CN105598471A - Preparation method of super thermite with core-shell structure - Google Patents

Preparation method of super thermite with core-shell structure Download PDF

Info

Publication number
CN105598471A
CN105598471A CN201610164482.3A CN201610164482A CN105598471A CN 105598471 A CN105598471 A CN 105598471A CN 201610164482 A CN201610164482 A CN 201610164482A CN 105598471 A CN105598471 A CN 105598471A
Authority
CN
China
Prior art keywords
preparation
aluminium powder
thermite
super
super thermite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610164482.3A
Other languages
Chinese (zh)
Other versions
CN105598471B (en
Inventor
曲文刚
赵凤起
高红旭
罗阳
郝海霞
姜菡雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Modern Chemistry Research Institute
Original Assignee
Xian Modern Chemistry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Modern Chemistry Research Institute filed Critical Xian Modern Chemistry Research Institute
Priority to CN201610164482.3A priority Critical patent/CN105598471B/en
Publication of CN105598471A publication Critical patent/CN105598471A/en
Application granted granted Critical
Publication of CN105598471B publication Critical patent/CN105598471B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material

Abstract

The invention discloses a preparation method of super thermite with a core-shell structure. The preparation method comprises the following steps: (1) covering the surface of nano aluminum powder; (2) and preparing the super thermite nAl@DOPA-M. Compared with a traditional method, the super thermite prepared by the method disclosed by the invention avoids the problem that the distribution of an oxidant and the aluminum powder is not uniform; a complete shell layer is formed on the surface of nano aluminum through a biomolecule oxidant; and the conduction speed of reaction heat can be remarkably reduced, the mass transferring efficiency is improved and the energy releasing efficiency of materials is greatly improved. The method has the advantages of moderate reaction conditions, simple process, and convenience for preparation in batch, and popularization and application of the method are facilitated.

