CN105586452B - 氧气高炉与气基竖炉联合生产***和联合生产方法 - Google Patents

氧气高炉与气基竖炉联合生产***和联合生产方法 Download PDF

Info

Publication number
CN105586452B
CN105586452B CN201610113537.8A CN201610113537A CN105586452B CN 105586452 B CN105586452 B CN 105586452B CN 201610113537 A CN201610113537 A CN 201610113537A CN 105586452 B CN105586452 B CN 105586452B
Authority
CN
China
Prior art keywords
gas
blast furnace
primordial
oxygen blast
shaft kiln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610113537.8A
Other languages
English (en)
Other versions
CN105586452A (zh
Inventor
孟嘉乐
窦从从
郑倩倩
张照
吴道洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenwu Technology Group Corp Co Ltd
Original Assignee
Shenwu Technology Group Corp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenwu Technology Group Corp Co Ltd filed Critical Shenwu Technology Group Corp Co Ltd
Priority to CN201610113537.8A priority Critical patent/CN105586452B/zh
Publication of CN105586452A publication Critical patent/CN105586452A/zh
Application granted granted Critical
Publication of CN105586452B publication Critical patent/CN105586452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/023Making spongy iron or liquid steel, by direct processes in shaft furnaces wherein iron or steel is obtained in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/22Dust arresters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明提出了氧气高炉与气基竖炉联合生产***和联合生产方法,其中,氧气高炉与气基竖炉联合生产***包括:氧气高炉、气基竖炉、除尘装置、水煤气变换装置、二氧化碳脱除装置、加压器、气化炉,其中,除尘装置与氧气高炉的高炉炉顶气出口相连;水煤气变换装置与除尘装置相连,二氧化碳脱除装置的进气口分别与除尘装置、水煤气变换装置和气基竖炉的竖炉炉顶气出口相连,加压器与二氧化碳脱除装置相连,气化炉的进气口与加压器相连。利用该***可有效解决氧气高炉炉顶气循环量不足的问题,同时为气基竖炉提供充足的气源。

