CN105572176B - 一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法及应用 - Google Patents

一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法及应用 Download PDF

Info

Publication number
CN105572176B
CN105572176B CN201610101734.8A CN201610101734A CN105572176B CN 105572176 B CN105572176 B CN 105572176B CN 201610101734 A CN201610101734 A CN 201610101734A CN 105572176 B CN105572176 B CN 105572176B
Authority
CN
China
Prior art keywords
preparation
gas sensor
toluene gas
tio
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610101734.8A
Other languages
English (en)
Other versions
CN105572176A (zh
Inventor
张勇
王�琦
杜斌
胡丽华
庞雪辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201610101734.8A priority Critical patent/CN105572176B/zh
Publication of CN105572176A publication Critical patent/CN105572176A/zh
Application granted granted Critical
Publication of CN105572176B publication Critical patent/CN105572176B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Abstract

本发明涉及一种甲苯气体传感器的制备方法,具体是基于非贵金属掺杂复合材料所构建的气敏传感器,可用于检测环境中甲苯气体含量。属于新型纳米功能材料与环境监测技术领域。本发明首先制备了一种新型二维纳米复合材料Mn‑TiO2/g‑C3N4,利用该材料大的比表面积、介孔高气体吸附特性和电子传递受材料表面气体变化而影响敏感的诸多特性,实现了对甲苯气体具有灵敏、快速响应的气敏传感器的构建。