Description

The preparation method of the super thermite of a kind of nucleocapsid structure
Technical field
The present invention relates to a kind of super thermite, this material can be used as key component or the combustion catalyst of solid propellant.
Technical background
In modern science and techniques of defence field, energetic material and the exploitation in weaponry system thereof are light in occupation of lifting foot with applicationHeavy status is that weapons and ammunitions possess high performance important foundation. Pursuing high energy characteristics is the target that energetic material is eternally immutable;Aspect the energy release (dynamics) of energetic material, need the essence spy of its efficacy exertion/energy release process of exploration discovery simultaneouslyProperty, and understand and utilize these characteristics to regulate and control the performance of energetic material.
Energetic Nanomaterials (NanoEnergeticmaterials, nEMs) refers to the energetic material of particle diameter in 1~100nm, bothCan be simple substance energetic material nanocrystal, can be also that nanoscale contains can compound, be generally by metal/metal oxide and (or)The nano particle of inorganic/organic energetic material component and matrix composition. After energetic material nanometer, except thering is common size containing energy materialOutside the excellent properties of material, also have many potential performance advantages, as the release of explosion energy more completely, detonation is closer to idealDetonation, very high energyreleaserate and burning (Conversion of Energy) efficiency, relative sensitivity preferably, good mechanical property etc. Various countriesLaunch one after another the research to Energetic Nanomaterials, while mainly concentrating on technical barrier in material preparation process and its for fiery explosivePotential and effectiveness.
Super thermite (SuperThermite), is called again metastable state intermolecular complex (MIC), is nanoscale aluminium powder and oxidationProperty the stronger metal/non-metal oxide compound that forms, show the high exothermal nature of thermite, with traditional simple substance containing can materialMaterial is compared, and maximum its reactivity that is not both is based on intermolecular interaction instead of intramolecular reaction. Because its aluminothermy is anti-Answer the reaction rate that is exceedingly fast in process and higher thermal discharge, the application of chemical industry, the energy, military affairs, environmental protection etc. become one non-Normal challenging research field.
But, utilize current preparation method as sol-gel process, ultrasonic dispersion composite algorithm, reaction inhibition polishings etc. are preparedSuper thermite even mix or compound of being often merely able to realize nanometer aluminium powder and oxide, and can not meet metal and oxidantBetween effective contact of molecular scale. And ALD (ald) although etc. method can prepare and there is complete nucleocapsid structureSuper aluminothermy material, but its complex process equipment, technical requirement is high, and its output is less, is difficult to meet application requirements.
Summary of the invention
In order to solve shortcomings and deficiencies of the prior art, the invention provides one and utilize biomolecule levodopa (DOPA) to regulate and controlThe super thermite preparation method of nAlDOPA-M nucleocapsid structure. The present invention adopts solution manufacturing method, and technological process is simple, syntheticEquipment is traditional mixing plant, and raw material is common chemical reagent, can meet the needs of extensive preparation completely.
The preparation method of above-mentioned super thermite, comprises the following steps:
(1) surface of nanometer aluminium powder is coated
Take raw material aluminium powder and put into beaker, under condition of ice bath, add distilled water, then add levodopa (DOPA), regulate pHValue disperses to stir 1~2h in 8.5~12 scope, can realize levodopa being evenly coated on nanometer aluminium powder surface;
(2) preparation of super thermite nAlDOPA-M
To the aqueous solution that adds soluble metallic salt in the prepared nanometer aluminium powder suspension of step 1, ice bath stirs 2~4 hours, fromThe heart, washing, puts into vacuum drying chamber and dries the super thermite obtaining based on biomolecule.
Described aluminium powder average grain diameter is 80~200nm. Levodopa quality is 1%~50% of aluminium powder, and distilled water quality is aluminium powder10~20 times. Soluble metallic salt is selected from Fe, Cu, Mg, Ni, the soluble metallic salt of Mn etc.
Advantage of the present invention: synthesis technique of the present invention is simple, the synthetic super thermite obtaining is complete nucleocapsid structure, realize metal withEffective contact of molecular scale between oxidant, has avoided oxidant and metal powder skewness and mass transfer distance in traditional preparation methodFrom excessive problem, biomolecule can transport by directed control metal ion simultaneously, significantly reduces mass transfer distance, improves exothermal efficiency.
Brief description of the drawings
Fig. 1 is the TEM photo of super thermite nAlDOPA-Cu;
Fig. 2 is SEM and the EDS spectrogram of super thermite nAlDOPA-Cu;
Fig. 3 is the thermal decomposition characteristic spectrogram of super thermite nAlDOPA-Cu and common nano aluminum thermit powder.
Detailed description of the invention
Below by embodiment, the present invention is further explained to explanation.
The preparation of embodiment 1nAlDOPA-Cu
(1) will under 5g nanometer aluminium powder condition of ice bath, be scattered in 100mL distilled water, add 2g levodopa (DOPA), adjustJoint pH value stirs 1~2h in 8.5~12 scope; Take 4.84g (0.02mol) copper nitrate and be dissolved in above-mentioned suspension, stirMix;
(2) ice bath stirring reaction 4h, then leaves standstill;
(3) precipitate with deionized water is repeatedly washed, dry can make black gray expandable product.
The preparation of embodiment 2nAlDOPA-Fe
(1) take the nanometer aluminium powder of 5g, under condition of ice bath, be scattered in 100mL distilled water, add 2g levodopa (DOPA),Regulate pH value in 8.5~12 scope, to disperse to stir 1~2h; Take 8.08g (0.02mol) ferric nitrate and be dissolved in above-mentioned suspension,Be uniformly mixed;
(2) ice bath stirring reaction 3h, then leaves standstill;
(3) precipitate with deionized water is repeatedly washed, dry can make black gray expandable product.
The preparation of embodiment 3nAlDOPA-Mg
(1) take the nanometer aluminium powder of 5g, under condition of ice bath, be scattered in 100mL distilled water, add 2g levodopa (DOPA),Regulate pH value in 8.5~12 scope, to disperse to stir 1~2h; Take 5.12g (0.02mol) magnesium nitrate and be dissolved in above-mentioned suspension,Be uniformly mixed;
(2) ice bath stirring reaction 4h, then leaves standstill;
(3) precipitate with deionized water is repeatedly washed, dry can make black gray expandable product.
The sign of the super thermite of nAlDOPA-M and performance test
1. structural characterization
Taking nAlDOPA-Cu sample as example, Fig. 1 is the transmission electron microscope photo of sample. From figure, can know and see,Prepared sample is complete nucleocapsid structure. Particle size is about 100nm, and shell thickness is in 10nm left and right, due to sample preparationIn process, do not add other compounds, known surface crust should be the clad of DOPA molecule formation. Fig. 1 right side is sampleHRTEM photo, the lattice fringe spacing that can measure sample from figure is about 0.23nm, meets the spacing of (111) face of aluminium,The core that has proved nucleocapsid structure is nano aluminum particle.
Fig. 2 is respectively SEM photo and the corresponding constituency EDS power spectrum of nAlDOPA and nAlDOPA-Cu sample.As we can see from the figure, in the EDS power spectrum of left side sample, only contain Al and C, N, O element, in sample preparation processDo not add other compounds, illustrate Al coated with uniform DOPA molecule. And in right sample except Al, C, N, OThe outer appearance that also has Cu element, illustrates and in sample, adds after soluble copper salt, has formed DOPA-Cuization on nanometer aluminium powder surfaceThe clad of compound. The super thermite known in conjunction with Fig. 1 and Fig. 2, prepared sample is nucleocapsid structure, and surface is coatedLayer is DOPA-Cu compound.
2. performance test
Fig. 3 is the Pyrogram of nAlDOPA-Cu and common nano aluminum thermit powder nAl/CuO, as we can see from the figure, and with generalLogical nano aluminum thermit powder is compared, and in advance, thermal discharge increases decomposition peak's temperature of nAlDOPA-Cu sample, and nAlDOPA-Cu is describedHigher than common nano aluminum thermit powder exothermal efficiency, releasing can be more complete.