Description

氧气高炉与气基竖炉联合生产***和联合生产方法
技术领域
本发明属于冶金领域,具体地,本发明涉及氧气高炉与气基竖炉联合生产***和联合生产方法。
背景技术
我国钢铁工业消耗大量资源,同时排放大量废气,其中以烧结球团、焦化、高炉及热风炉所组成的高炉炼铁***能耗及CO2排放所占钢铁行业的比例分别高达69%及73%。当前,传统高炉炼铁技术在生产效率、能量利用等方面已发挥到极致,仅依靠操作手段的改进难以实现高炉炼铁较大幅度的节能减排。针对全球环保意识增强、资源日益枯竭的现状,必须对现有的高炉炼铁工艺加以改进,使之在技术上、经济上及环境上更加符合时代发展的需要。氧气高炉炼铁技术是最有可能实现规模化应用的炼铁新工艺之一,它具有高喷煤量、低焦比、生产率高、煤气品质高等优点,有可能使煤粉取代焦炭成为主要的炼铁能源物质,从而大幅度降低成本。更为重要的是,可以大幅度减少CO2排放,大大减轻钢铁行业所面临的减排压力。
气基竖炉直接还原以还原性气体(CO及H2)为能源及还原剂,在低于天然矿石或人造团块软化温度条件下还原炉料以获得固态金属铁,产品可替代废钢并优于废钢,是冶炼纯净钢、高等级钢的最佳铁原料。气基竖炉直接还原具有生产规模大、成本低、操作灵活、环境友好等优点,在中东、印度等国家和地区得到广泛应用。由于我国煤炭资源储量丰富而天然气资源缺乏,使得这一炼铁工艺的应用受到限制,形成了单一的以煤炭为主要能源的钢铁冶金长流程模式,造成了整个行业高能耗、高污染、高成本的不利局面。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出氧气高炉与气基竖炉联合生产***和联合生产方法,该***和方法通过设置和使用气化炉,可有效解决氧气高炉顶气循环量不足的问题,同时为气基竖炉提供充足的气源。
根据本发明的一个方面,本发明提出了一种氧气高炉与气基竖炉联合生产***。根据本发明的实施例的氧气高炉与气基竖炉联合生产***,包括:
氧气高炉,所述氧气高炉用于炼铁,以便得到铁水,并产生炉渣和高炉炉顶气;
气基竖炉,所述气基竖炉用于炼铁,以便得到铁水,并产生炉渣和竖炉炉顶气;
除尘装置,所述除尘装置与所述氧气高炉的高炉炉顶气出口相连,且适于对所述高炉炉顶气进行除尘处理,并将经过所述除尘处理后的高炉炉顶气分为二部分;
水煤气变换装置,所述水煤气变换装置与所述除尘装置相连,且适于对第一部分高炉炉顶气进行重整,以便提高氢气含量,得到富含氢气的还原气;
二氧化碳脱除装置,所述二氧化碳脱除装置的进气口分别与所述除尘装置、水煤气变换装置和所述气基竖炉的竖炉炉顶气出口相连,且适于脱除第二部分高炉炉顶气、富含氢气的还原气和竖炉炉顶气的混合气体中的0-100%体积的二氧化碳,获得预处理还原气;
加压器,所述加压器与所述二氧化碳脱除装置相连,且适于对所述预处理还原气进行加压处理;以及
气化炉,所述气化炉的进气口与所述加压器相连,所述气化炉的出气口与所述氧气高炉的下进风口和所述气基竖炉的还原气进口相连,所述气化炉适于对经过所述加压处理后的预处理还原气进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并将所述高温还原气通入所述氧气高炉的下进风口和所述气基竖炉的还原气进口。
根据本发明的具体实施例的氧气高炉与气基竖炉联合生产***将气基竖炉与氧气高炉联合生产,即将钢铁生产短流程与长流程相结合,消除了部分长流程高能耗、高CO2排放的弊端,同时生产出的DRI是生产高品质钢不可替代的优质铁原料。另外,更加可有效地解决了氧气高炉顶气循环量不足的问题,同时为气基竖炉提供充足的气源。
另外,根据本发明上述实施例的氧气高炉与气基竖炉联合生产***还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述氧气高炉具有上进风口,所述上进风口位于所述氧气高炉的侧壁上且高于所述氧气高炉的炉腰,所述气化炉的出气口与所述上进风口相连,以便利用所述高温还原气对所述氧气高炉内的上部炉料进行预热和还原。
在本发明的一些实施例中,所述二氧化碳脱除装置与位于所述气基竖炉底部的冷却气进口相连,且适于将所述预处理还原气从所述气基竖炉的底部通入。
根据本发明的另一方面,本发明还提出了一种氧气高炉与气基竖炉联合生产方法。根据本发明的实施例的氧气高炉与气基竖炉联合生产方法,包括:
利用氧气高炉进行炼铁,以便得到铁水,并产生炉顶煤气和炉渣;
利用气基竖炉进行炼铁,以便得到铁水,并产生炉渣和竖炉炉顶气;
对所述高炉炉顶气进行除尘处理,并将经过所述除尘处理后的高炉炉顶气分为二部分;
利用水煤气变换装置对第一部分高炉炉顶气进行重整,以便提高氢气含量,得到富含氢气的还原气;
将第二部分高炉炉顶气、所述富含氢气的还原气和所述竖炉炉顶气进行混合,得到混合气体,并脱除所述混合气体中的0-100%体积的二氧化碳,获得预处理还原气;
对所述预处理还原气进行加压处理;以及
利用气化炉对经过所述加压处理后的预处理还原气进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并将所述高温还原气通入所述氧气高炉的下进风口和所述气基竖炉的还原气进口。
根据本发明的具体实施例的氧气高炉与气基竖炉联合生产方法将气基竖炉与氧气高炉联合生产,即将钢铁生产短流程与长流程相结合,消除了部分长流程高能耗、高CO2排放的弊端,同时生产出的DRI是生产高品质钢不可替代的优质铁原料。另外,更加可有效地解决了氧气高炉顶气循环量不足的问题,同时为气基竖炉提供充足的气源。
