2H2O前驱体放入烧舟中,再将烧舟置于管式炉中,在氢气气氛下进行还原反应,反应温度为600℃,反应时间为1.5h。然后在还原气氛下,自然冷却后得到呈黑色固态粉末的Fe3O4@CaSO4复合粉体。
(2)将Fe3O4@CaSO4缓慢加入到BaCl2溶液中,在50℃下磁力搅拌3h得到呈灰黑色的Fe3O4和BaSO4混合溶液。
(3)再将Fe3O4和BaSO4混合溶液进行超声清洗和磁分离,从而得到Fe3O4纳米棒。
实施例4(不添加CaSO4·2H2O)
不添加CaSO4·2H2O,其他步骤同实施例1。
通过实施例1~4制备产物的XRD汇总谱图(如图4所示)可知,FeSO4·7HO/CaSO4·2H2O质量比对Fe3O4形态有重要影响,两者重量比为2:1时,可以获得纯Fe3O4纳米棒;而在没有添加CaSO4·2H2O时,获得的产物为无规则的Fe3O4纳米颗粒。当两者重量比例如1:1、1:2时,获得的产物的纯度较低。

Claims (1)

1.一种宏量制备Fe3O4纳米棒的方法,其特征在于步骤如下:
步骤1,制备α-FeOOH/CaSO4·2H2O前驱体
(1)将2g的FeSO4·7H2O溶解在100mL的蒸馏水中,室温下磁力搅拌2分钟使之充分溶解得到溶液a;
(2)再将1g的CaSO4·2H2O溶液缓慢加入到溶液a中,继续磁力搅拌3分钟得到呈棕红色的悬浮液b;
(3)滴加少量氨水,调节悬浮液b的pH值至10,得到呈深褐色的溶液c;
(4)将溶液c过滤,接着在烘箱中于100℃干燥2h即可获得α-FeOOH/CaSO4·2H2O前驱体;
步骤2,固相还原反应制备Fe3O4@CaSO4,后处理得到Fe3O4纳米棒
(1)将一定量的α-FeOOH/CaSO4·2H2O前驱体放入烧舟中,再将烧舟置于管式炉中,在氢气气氛下进行还原反应,反应温度为550℃,反应时间为1h;然后在还原气氛下,自然冷却后得到呈黑色固态粉末的Fe3O4@CaSO4复合粉体;
(2)将Fe3O4@CaSO4缓慢加入到BaCl2溶液中,在100℃下磁力搅拌1h得到呈灰黑色的Fe3O4和BaSO4混合溶液;
(3)再将Fe3O4和BaSO4混合溶液进行超声清洗和磁分离,从而得到Fe3O4纳米棒。
CN201610207678.6A 2016-04-01 2016-04-01 一种宏量制备Fe3O4纳米棒的方法 Expired - Fee Related CN105600835B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610207678.6A CN105600835B (zh) 2016-04-01 2016-04-01 一种宏量制备Fe3O4纳米棒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610207678.6A CN105600835B (zh) 2016-04-01 2016-04-01 一种宏量制备Fe3O4纳米棒的方法

Publications (2)

Publication Number Publication Date
CN105600835A CN105600835A (zh) 2016-05-25
CN105600835B true CN105600835B (zh) 2017-09-15

Family

ID=55981266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610207678.6A Expired - Fee Related CN105600835B (zh) 2016-04-01 2016-04-01 一种宏量制备Fe3O4纳米棒的方法

Country Status (1)

Country Link
CN (1) CN105600835B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436529B (zh) * 2019-09-08 2022-02-15 兰州大学第一医院 一种可用于磁热疗的Fe3O4纳米棒材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100488881C (zh) * 2007-05-15 2009-05-20 河北师范大学 制备超细均匀纳米Fe3O4的方法
CN102502875A (zh) * 2011-10-11 2012-06-20 安徽明珠颜料科技有限公司 一种以石灰为原料合成铁黑的方法
CN104828876B (zh) * 2015-05-25 2016-08-17 北京矿冶研究总院 一种用铁鳞生产四氧化三铁的方法

Also Published As

Publication number Publication date
CN105600835A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN102320658B (zh) 一种采用水热/溶剂热法合成碱土金属钒酸盐微/纳米材料的方法
CN101767836A (zh) 四氧化三铁磁性纳米微球的制备方法
CN101318710B (zh) 一种铁氧化物多级空心核壳材料及其制备方法
Liu et al. Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@ Fe3O4 microspheres with enhanced mesoporous structure
CN106732722A (zh) 一种具有三维有序大孔结构的氮化碳光催化剂的制备方法
CN101293674A (zh) 纺锤状α-Fe2O3纳米粉体的制备方法
Alqasem et al. The enhancement of the magnetic properties of α-Fe2O3 nanocatalyst using an external magnetic field for the production of green ammonia
JP2008201666A (ja) 球状フェライトナノ粒子及びその製造方法
Li et al. One-pot synthesis of porous hematite hollow microspheres and their application in water treatment
Matli et al. Fabrication, characterization, and magnetic behavior of porous ZnFe 2 O 4 hollow microspheres
CN104353416A (zh) 一种磁性有序介孔复合材料、制备及其应用
CN109734056A (zh) 金属氧化物/褶皱rGO复合纳米材料的制备方法及褶皱纳米金属氧化物的制备方法
CN109336161A (zh) 一种CeO2纳米管的制备方法、CeO2纳米管及应用
CN103151129A (zh) 一种MWCNT/Fe3O4/ZnO三元异质纳米复合物的制备方法
CN105600835B (zh) 一种宏量制备Fe3O4纳米棒的方法
CN105289456B (zh) 一种超顺磁Fe3O4纳米材料的制备方法和应用
Nguyen et al. Analysis on development of magnetite hollow spheres through one‐pot solvothermal process
CN101596435B (zh) 耐酸性的单分散碳-金属氧化物磁性复合微球的制备方法及磁性复合微球
CN101819843B (zh) 磁性导电的多功能石墨烯复合材料的制备方法
CN109133182A (zh) 一种大孔铁酸锰的制备方法
Zhang et al. Facile synthesis of α-Fe 2 O 3 hollow sub-microstructures, morphological control and magnetic properties
CN106430324B (zh) 一种花状α‑FeOOH多孔微纳米球及其制备方法
CN106365205B (zh) 一种锰锌铁氧体纳米粉体的制备方法
CN104900364A (zh) 超顺磁性Fe3O4/APTES复合纳米粒子及其制备方法
CN101195085B (zh) 磁性空心二氧化硅粒子的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170915