Claims (4)

1. a preparation method for the super thermite of nucleocapsid structure, is characterized in that comprising the following steps:
(1) under condition of ice bath, aluminium powder is reacted with distilled water, levodopa, regulate pH value in 8.5~12 scope, stir 1~2hObtain nanometer aluminium powder suspension;
(2) in nanometer aluminium powder suspension, add soluble metallic salt ice bath to stir 2~4 hours, centrifugal, washing, vacuum drying obtainsSuper thermite.
2. the preparation method of super thermite according to claim 1, is characterized in that described aluminium powder average grain diameter is 80~200nm.
3. the preparation method of super thermite according to claim 1, is characterized in that levodopa quality is 1%~50% of aluminium powder,Distilled water quality is 10~20 times of aluminium powder.
4. the preparation method of super thermite according to claim 1, it is characterized in that soluble metallic salt be selected from Fe, Cu, Mg,Ni or Mn.
CN201610164482.3A 2016-03-22 2016-03-22 A kind of preparation method of the super thermite of core shell structure Expired - Fee Related CN105598471B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610164482.3A CN105598471B (en) 2016-03-22 2016-03-22 A kind of preparation method of the super thermite of core shell structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610164482.3A CN105598471B (en) 2016-03-22 2016-03-22 A kind of preparation method of the super thermite of core shell structure

Publications (2)

Publication Number Publication Date
CN105598471A true CN105598471A (en) 2016-05-25
CN105598471B CN105598471B (en) 2017-09-08

Family

ID=55979104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610164482.3A Expired - Fee Related CN105598471B (en) 2016-03-22 2016-03-22 A kind of preparation method of the super thermite of core shell structure

Country Status (1)

Country Link
CN (1) CN105598471B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106083499A (en) * 2016-06-03 2016-11-09 上海交通大学 Super thermite that different size graphene oxide is compound and preparation method thereof
CN107297496A (en) * 2017-06-23 2017-10-27 西安近代化学研究所 A kind of preparation method of the micro-nano zirconium powder of hud typed carbon coating
CN112626635A (en) * 2020-12-15 2021-04-09 西南科技大学 Method for preparing high-burning-rate micro-pipeline based on nano thermite ink