另外,根据本发明上述实施例的氧气高炉与气基竖炉联合生产方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述氧气高炉具有上进风口,所述上进风口位于所述氧气高炉的侧壁上且高于所述氧气高炉的炉腰,所述氧气高炉与气基竖炉联合生产方法进一步包括:
将所述高温还原气的一部分通入所述上进风口,以便利用所述高温还原气对所述氧气高炉内的上部炉料进行预热和还原。
在本发明的一些实施例中,上述实施例的氧气高炉与气基竖炉联合生产方法进一步包括:将所述预处理还原气从位于所述气基竖炉底部的冷却气进口通入。
附图说明
图1是根据本发明一个实施例的氧气高炉与气基竖炉联合生产***的结构示意图。
图2是根据本发明另一个实施例的氧气高炉与气基竖炉联合生产***的结构示意图。
图3是根据本发明一个实施例的氧气高炉与气基竖炉联合生产方法的流程图。
图4是根据本发明另一个实施例的氧气高炉与气基竖炉联合生产方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
根据本发明的另一个面,本发明还提出了一种氧气高炉与气基竖炉联合生产***。
如图1和图2所示,氧气高炉与气基竖炉联合生产***包括:氧气高炉10、气基竖炉20、除尘装置30、水煤气变换装置40、二氧化碳脱除装置50、加压器60、气化炉70。
其中,氧气高炉10用于炼铁,以便得到铁水,并产生炉渣和高炉炉顶气;气基竖炉20用于炼铁,以便得到铁水,并产生炉渣和竖炉炉顶气;除尘装置30与氧气高炉10的高炉炉顶气出口相连,且适于对高炉炉顶气进行除尘处理,并将经过除尘处理后的高炉炉顶气分为二部分;水煤气变换装置40与除尘装置30相连,且适于对第一部分高炉炉顶气进行重整,以便提高氢气含量,得到富含氢气的还原气;二氧化碳脱除装置50的进气口分别与除尘装置30、水煤气变换装置40和气基竖炉20的竖炉炉顶气出口相连,且适于脱除第二部分高炉炉顶气、富含氢气的还原气和竖炉炉顶气的混合气体中的0-100体积%的二氧化碳,获得预处理还原气;加压器60与二氧化碳脱除装置50相连,且适于对预处理还原气进行加压处理;以及气化炉70的进气口与加压器60相连,气化炉70的出气口与氧气高炉10的下进风口和气基竖炉20的还原气进口相连,气化炉70适于对经过加压处理后的预处理还原气进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并将高温还原气通入氧气高炉10的下进风口12和气基竖炉20的还原气进口22。
通过采用氧气高炉与气基竖炉联合生产***,具体地,将氧气高炉内炼铁后产生的高炉炉顶气再除尘装置内进行除尘处理后分为二部分,第一部分高炉炉顶气在水煤气变换装置内进行重整,以便提高氢气含量,得到富含氢气的还原气;第二部分高炉炉顶气与水煤气变换装置内进行重整得到的富含氢气的还原气以及竖炉炉顶气进行混合,并在二氧化碳脱除装置内脱除0-100体积%的二氧化碳,获得预处理还原气;预处理还原气经加压后在气化炉进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并分别通入氧气高炉的下进风口和气基竖炉的还原气进口。
根据本发明的具体实施例的氧气高炉与气基竖炉联合生产***将气基竖炉与氧气高炉联合生产,即将钢铁生产短流程与长流程相结合,消除了部分长流程高能耗、高CO2排放的弊端,同时生产出的DRI是生产高品质钢不可替代的优质铁原料。另外,更加可有效地解决了氧气高炉顶气循环量不足的问题,同时为气基竖炉提供充足的气源。
下面参详细描述本发明具体实施例的氧气高炉与气基竖炉联合生产***。
根据本发明的具体实施例,氧气高炉用于炼铁,以便得到铁水,并产生炉渣和高炉炉顶气;气基竖炉用于炼铁,以便得到海绵铁,并产生竖炉炉顶气。
根据本发明的具体实施例,进一步地除尘装置与氧气高炉的高炉炉顶气出口相连,对高炉炉顶气进行除尘处理,并将经过除尘处理后的高炉炉顶气分为二部分。
下面分别对二部分高炉炉顶气进行处理,具体地:
(1)水煤气变换装置与除尘装置相连,水煤气变换装置且适于对第一部分高炉炉顶气进行重整,以便提高氢气含量,得到富含氢气的还原气。
由此,第一部分高炉炉顶气首选在水煤气变换装置内进行重整,以便调节第一部分高炉炉顶气中的氢气和一氧化碳的体积比,得到富含氢气的还原气。
(2)二氧化碳脱除装置的进气口分别与除尘装置、水煤气变换装置和气基竖炉的竖炉炉顶气出口相连,二氧化碳脱除装置且适于脱除第二部分高炉炉顶气、富含氢气的还原气和竖炉炉顶气的混合气体中的0-100体积%的二氧化碳,获得预处理还原气。
由此,第二部分高炉炉顶气与经过重整的第一部分高炉炉顶气以及竖炉炉顶气三部分气体共在二氧化碳脱除装置脱除0-100体积%的二氧化碳,获得预处理还原气。
(3)二氧化碳脱除装置依次与加压器、气化炉相连,依次对预处理还原气进行加压处理和重整、加热以便提高一氧化碳含量,得到高温还原气,并将高温还原气通入氧气高炉的下进风口和气基竖炉的还原气进口。
根据本发明的具体实施例,第一部分高炉炉顶气在水煤气变换装置内经水煤气变换反应(CO+H2O=CO2+H2),可以调节使高炉炉顶气中H2/CO在1~2:1范围内,接着同第二部分的高炉炉顶气以及竖炉炉顶气一起在二氧化碳脱除装置内进行混合,并选择性地不脱除、脱除部分或者全部的CO2,使有效还原气体成分含量高于90体积%,再进入加压器内经加压后直接从还原气进口进入气基竖炉内,还原球团矿生产海绵铁。根据本发明的具体实施例,经过气化炉重整和加热后的高温还原气的温度为900-1200摄氏度。由此可以有效地用于气基竖炉生产海绵铁。