Description

一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方 法及应用
技术领域
本发明涉及一种甲苯气体传感器的制备方法,具体是基于非贵金属掺杂复合材料所构建的气敏传感器,可用于检测环境中甲苯气体含量。属于新型纳米功能材料与环境监测技术领域。
背景技术
甲苯大量用作溶剂和高辛烷值汽油添加剂,也是有机化工的重要原料,易挥发。人体长期接触甲苯可发生神经衰弱综合征,肝肿大,女工***等。皮肤干燥、皲裂、皮炎。
对于甲苯气体的检测方法主要有化学检验法和仪器检验法。化学检验法虽操作简单,但灵敏度不高以及无法重复使用等缺点;仪器检验法,主要使用甲苯气体检测仪表对空气中的甲苯气体浓度进行定量检测,具有灵敏度高、可重复使用、自动化程度高等优点,而被广泛应用到工业生产当中。
对于仪器检验法所使用的甲苯气体检测仪,最核心的部件是对甲苯气体具有定性定量响应的气敏传感器,也就是涂覆有不同纳米功能材料的气敏元件。气敏传感器是一种检测特定气体的传感器,原理是基于声表面波器件的波速和频率会随外界环境的变化而发生漂移。它主要包括半导体气敏传感器、接触燃烧式气敏传感器和电化学气敏传感器等,其中用的最多的是半导体气敏传感器。
灵敏度是气敏传感器气敏特性的重要表征。灵敏度定义为传感器在大气气氛中的电阻值R a 与传感器在一定浓度的被测气体气氛中的电阻值R g 的比值,即
因此,探究吸附性强、稳定性能好、催化活性高、对甲苯气体具有特异性识别和可定量检测的气敏传感材料,进而制备具有灵敏度高、响应快速、恢复时间短等特性的甲苯气体传感器对工业生产、人类健康具有重要的应用价值,同时也是环境监测技术领域研究的重点和难点。
发明内容
本发明的目的在于提供一种制备简单、灵敏度高、检测快速的可用于甲苯气体检测的气敏传感器的制备方法,所制备的传感器,可用于甲苯气体的快速、灵敏检测。基于此目的,本发明首先制备了一种新型二维纳米复合材料,即锰掺杂二氧化钛纳米片原位复合氮化碳二维纳米复合材料Mn-TiO2/g-C3N4,利用该材料大的比表面积、介孔高气体吸附特性和电子传递受材料表面气体变化而影响敏感的诸多特性,实现了对甲苯气体具有灵敏、快速响应的气敏传感器的构建。
本发明采用的技术方案如下:
1. 一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法,所述的非贵金属掺杂复合材料为锰掺杂二氧化钛纳米片原位复合氮化碳二维纳米复合材料Mn-TiO2/g-C3N4
其特征在于,所述的制备方法包括以下制备步骤:
(1)Mn-TiO2/g-C3N4的制备;
(2)甲苯气体传感器的制备;
其中,步骤(1)制备Mn-TiO2/g-C3N4的具体步骤为:
首先,取0.8~1.2 mmol锰盐加入到5 mL钛酸四丁酯中,搅拌过程中,缓慢加入0.5~0.8 mL氢氟酸,160~200 ℃下在反应釜中反应18~24小时,冷却至室温后,用超纯水和无水乙醇离心洗涤三次后,50℃下真空干燥;其次,取150~250 mg干燥后的固体与400mg三聚氰胺混合,并研磨成粉末;然后,将研磨的粉末放入马弗炉中,升温速度为1~3 ℃/min,在 480~560℃下煅烧0.5~5小时;最后,将煅烧后的粉末冷却至室温,即制得Mn-TiO2/g-C3N4
所述的锰盐选自下列之一:硫酸锰、氯化锰、硝酸锰;
步骤(2)制备甲苯气体传感器的具体步骤为:
首先,取步骤(1)中制备的Mn-TiO2/g-C3N4 100 mg和0.5~2.0 mmol钾盐置于研钵中,加入无水乙醇,研磨至糊状后均匀涂覆在绝缘陶瓷管表面形成涂膜,在室温下晾干;然后,将陶瓷管两侧的铂丝以及加热丝与底座进行焊接;最后,将焊接好的元件放置在检测仪器中,通过调节加热电压至4.22V进行老化处理,即制得甲苯气体传感器;
所述的钾盐选自下列之一:硫酸钾、氯化钾、硝酸钾。
2.本发明所述的制备方法所制备的甲苯气体传感器的应用,其特征在于,可以应用于甲苯气体的检测,检出限为0.001 mg/m3
本发明的有益成果