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581272A (en) * 2012-02-06 2012-07-18 西安近代化学研究所 Method for preparing nanometer aluminum composite powder coated with nitro-cotton
CN103086812A (en) * 2013-02-04 2013-05-08 中国工程物理研究院化工材料研究所 Preparation method of bicomponent energetic material core-shell structure
CN103084571A (en) * 2012-12-30 2013-05-08 南京师范大学 Nanometer Al/Ni/hydroxyl-terminatedpoly butadiene (HTPB) nucleus-shell structure energetic composite particle and preparation method thereof for solid propellant
CN104551005A (en) * 2015-01-07 2015-04-29 北京化工大学 Nanometer core shell structure thermite and preparation method thereof
KR101553471B1 (en) * 2014-03-06 2015-09-16 영남대학교 산학협력단 Preparing method of L-doppa capping gold nanopaticles and detection method of manganese ions using thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581272A (en) * 2012-02-06 2012-07-18 西安近代化学研究所 Method for preparing nanometer aluminum composite powder coated with nitro-cotton
CN103084571A (en) * 2012-12-30 2013-05-08 南京师范大学 Nanometer Al/Ni/hydroxyl-terminatedpoly butadiene (HTPB) nucleus-shell structure energetic composite particle and preparation method thereof for solid propellant
CN103086812A (en) * 2013-02-04 2013-05-08 中国工程物理研究院化工材料研究所 Preparation method of bicomponent energetic material core-shell structure
KR101553471B1 (en) * 2014-03-06 2015-09-16 영남대학교 산학협력단 Preparing method of L-doppa capping gold nanopaticles and detection method of manganese ions using thereof
CN104551005A (en) * 2015-01-07 2015-04-29 北京化工大学 Nanometer core shell structure thermite and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106083499A (en) * 2016-06-03 2016-11-09 上海交通大学 Super thermite that different size graphene oxide is compound and preparation method thereof
CN106083499B (en) * 2016-06-03 2018-03-06 上海交通大学 Compound super thermite of different size graphene oxides and preparation method thereof
CN107297496A (en) * 2017-06-23 2017-10-27 西安近代化学研究所 A kind of preparation method of the micro-nano zirconium powder of hud typed carbon coating
CN112626635A (en) * 2020-12-15 2021-04-09 西南科技大学 Method for preparing high-burning-rate micro-pipeline based on nano thermite ink
CN112626635B (en) * 2020-12-15 2022-01-28 西南科技大学 Method for preparing high-burning-rate micro-pipeline based on nano thermite ink

Also Published As

Publication number Publication date
CN105598471B (en) 2017-09-08

Similar Documents

Publication Publication Date Title
He et al. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases
CN110590483B (en) Preparation method of fluorine-containing compound coated micro-nano aluminum powder
Tang et al. Controlled reactivity of metastable n-Al@ Bi (IO3) 3 by employment of tea polyphenols as an interfacial layer
CN106077695B (en) A kind of preparation method of high-copper tungsten copper nano composite powder
CN105598471A (en) Preparation method of super thermite with core-shell structure
WO2011006698A1 (en) Nanostructured silicon-carbon composites for battery electrodes
CN112341300A (en) Micron-sized core-shell thermite and preparation method thereof
Ahn et al. Effect of metal oxide nanostructures on the explosive property of metastable intermolecular composite particles
CN112266314B (en) Al/PVDF/PDA/Fe2O3Three-layer core-shell structure thermite and preparation method thereof
PL239753B1 (en) Method for producing graphene structure, intercalated with metal nanoparticles, in the form of powder or foam
An et al. Preparation and evaluation of effective combustion catalysts based on Cu (I)/Pb (II) or Cu (II)/Bi (II) nanocomposites carried by graphene oxide (GO)
CN100411777C (en) Prepn process of composite aluminium/alumina material with alumina coated metal aluminium
CN112920001A (en) Method for preparing nano aluminum/porous copper oxide nano thermite by self-assembly of P4VP
Wu et al. In-situ synthesis of copper azide chips and investigation of their initiation ability
Lyu et al. Thermal decomposition and combustion behavior of the core-shell Al@ AP composite embedded with CuO as a catalyst
Geun-Ho et al. Improvement of oxidation resistance in graphite for MgO–C refractory through surface modification
CN109022868A (en) Preparation method for in-situ synthesis of Cu-graphene heteromer reinforced aluminum-based composite material
KR20200025984A (en) Preparation of polymer containing reduced graphene oxide-silicon metal particle compound and preparation of anode materials for secondary battery and process for preparing the same
CN110295298B (en) Preparation method of graphene-aluminum composite material
US10584076B1 (en) Pyrophoric foam materials and methods of making the same
CN107224973B (en) Cu2O/MWCNTs composite material, preparation method and catalytic application
CN111362769B (en) Preparation method of flaky cobalt hydroxide composite material coated on surface of aluminum powder
CN110937965B (en) Preparation method and application of high-energy composite material copper ferrite/GO/Al
US10421695B1 (en) Metal-metal boride-metal based core-shell particles and a method to produce the same
CN107460375A (en) A kind of method of improvement Ni graphene heteromers reinforced aluminum matrix composites mechanical properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170908

Termination date: 20210322

CF01 Termination of patent right due to non-payment of annual fee