发明人发现,氧气高炉普遍存在炉缸内产生的煤气量少,对高炉上部炉料的加热能力不足,导致高炉上部还原能力变差,炼铁效率低的缺陷。为此,本发明的氧气高炉与气基竖炉联合生产***将氧气高炉与气基竖炉进行结合,首先,通过水煤气变换装置将第一部分高炉炉顶气进行重整,调节使高炉炉顶气中H2与CO比值,得到富含氢气的还原气。其次,引入气化炉,并将重整后的第一部分的高炉炉顶气与第二部分的高炉炉顶气以及竖炉炉顶气一起在气化炉内进行重整和加热。具体地,将第一部分的高炉炉顶气与氧气和煤粉一同通入气化炉内,气化炉内发生反应为:2C+O2=2CO、CO2+C=2CO,由此生成的一氧化碳对的高炉炉顶气进行了重整,提高了其还原能力,同时对高炉炉顶气进行了加热,提高了其温度,经过重整和加热后的高温还原气的温度可以达到900-1200摄氏度。进而可以直接通入氧气高炉的下进风口,进而将该重整和加热后的高炉炉顶气循环返回氧气高炉内。由此可以为氧气高炉提供足够多的还原煤气,使高炉上部区域间接还原程度大大增加,同时减少高炉下部区域直接还原,减少炉缸高温区的热耗。
另外,经过气化炉重整和加热后得到的高温还原气可以直接通入气基竖炉内。无需额外提供加热器,因此直接利用气化炉加热,较管式加热炉热效率更高,并且使气基竖炉还原工艺减少了一套管式加热炉装置,进而降低了设备成本。
根据本发明的具体实施例,将高炉炉顶气和竖炉炉顶气进行一系列的处理后返回氧气高炉。可以使氧气高炉输出大量富余炉的高炉炉顶气,富余的高炉炉顶气中不含CH4,进而可避免将高炉炉顶气用于气基竖炉时,出现残留CH4在气基竖炉高温段裂解产生C而逐渐堵塞还原气喷嘴的问题。
根据本发明的具体示例的氧气高炉与气基竖炉联合生产***中巧妙运用了气化炉,从而有效地解决了高炉炉顶气还原能力弱、温度低的问题,进而有效增加了氧气高炉***的造气能力,避免了循环煤气量不足。
根据本发明的具体实施例,将上述在气化炉内经过重整和加热后得到的高温还原气通入氧气高炉的下进风口的同时,向下进风口内鼓入100~400Nm3/tHM常温氧气及喷吹150-300kg/tHM煤粉,优选地鼓入100~250Nm3/tHM常温氧气及喷吹200kg/tHM煤粉。根据本发明的具体实施例,粉煤的通入量高于普通氧气高炉粉煤的通入量,由此,通入的高温还原气可以促进煤粉燃烧,同时降低风口回旋区理论燃烧温度。
根据本发明的具体实施例,氧气高炉10还具有上进风口13,上进风口13位于氧气高炉10的侧壁上且高于氧气高炉的炉腰。根据本发明的具体示例,氧气高炉与气基竖炉联合生产***进一步包括:气化炉70的出气口与上进风口13相连,进而可以将高温还原气的一部分通入上进风口13,以便利用高温还原气对氧气高炉内的上部炉料进行预热和还原。
由此,通过上述***将气化炉内重整和加热后得到的高温还原气从上进风口和下进风口通入氧气高炉内。首先,从位于炉缸处的下进风口通入的高温还原气可以促进煤粉燃烧,同时降低风口回旋区理论燃烧温度;其次,从位于炉身处的上进风口通入的热还原气可以对高炉上部炉料预热,改善氧气高炉内部热分布。氧气高炉以纯氧代替传统高炉热风,即排除了空气中占79%体积的N2,炉腹处煤气量相比传统高炉显著减少,因此降低了炉料透气性要求,连同氧气高炉内煤气还原势大幅提高,可使冶炼强度及生产效率大幅提高。
本发明上述实施例的氧气高炉与气基竖炉联合生产***巧妙运用气化炉,首先,利用气化炉作为整个***的造气中心(2C+O2=2CO),可有效避免氧气高炉及气基竖炉还原气量不足的情况;其次,气化炉可将气体中的CO2转化为CO,与传统的CO2脱除装置相配合,可使***操作更加灵活,降低CO2脱除的成本;最后,气化炉中煤燃烧放热直接对通入的炉顶气进行加热,在热效率、防止析碳堵塞管道、操作压力等方面均大大优于传统的利用管式加热炉加热煤气的方式。
由此,通过采用本发明上述实施例的氧气高炉与气基竖炉联合生产***可以有效地将钢铁生产短流程与长流程相结合,更加可有效地解决了氧气高炉顶气循环量不足的问题,同时为气基竖炉提供充足的气源。
(4)二氧化碳脱除装置与位于气基竖炉底部的冷却气进口相连,且适于将预处理还原气从气基竖炉的底部通入。由此将一部分的预处理还原气通过气基竖炉底部喷嘴进入气基竖炉,进而在上升过程中完成气基竖炉冷却段球团渗碳、吸收热态海绵铁显热、达到增强竖炉还原段中心部位的球团还原效果等作用,降低气基竖炉的综合能耗。
根据本发明的另一方面,本发明还提出了一种氧气高炉与气基竖炉联合生产方法。
根据本发明实施例的氧气高炉与气基竖炉联合生产方法包括:
利用氧气高炉进行炼铁,以便得到铁水,并产生炉顶煤气和炉渣;
利用气基竖炉进行炼铁,以便得到铁水,并产生炉渣和竖炉炉顶气;
对高炉炉顶气进行除尘处理,并将经过除尘处理后的高炉炉顶气分为二部分;
利用水煤气变换装置对第一部分高炉炉顶气进行重整,以便提高氢气含量,得到富含氢气的还原气;
将第二部分高炉炉顶气、富含氢气的还原气和竖炉炉顶气进行混合,得到混合气体,并脱除混合气体中的0-100体积%的二氧化碳,获得预处理还原气;
对预处理还原气进行加压处理;以及
利用气化炉对经过加压处理后的预处理还原气进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并将高温还原气通入氧气高炉的下进风口和气基竖炉的还原气进口。
通过采用氧气高炉与气基竖炉联合生产***,具体地,将氧气高炉内炼铁后产生的高炉炉顶气再除尘装置内进行除尘处理后分为二部分,第一部分高炉炉顶气在水煤气变换装置内进行重整,以便提高氢气含量,得到富含氢气的还原气;第二部分高炉炉顶气与水煤气变换装置内进行重整得到的富含氢气的还原气以及竖炉炉顶气进行混合,并在二氧化碳脱除装置内脱除0-100体积%的二氧化碳,获得预处理还原气;预处理还原气经加压后在气化炉进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并分别通入氧气高炉的下进风口和气基竖炉的还原气进口。