(1)本发明所述的甲苯气体传感器制备简单,操作方便,实现了对甲苯气体的快速、灵敏、高选择性检测,具有市场发展前景;
(2)本发明首次制备了新型基质材料Mn-TiO2/g-C3N4,由于锰在二氧化钛纳米片上的原位生长而充分与二氧化钛纳米片接触,利用锰的金属表面等离子体作用,有效提高了半导体基质电子传递能力和催化活性,解决了二氧化钛纳米片虽然比表面积比较大及介孔高气体吸附特性适用于气敏基质材料,但是气敏活性不高及阻抗变化不稳定的技术问题;同时由于氮化碳g-C3N4的良好的导电性,再加上二氧化钛纳米片在其上的充分分散,极大地增大了电子传递能力,解决了气敏基质材料阻抗随气体变化而快速响应的技术问题;而且,通过钾离子的掺杂,解决了特异性检测甲苯气体的技术问题。因此,该材料的有效制备,具有重要的科学意义和应用价值。
具体实施方式
实施例1 Mn-TiO2/g-C3N4的制备
首先,取0.8 mmol锰盐加入到5 mL钛酸四丁酯中,搅拌过程中,缓慢加入0.5 mL氢氟酸,160 ℃下在反应釜中反应24小时,冷却至室温后,用超纯水和无水乙醇离心洗涤三次后,50 ℃下真空干燥;其次,取150 mg干燥后的固体与400 mg三聚氰胺混合,并研磨成粉末;然后,将研磨的粉末放入马弗炉中,升温速度为1 ℃/min,在 480℃下煅烧5小时;最后,将煅烧后的粉末冷却至室温,即制得Mn-TiO2/g-C3N4
所述的锰盐为硫酸锰。
实施例2 Mn-TiO2/g-C3N4的制备
首先,取1.0 mmol锰盐加入到5 mL钛酸四丁酯中,搅拌过程中,缓慢加入0.6 mL氢氟酸,180 ℃下在反应釜中反应21小时,冷却至室温后,用超纯水和无水乙醇离心洗涤三次后,50 ℃下真空干燥;其次,取200 mg干燥后的固体与400 mg三聚氰胺混合,并研磨成粉末;然后,将研磨的粉末放入马弗炉中,升温速度为2 ℃/min,在 520℃下煅烧2小时;最后,将煅烧后的粉末冷却至室温,即制得Mn-TiO2/g-C3N4
所述的锰盐为氯化锰。
实施例3 Mn-TiO2/g-C3N4的制备
首先,取1.2 mmol锰盐加入到5 mL钛酸四丁酯中,搅拌过程中,缓慢加入0.8 mL氢氟酸, 200 ℃下在反应釜中反应18小时,冷却至室温后,用超纯水和无水乙醇离心洗涤三次后,50 ℃下真空干燥;其次,取250 mg干燥后的固体与400 mg三聚氰胺混合,并研磨成粉末;然后,将研磨的粉末放入马弗炉中,升温速度为3 ℃/min,在 560℃下煅烧0.5小时;最后,将煅烧后的粉末冷却至室温,即制得Mn-TiO2/g-C3N4
所述的锰盐为硝酸锰。
实施例4 甲苯气体传感器的制备
首先,取实施例1中制备的Mn-TiO2/g-C3N4 100 mg和0.5 mmol硫酸钾置于研钵中,加入无水乙醇,研磨至糊状后均匀涂覆在绝缘陶瓷管表面形成涂膜,在室温下晾干;然后,将陶瓷管两侧的铂丝以及加热丝与底座进行焊接;最后,将焊接好的元件放置在检测仪器中,通过调节加热电压至4.22V进行老化处理,即制得甲苯气体传感器,应用于甲苯气体的检测,检出限为0.001 mg/m3
实施例5 甲苯气体传感器的制备
首先,取实施例2中制备的Mn-TiO2/g-C3N4 100 mg和1.2 mmol氯化钾置于研钵中,加入无水乙醇,研磨至糊状后均匀涂覆在绝缘陶瓷管表面形成涂膜,在室温下晾干;然后,将陶瓷管两侧的铂丝以及加热丝与底座进行焊接;最后,将焊接好的元件放置在检测仪器中,通过调节加热电压至4.22V进行老化处理,即制得甲苯气体传感器,应用于甲苯气体的检测,检出限为0.001 mg/m3
实施例6 甲苯气体传感器的制备
首先,取实施例3中制备的Mn-TiO2/g-C3N4 100 mg和2.0 mmol硝酸钾置于研钵中,加入无水乙醇,研磨至糊状后均匀涂覆在绝缘陶瓷管表面形成涂膜,在室温下晾干;然后,将陶瓷管两侧的铂丝以及加热丝与底座进行焊接;最后,将焊接好的元件放置在检测仪器中,通过调节加热电压至4.22V进行老化处理,即制得甲苯气体传感器,应用于甲苯气体的检测,检出限为0.001 mg/m3