根据本发明的具体实施例的氧气高炉与气基竖炉联合生产方法将气基竖炉与氧气高炉联合生产,即将钢铁生产短流程与长流程相结合,消除了部分长流程高能耗、高CO2排放的弊端,同时生产出的DRI是生产高品质钢不可替代的优质铁原料。另外,更加可有效地解决了氧气高炉顶气循环量不足的问题,同时为气基竖炉提供充足的气源。
下面参考附图3和图4详细描述本发明具体实施例的氧气高炉与气基竖炉联合生产方法。
根据本发明的具体实施例,利用氧气高炉进行炼铁,以便得到铁水,并产生炉顶煤气和炉渣;利用气基竖炉进行炼铁,以便得到海绵铁,并产生竖炉炉顶气。
根据本发明的具体实施例,进一步地对高炉炉顶气进行除尘处理,并将经过除尘处理后的高炉炉顶气分为二部分。
下面分别对二部分高炉炉顶气进行处理,具体地:
(1)利用水煤气变换装置对第一部分高炉炉顶气进行重整,以便提高氢气含量,得到富含氢气的还原气。
由此,第一部分高炉炉顶气首选在水煤气变换装置内进行重整,以便调节第一部分高炉炉顶气中的氢气和一氧化碳的体积比,得到富含氢气的还原气。
(2)将第二部分高炉炉顶气、富含氢气的还原气和竖炉炉顶气进行混合,得到混合气体,并脱除混合气体中的0-100体积%的二氧化碳,获得预处理还原气。
由此,第二部分高炉炉顶气与经过重整的第一部分高炉炉顶气以及竖炉炉顶气三部分气体共在二氧化碳脱除装置脱除0-100体积%的二氧化碳,获得预处理还原气。
(3)对预处理还原气进行加压处理;以及利用气化炉对经过加压处理后的预处理还原气进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并将高温还原气通入氧气高炉的下进风口和气基竖炉的还原气进口。
根据本发明的具体实施例,第一部分高炉炉顶气在水煤气变换装置内经水煤气变换反应(CO+H2O=CO2+H2),可以调节使高炉炉顶气中H2/CO在1~2:1范围内,接着同第二部分的高炉炉顶气以及竖炉炉顶气一起在二氧化碳脱除装置内进行混合,并选择性地不脱除、脱除部分或者全部的CO2,使有效还原气体成分含量高于90体积%,再进入加压器内经加压后直接从还原气进口进入气基竖炉内,还原球团矿生产海绵铁。根据本发明的具体实施例,经过气化炉重整和加热后的高温还原气的温度为900-1200摄氏度。由此可以有效地用于气基竖炉生产海绵铁。
发明人发现,氧气高炉普遍存在炉缸内产生的煤气量少,对高炉上部炉料的加热能力不足,导致高炉上部还原能力变差,炼铁效率低的缺陷。为此,本发明的氧气高炉与气基竖炉联合生产方法将氧气高炉与气基竖炉进行结合,首先,通过水煤气变换装置将第一部分高炉炉顶气进行重整,调节使高炉炉顶气中H2与CO比值,得到富含氢气的还原气。其次,引入气化炉,并将重整后的第一部分的高炉炉顶气与第二部分的高炉炉顶气以及竖炉炉顶气一起在气化炉内进行重整和加热。具体地,将第一部分的高炉炉顶气与氧气和煤粉一同通入气化炉内,气化炉内发生反应为:2C+O2=2CO、CO2+C=2CO,由此生成的一氧化碳对的高炉炉顶气进行了重整,提高了其还原能力,同时对高炉炉顶气进行了加热,提高了其温度,经过重整和加热后的高温还原气的温度可以达到900-1200摄氏度。进而可以直接通入氧气高炉的下进风口,进而将该重整和加热后的高炉炉顶气循环返回氧气高炉内。由此可以为氧气高炉提供足够多的还原煤气,使高炉上部区域间接还原程度大大增加,同时减少高炉下部区域直接还原,减少炉缸高温区的热耗。
另外,经过气化炉重整和加热后得到的高温还原气可以直接通入气基竖炉内。无需额外提供加热器,因此直接利用气化炉加热,较管式加热炉热效率更高,并且使气基竖炉还原工艺减少了一套管式加热炉装置,进而降低了设备成本。
根据本发明的具体实施例,将高炉炉顶气和竖炉炉顶气进行一系列的处理后返回氧气高炉。可以使氧气高炉输出大量富余炉的高炉炉顶气,富余的高炉炉顶气中不含CH4,进而可避免将高炉炉顶气用于气基竖炉时,出现残留CH4在气基竖炉高温段裂解产生C而逐渐堵塞还原气喷嘴的问题。
根据本发明的具体示例的氧气高炉与气基竖炉联合生产方法中巧妙运用了气化炉,从而有效地解决了高炉炉顶气还原能力弱、温度低的问题,进而有效增加了氧气高炉***的造气能力,避免了循环煤气量不足。
根据本发明的具体实施例,将上述在气化炉内经过重整和加热后得到的高温还原气通入氧气高炉的下进风口的同时,向下进风口内鼓入100~400Nm3/tHM常温氧气及喷吹150-300kg/tHM煤粉,优选地鼓入100~250Nm3/tHM常温氧气及喷吹200kg/tHM煤粉。根据本发明的具体实施例,粉煤的通入量高于普通氧气高炉粉煤的通入量,由此,通入的高温还原气可以促进煤粉燃烧,同时降低风口回旋区理论燃烧温度。
根据本发明的具体实施例,氧气高炉还具有上进风口,上进风口位于氧气高炉的侧壁上且高于氧气高炉的炉腰。根据本发明的具体示例,氧气高炉与气基竖炉联合生产方法进一步包括:气化炉的出气口与上进风口相连,进而可以将高温还原气的一部分通入上进风口,以便利用高温还原气对氧气高炉内的上部炉料进行预热和还原。
由此,通过上述***将气化炉内重整和加热后得到的高温还原气从上进风口和下进风口通入氧气高炉内。首先,从位于炉缸处的下进风口通入的高温还原气可以促进煤粉燃烧,同时降低风口回旋区理论燃烧温度;其次,从位于炉身处的上进风口通入的热还原气可以对高炉上部炉料预热,改善氧气高炉内部热分布。氧气高炉以纯氧代替传统高炉热风,即排除了空气中占79%体积的N2,炉腹处煤气量相比传统高炉显著减少,因此降低了炉料透气性要求,连同氧气高炉内煤气还原势大幅提高,可使冶炼强度及生产效率大幅提高。
本发明上述实施例的氧气高炉与气基竖炉联合生产方法巧妙运用气化炉,首先,利用气化炉作为整个***的造气中心(2C+O2=2CO),可有效避免氧气高炉及气基竖炉还原气量不足的情况;其次,气化炉可将气体中的CO2转化为CO,与传统的CO2脱除装置相配合,可使***操作更加灵活,降低CO2脱除的成本;最后,气化炉中煤燃烧放热直接对通入的炉顶气进行加热,在热效率、防止析碳堵塞管道、操作压力等方面均大大优于传统的利用管式加热炉加热煤气的方式。
由此,通过采用本发明上述实施例的氧气高炉与气基竖炉联合生产方法可以有效地将钢铁生产短流程与长流程相结合,更加可有效地解决了氧气高炉顶气循环量不足的问题,同时为气基竖炉提供充足的气源。
(4)将预处理还原气从位于气基竖炉底部的冷却气进口通入。
由此将一部分的预处理还原气通过气基竖炉底部喷嘴进入气基竖炉,进而在上升过程中完成气基竖炉冷却段球团渗碳、吸收热态海绵铁显热、达到增强竖炉还原段中心部位的球团还原效果等作用,降低气基竖炉的综合能耗。
根据本发明上述实施例的氧气高炉与气基竖炉联合生产***和联合生产方法还至少具有下列优点之一:
1、气基竖炉与氧气高炉联合生产,即钢铁生产短流程与长流程相结合,消除了部分长流程高能耗、高CO2排放的弊端,同时生产出的DRI是生产高品质钢不可替代的优质铁原料。
2、***中引入气化炉,气化炉可解决高CO含量煤气加热问题,同时增加氧气高炉***造气能力,避免循环煤气量不足。
3、利用气化炉为气基竖炉提供热煤气,取消了传统气基竖炉工艺中的管式加热炉,不仅提高了煤气加热效率,而且避免了煤气中CO在管式加热炉内发生析碳反应堵塞管道的问题。
4、***中脱除了部分CO2的煤气,通过气基竖炉底部的冷却气进口进入竖炉,有如下作用:提高竖炉冷却段球团渗碳量;吸收热态海绵铁显热,降低竖炉综合能耗;增强竖炉还原段中心附近球团还原效果。
5、氧气高炉炉身及炉缸各设置一排风口,经气化炉处理后的热还原气通过这两排风口进入高炉。炉缸处(下进风口),热还原气可以促进煤粉燃烧,同时降低风口回旋区理论燃烧温度;炉身处(上进风口),热还原气可以对高炉上部炉料预热,改善氧气高炉内部热分布。
实施例1
参考图2和4,氧气高炉与气基竖炉联合生产***和方法的具体为:
1)氧气高炉10炉顶煤气经除尘装置30除尘处理后气体分为两部分。第一部分气体进入水煤气变换装置40产生H2,再进入CO2脱除装置50,第二部分气体直接进入CO2脱除装置50,两部分煤气与气基竖炉炉顶煤气混合后脱除部分CO2。此后,煤气再次分为两部分,一部分通过气基竖炉底部喷嘴(冷却气进口)进入气基竖炉20,剩余部分经过加压器60加压后进入气化炉70与氧气及煤粉一同反应,得到H2/CO=1~2:1的高温还原性气体。该气体一部分从氧气高炉的上进风口和下进风口鼓入氧气高炉10内,另一部分通入气基竖炉20的还原气进口,还原氧化球团生产海绵铁。
2)氧气高炉下排风口鼓入常温氧气(氧气纯度≥90%)及喷吹煤粉,上下两排风口均鼓入热循环煤气。
3)气化炉鼓入常温氧气(氧气纯度≥90%)及喷吹煤粉。
4)竖炉炉顶煤气通入CO2脱除装置,与来自高炉的煤气混合,脱除部分CO2
经理论计算,1000m3氧气高炉生产技术指标如下:
氧气高炉氧气消耗量(90%纯度):245Nm3/tHM
氧气高炉煤比:200kg/tHM
氧气高炉焦比:205kg/tHM
炉顶煤气量:1381Nm3/tHM
炉顶煤气成分:CO:48.8%,CO2:36.6%,H2:8.2%,H2O:2.6%,N2:3.8%氧气高炉产量:4200tHM/d
气化炉氧气消耗量(90%纯度):124Nm3/tHM
气化炉煤粉消耗量:180kg/tHM
循环煤气成分:CO:44.5%,H2:49.4%,N2:6.1%
循环煤气温度:900℃
上排风口循环煤气量:358Nm3/tHM
下排风口循环煤气量:400Nm3/tHM
气基竖炉产量:2700tDRI/d
实施例2
与实施例1基本相同,不同之处在于:
经理论计算,3000m3氧气高炉生产技术指标如下:
氧气高炉氧气消耗量(90%纯度):245Nm3/tHM
氧气高炉煤比:200kg/tHM
氧气高炉焦比:178kg/tHM
炉顶煤气量:1357Nm3/tHM
炉顶煤气成分:CO:48.4%,CO2:36.9%,H2:8.3%,H2O:2.6%,N2:3.8%
氧气高炉产量:12600tHM/d
气化炉氧气消耗量(90%纯度):140Nm3/tHM
气化炉煤粉消耗量:200kg/tHM
循环煤气成分:CO:44.8%,H2:49.4%,N2:5.8%
循环煤气温度:1100℃
上排风口循环煤气量:382Nm3/tHM
下排风口循环煤气量:400Nm3/tHM
气基竖炉产量:8000tDRI/d
实施例3
与实施例1基本相同,不同之处在于:
经理论计算,5000m3氧气高炉生产技术指标如下:
氧气高炉氧气消耗量(95%纯度):225Nm3/tHM
氧气高炉煤比:200kg/tHM
氧气高炉焦比:191kg/tHM
炉顶煤气量:1368Nm3/tHM
炉顶煤气成分:CO:49.8%,CO2:37.5%,H2:8.6%,H2O:2.6%,N2:1.5%
氧气高炉产量:21000tHM/d
气化炉氧气消耗量(95%纯度):121Nm3/tHM
气化炉煤粉消耗量:180kg/tHM
循环煤气成分:CO:46.8%,H2:50.0%,N2:3.2%
循环煤气温度:900℃
上排风口循环煤气量:382Nm3/tHM
下排风口循环煤气量:400Nm3/tHM
气基竖炉产量:12700tDRI/d
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (2)