Claims (2)

1.一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法,所述的非贵金属掺杂复合材料为锰掺杂二氧化钛纳米片原位复合氮化碳二维纳米复合材料Mn-TiO2/g-C3N4
其特征在于,所述的制备方法包括以下制备步骤:
(1)Mn-TiO2/g-C3N4的制备;
(2)甲苯气体传感器的制备;
其中,步骤(1)制备Mn-TiO2/g-C3N4的具体步骤为:
首先,取0.8~1.2 mmol锰盐加入到5 mL钛酸四丁酯中,搅拌过程中,缓慢加入0.5~0.8mL氢氟酸,160~200 ℃下在反应釜中反应18~24小时,冷却至室温后,用超纯水和无水乙醇离心洗涤三次后,50℃下真空干燥;其次,取150~250 mg干燥后的固体与400mg三聚氰胺混合,并研磨成粉末;然后,将研磨的粉末放入马弗炉中,升温速度为1~3 ℃/min,在 480~560℃下煅烧0.5~5小时;最后,将煅烧后的粉末冷却至室温,即制得Mn-TiO2/g-C3N4
所述的锰盐选自下列之一:硫酸锰、氯化锰、硝酸锰;
步骤(2)制备甲苯气体传感器的具体步骤为:
首先,取步骤(1)中制备的Mn-TiO2/g-C3N4 100 mg和0.5~2.0 mmol钾盐置于研钵中,加入无水乙醇,研磨至糊状后均匀涂覆在绝缘陶瓷管表面形成涂膜,在室温下晾干;然后,将陶瓷管两侧的铂丝以及加热丝与底座进行焊接;最后,将焊接好的元件放置在检测仪器中,通过调节加热电压至4.22V进行老化处理,即制得甲苯气体传感器;
所述的钾盐选自下列之一:硫酸钾、氯化钾、硝酸钾。
2.如权利要求1所述的制备方法所制备的甲苯气体传感器的应用,其特征在于,可以应用于甲苯气体的检测,检出限为0.001 mg/m3
CN201610101734.8A 2016-02-25 2016-02-25 一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法及应用 Expired - Fee Related CN105572176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610101734.8A CN105572176B (zh) 2016-02-25 2016-02-25 一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610101734.8A CN105572176B (zh) 2016-02-25 2016-02-25 一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法及应用

Publications (2)

Publication Number Publication Date
CN105572176A CN105572176A (zh) 2016-05-11
CN105572176B true CN105572176B (zh) 2018-04-03

Family

ID=55882548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610101734.8A Expired - Fee Related CN105572176B (zh) 2016-02-25 2016-02-25 一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法及应用

Country Status (1)

Country Link
CN (1) CN105572176B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112362702B (zh) * 2020-11-13 2023-06-27 安徽工业大学 一种在室温下对甲苯高气敏选择性和低检出限的复合气敏材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041742A (ja) * 2003-07-23 2005-02-17 Nissan Motor Co Ltd 水素吸蔵材料、水素貯蔵装置、水素貯蔵システム、燃料電池車両、及び水素吸蔵材料の製造方法
CN102698784A (zh) * 2012-06-13 2012-10-03 浙江师范大学 一种可见光响应催化剂及其制备方法
CN104307552A (zh) * 2014-11-06 2015-01-28 江苏理工学院 TiO2/g-C3N4复合可见光催化剂的制备方法
CN104722324A (zh) * 2015-04-02 2015-06-24 南昌航空大学 三步法制取Ag-g-C3N4/TiO2三元复合物的方法
CN104826637A (zh) * 2015-02-10 2015-08-12 西北师范大学 BiOBr/Bi2O3异质结复合催化剂的制备方法
CN105148967A (zh) * 2015-07-18 2015-12-16 常州大学 一种掺氮的二氧化钛/石墨相氮化碳光催化材料的制备方法
CN105195200A (zh) * 2015-10-09 2015-12-30 江苏大学 g-C3N4@TiO2空心球复合光催化剂的制备方法及应用
CN105301062A (zh) * 2015-10-29 2016-02-03 东北大学 一种基于分级多孔wo3微米球的气体传感器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041742A (ja) * 2003-07-23 2005-02-17 Nissan Motor Co Ltd 水素吸蔵材料、水素貯蔵装置、水素貯蔵システム、燃料電池車両、及び水素吸蔵材料の製造方法
CN102698784A (zh) * 2012-06-13 2012-10-03 浙江师范大学 一种可见光响应催化剂及其制备方法
CN104307552A (zh) * 2014-11-06 2015-01-28 江苏理工学院 TiO2/g-C3N4复合可见光催化剂的制备方法
CN104826637A (zh) * 2015-02-10 2015-08-12 西北师范大学 BiOBr/Bi2O3异质结复合催化剂的制备方法
CN104722324A (zh) * 2015-04-02 2015-06-24 南昌航空大学 三步法制取Ag-g-C3N4/TiO2三元复合物的方法
CN105148967A (zh) * 2015-07-18 2015-12-16 常州大学 一种掺氮的二氧化钛/石墨相氮化碳光催化材料的制备方法
CN105195200A (zh) * 2015-10-09 2015-12-30 江苏大学 g-C3N4@TiO2空心球复合光催化剂的制备方法及应用
CN105301062A (zh) * 2015-10-29 2016-02-03 东北大学 一种基于分级多孔wo3微米球的气体传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
synthesis of g-c3n4/Tio2 with enhanced photocatalytic activity for h2 evolution by a simple method;jjunxian Wang,Jie Huang,Haolong Xie ,Alian Qu;《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》;20140415;第39卷(第12期);第6354-6355页 *