1.一种氧气高炉与气基竖炉联合生产***,其特征在于,包括:
氧气高炉,所述氧气高炉具有上进风口,所述上进风口位于所述氧气高炉的侧壁上且高于所述氧气高炉的炉腰,所述氧气高炉用于炼铁,以便得到铁水,并产生炉渣和高炉炉顶气;
气基竖炉,所述气基竖炉用于炼铁,以便得到铁水,并产生炉渣和竖炉炉顶气;
除尘装置,所述除尘装置与所述氧气高炉的高炉炉顶气出口相连,且适于对所述高炉炉顶气进行除尘处理,并将经过所述除尘处理后的高炉炉顶气分为二部分;
水煤气变换装置,所述水煤气变换装置与所述除尘装置相连,且适于对第一部分高炉炉顶气进行重整,以便提高氢气含量,得到富含氢气的还原气;
二氧化碳脱除装置,所述二氧化碳脱除装置的进气口分别与所述除尘装置、水煤气变换装置和所述气基竖炉的竖炉炉顶气出口相连,且适于脱除第二部分高炉炉顶气、富含氢气的还原气和竖炉炉顶气的混合气体中的0-100%体积的二氧化碳,获得预处理还原气;所述二氧化碳脱除装置与位于所述气基竖炉底部的冷却气进口相连,且适于将所述预处理还原气从所述气基竖炉的底部通入;
加压器,所述加压器与所述二氧化碳脱除装置相连,且适于对所述预处理还原气进行加压处理;以及
气化炉,所述气化炉的进气口与所述加压器相连,所述气化炉的出气口与所述氧气高炉的上进风口、下进风口和所述气基竖炉的还原气进口相连,所述气化炉适于对经过所述加压处理后的预处理还原气进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并将所述高温还原气通入所述氧气高炉的上进风口、下进风口和所述气基竖炉的还原气进口。
2.一种氧气高炉与气基竖炉联合生产方法,其特征在于,包括:
利用氧气高炉进行炼铁,以便得到铁水,并产生炉顶煤气和炉渣,所述氧气高炉具有上进风口,所述上进风口位于所述氧气高炉的侧壁上且高于所述氧气高炉的炉腰;
利用气基竖炉进行炼铁,以便得到铁水,并产生炉渣和竖炉炉顶气;
对所述高炉炉顶气进行除尘处理,并将经过所述除尘处理后的高炉炉顶气分为二部分;
利用水煤气变换装置对第一部分高炉炉顶气进行重整,以便提高氢气含量,得到富含氢气的还原气;
将第二部分高炉炉顶气、所述富含氢气的还原气和所述竖炉炉顶气进行混合,得到混合气体,并脱除所述混合气体中的0-100%体积的二氧化碳,获得预处理还原气;
对所述预处理还原气进行加压处理;以及
利用气化炉对经过所述加压处理后的预处理还原气进行重整和加热,以便提高一氧化碳含量,得到高温还原气,并将所述高温还原气通入所述氧气高炉的下进风口和所述气基竖炉的还原气进口,同时将所述高温还原气的一部分通入所述上进风口,以便利用所述高温还原气对所述氧气高炉内的上部炉料进行预热和还原;
进一步包括:将所述预处理还原气从位于所述气基竖炉底部的冷却气进口通入。
CN201610113537.8A 2016-02-29 2016-02-29 氧气高炉与气基竖炉联合生产***和联合生产方法 Active CN105586452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610113537.8A CN105586452B (zh) 2016-02-29 2016-02-29 氧气高炉与气基竖炉联合生产***和联合生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610113537.8A CN105586452B (zh) 2016-02-29 2016-02-29 氧气高炉与气基竖炉联合生产***和联合生产方法