Also Published As

Publication number Publication date
CN105572176A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105717168B (zh) 一种基于二氧化钛纳米片负载贵金属的硫化氢气体传感器的制备方法及应用
CN105699439B (zh) 一种基于氮化碳负载金属及金属氧化物复合材料的甲醇气体传感器的制备方法及应用
Li et al. In2O3/SnO2 heterojunction microstructures: Facile room temperature solid-state synthesis and enhanced Cl2 sensing performance
Sun et al. Chemiresistive sensor arrays based on noncovalently functionalized multi-walled carbon nanotubes for ozone detection
Sahm et al. Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements
CN109342522B (zh) 一种基于聚吡咯/石墨烯复合材料的电阻型nh3传感器、制备方法及其应用
Tang et al. All-solid-state nitrate-selective electrode and its application in drinking water
CN105891271A (zh) 一种基于石墨烯/二氧化锡/氧化锌复合材料的电阻型气体传感器、制备方法及其应用
CN110887874B (zh) 一种基于钙钛矿的湿敏传感器及其制备方法和用途
CN108844999B (zh) 用于检测VOCs的利用g-C3N4修饰的多孔氧化锌纳米片复合气敏材料的合成方法
CN105158412B (zh) 一种基于二硫化钼负载的双金属合金纳米复合材料构建的芳烃气体传感器的制备方法
CN105606655B (zh) 一种基于二维多孔纳米复合材料负载钯的丙酮气体传感器的制备方法及应用
Tian et al. Trace level detection of hydrogen gas using birnessite-type manganese oxide
CN108508062A (zh) 一种基于MoO3纳米敏感材料的三乙胺传感器、制备方法及其应用
CN105136977B (zh) 一种二硫化钼基双金属纳米复合材料构建的气体传感器的制备方法
CN105572176B (zh) 一种基于非贵金属掺杂复合材料的甲苯气体传感器的制备方法及应用
CN105758994B (zh) 一种基于氮化碳负载锰掺杂二维纳米复合材料的甲醛气体传感器的制备方法及应用
CN105628745B (zh) 一种基于二氧化钛基多孔纳米复合材料的二氧化氮气体传感器的制备方法及应用
Oh et al. Novel designed quaternary CuZnSnSe semiconductor combined graphene-polymer (CuZnSnSe-G-PPy) composites for highly selective gas-sensing properties
CN105158306B (zh) 一种用于挥发性有机物检测的气体传感器的制备方法
CN105699438A (zh) 基于锰掺杂硫化锌纳米晶的***物传感器阵列的制备方法
CN105572175B (zh) 一种基于二氧化钛纳米片的二甲苯气体传感器的制备方法及应用
Borhade et al. Synthesis, characterization and gas sensing performance of nano-crystalline ZrO 2, 5% Y/ZrO 2 and Ag–5% Y/ZrO 2 catalyst
WO2018158692A1 (en) Formaldehyde gas sensor and method for producing the same
CN105021656B (zh) 一种氯仿气体传感器的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180403