Publications (2)

Publication Number Publication Date
CN105586452A CN105586452A (zh) 2016-05-18
CN105586452B true CN105586452B (zh) 2018-09-07

Family

ID=55926350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610113537.8A Active CN105586452B (zh) 2016-02-29 2016-02-29 氧气高炉与气基竖炉联合生产***和联合生产方法

Country Status (1)

Country Link
CN (1) CN105586452B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105586455A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105586453A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105586451A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105734190B (zh) * 2016-02-29 2018-09-07 神雾科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105560A (zh) * 1985-07-26 1987-02-04 日本纲管株式会社 高炉的操作方法
CN102220443A (zh) * 2011-06-09 2011-10-19 马鞍山钢铁股份有限公司 高炉炉顶煤气富化利用装置及方法
CN102758048A (zh) * 2012-07-30 2012-10-31 中冶南方工程技术有限公司 原燃料热装、全热氧高炉与竖炉联合生产工艺
CN104212930A (zh) * 2014-09-05 2014-12-17 钢研集团晟华工程技术有限公司 一种二步法冶炼铁水的baosherex炼铁工艺
CN105586453A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105586451A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105586456A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105586455A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105734190A (zh) * 2016-02-29 2016-07-06 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105560A (zh) * 1985-07-26 1987-02-04 日本纲管株式会社 高炉的操作方法
CN102220443A (zh) * 2011-06-09 2011-10-19 马鞍山钢铁股份有限公司 高炉炉顶煤气富化利用装置及方法
CN102758048A (zh) * 2012-07-30 2012-10-31 中冶南方工程技术有限公司 原燃料热装、全热氧高炉与竖炉联合生产工艺
CN104212930A (zh) * 2014-09-05 2014-12-17 钢研集团晟华工程技术有限公司 一种二步法冶炼铁水的baosherex炼铁工艺
CN105586453A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105586451A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105586456A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105586455A (zh) * 2016-02-29 2016-05-18 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105734190A (zh) * 2016-02-29 2016-07-06 北京神雾环境能源科技集团股份有限公司 氧气高炉与气基竖炉联合生产***和联合生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氧气高炉作为IGCC发电流程造气岛的探讨;尹建威等;《钢铁》;20011130;第36卷(第11期);第12页图2 *

Also Published As

Publication number Publication date
CN105586452A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
CN105734190B (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN101260448B (zh) 一种直接使用精矿粉的熔融还原炼铁方法
CN104212930B (zh) 一种二步法冶炼铁水的baosherex炼铁工艺
CN105586452B (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105671228B (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105296699B (zh) 一种避免预还原矿再氧化的熔融还原炼铁装置及方法
CN104878147A (zh) 熔融还原炼铁方法
CN112410494B (zh) 一种可应用细粒度粉矿的悬浮熔融还原炼铁装置及炼铁方法
CN102758048A (zh) 原燃料热装、全热氧高炉与竖炉联合生产工艺
CN105586456A (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN115449579B (zh) 一种低碳熔融还原炼铁方法及装置
CN105586455A (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN105039628B (zh) 全煤基自供热直接还原工艺及全煤基自供热直接还原竖炉
CN107904347B (zh) 一种煤基直接还原竖炉及其还原方法
CN102409126B (zh) 一体式还原炼铁炉及一体式还原炼铁工艺
CN105586453A (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN107099659A (zh) 一种不锈钢母液的冶炼***和方法
SK286892B6 (sk) Spôsob a zariadenie na výrobu surového železa alebo tekutých oceľových polotovarov zo vsádzok obsahujúcich železnú rudu
CN105586451A (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN205839049U (zh) 氧气高炉与气基竖炉联合生产***
CN105586450B (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN102758047A (zh) 一种全热氧高炉与竖炉联合生产工艺
CN105671229B (zh) 氧气高炉与气基竖炉联合生产***和联合生产方法
CN101892340A (zh) 一种利用竖炉进行直接还原制取金属铁的方法
CN109457075A (zh) 一种采用辅助还原的煤基直接还原工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 102200 Beijing city Changping District Machi Town cow Road No. 18

Applicant after: Shenwu Technology Group Co.,Ltd.

Address before: 102200 Beijing city Changping District Machi Town cow Road No. 18

Applicant before: BEIJING SHENWU ENVIRONMENT AND ENERGY TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right
PP01 Preservation of patent right

Effective date of registration: 20190121

Granted publication date: 20180907

PD01 Discharge of preservation of patent
PD01 Discharge of preservation of patent

Date of cancellation: 20220921

Granted publication date: 20180907

PP01 Preservation of patent right
PP01 Preservation of patent right

Effective date of registration: 20220921

Granted publication date: 20180907