CN105559947A - 一种由O-intersecting lines单元填充的多孔植入体的制备方法 - Google Patents

一种由O-intersecting lines单元填充的多孔植入体的制备方法 Download PDF

Info

Publication number
CN105559947A
CN105559947A CN201510940064.4A CN201510940064A CN105559947A CN 105559947 A CN105559947 A CN 105559947A CN 201510940064 A CN201510940064 A CN 201510940064A CN 105559947 A CN105559947 A CN 105559947A
Authority
CN
China
Prior art keywords
porous
porous implant
preparation
implant
entity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510940064.4A
Other languages
English (en)
Inventor
张春雨
孙学通
陈贤帅
林志生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Advanced Technology of CAS
Original Assignee
Guangzhou Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Advanced Technology of CAS filed Critical Guangzhou Institute of Advanced Technology of CAS
Priority to CN201510940064.4A priority Critical patent/CN105559947A/zh
Publication of CN105559947A publication Critical patent/CN105559947A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2825Femur
    • A61F2002/2832Femoral neck
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种由O-intersecting?lines单元填充的多孔植入体的制备方法,具体操作如下:绘制O-intersecting?lines单元的三维模型,通过给定具体尺寸控制其孔径、壁厚以及孔隙率,生成单元晶胞实体,对其进行复制阵列操作,得到空间多孔网络实体,导入股骨三维曲面模型,对模型缩放至实际需要的比例,对多孔网络实体和股骨三维曲面进行裁剪与布尔运算操作,得到多孔主体部分,通过三维建模绘制股骨柄端和螺钉定位孔部位,合并多孔主体部分使之成为单一输出多孔植入体实体,将其保存成输出格式文件并传输至分层软件中,加底面支撑,采用3D打印机打印多孔植入体实体,清理基板,取出多孔植入体,对其进行喷砂处理并封装。该制备方法能生成规则统一的而不会出现封闭的单元,能保证受力的均匀性。

Description

一种由O-intersecting lines单元填充的多孔植入体的制备方法
技术领域
本发明所属范畴为生物医疗器械领域,涉及一种多孔植入体的制备方法,具体涉及一种由O-intersectinglines(圆柱相贯线)单元填充的多孔植入体的制备方法。
背景技术
人体中最长的长管状骨是股骨,其可以分为一体两端,类似的骨头如肱骨等。股骨又称大腿骨,其主要用于支撑人体的躯干、骨盆等,是负重最多的骨头,在人类等众多动物中都是极其重要的。
然而,由于一些不良的疾病或创伤等导致股骨断裂并造成大面积的骨缺损,且无法通过自身组织进行愈合时,则需要考虑骨移植,特别是对于一些老年人,最好的治疗方法就是人工骨或置换关节,这样可以避免术后发生股骨头缺血坏死的情况。股骨作为人体中支撑和负重最多的骨骼结构,必须加以重视。
当前已有很多骨移植的技术。传统上使用实心金属骨移植,虽然成本低,但是植入体自重过大,会使患者感到不适,而且其会造成明显的应力遮蔽效应,这将导致原生骨组织不能很好的受到外界力的刺激,引起其软化,不仅如此,还因为实心金属植入体未能提供足够的空间用于诱导原始组织的再生长,最后可能会导致原生骨组织脱落等,因此这种技术不能很好的解决骨缺损问题;另外有可降解生物材料作为骨植入体的嫁接技术,这种可降解生物材料能够适应宿主的原生组织,不会产生明显的排斥反应,但是,其强度难免是不足的,而作为股骨结构的植入体,基于股骨的负重作用,需要植入体有足够的强度,因此这种采用可降解生物材料作为骨植入体也不是最佳选择。
传统对于多孔骨小梁的设计方法主要还是基于一定的算法和图像处理技术,通过对人体骨微观结构图像进行采集,提取周围轮廓,得到的数据进行插值修补生成矢量图,最后将各层数据进行求和得到三维多孔结构。这种设计难免出现封闭单元,而封闭单元将不适合骨组织的再生和长入等,因为对于股骨模型,保证骨小梁之间的连通是非常必要的,另外,这种方式难以生成规则统一的单元,因此难以保证受力的均匀性。
发明内容
有鉴于此,本发明旨在针对传统骨植入体的缺点及骨小梁设计的困难上提出改进办法,其主要是通过设计一种由O-intersectinglines单元填充的多孔植入体,并针对股骨模型进行设计和制造,用以实现骨植入体的简易设计及制造,最终为股骨植入技术提供良好的医学参考价值。
本发明通过以下技术手段解决上述问题:
一种由O-intersectinglines单元填充的多孔植入体,其主要面向股骨柄,包括股骨柄端、多孔主体部分和螺钉定位孔部位,所述股骨柄端用于定位所述多孔植入体,所述螺钉定位孔部位用于固定植入体与宿主,所述多孔主体部分主要由O-intersectinglines单元填充而成的三维贯通多孔网络实体,所述多孔网络实体是由O-intersectinglines单元圆柱体在空间相贯交叉所扫描而成的镂空实体,所述多孔网络实体的孔径为400-1000μm、单元壁厚为80-120μm、孔隙率为55%-85%。
进一步的,所述镂空实体由O-intersectinglines单元圆柱面在空间两两互相垂直、线性堆叠而成。
进一步的,所述多孔植入体主要由可植入人体金属材料制成,优选纯钛金属、钛合金、不锈钢和钴铬钼合金。
进一步的,所述O-intersectinglines单元形式为二阶圆柱相贯单元结构或三阶圆柱相贯单元结构。
优选的,所述O-intersectinglines单元形式为二阶圆柱单元时所述多孔网格实体孔径为500μm、管道壁厚为100μm、孔隙率为72%;所述O-intersectinglines单元形式为三阶圆柱单元时所述多孔网格实体孔径为500μm、管道壁厚为100μm、孔隙率为69%。
优选的,所述股骨柄端、所述多孔主体部分和所述螺钉定位孔部位连成一个整体,不需另外装配直接一次性成型。
本发明所述的多孔植入体的制备方法包括以下步骤:
S1.在计算机上利用三维设计软件绘制O-intersectinglines单元的三维模型,三维模型圆柱面在空间两两互相垂直,线性堆叠,通过给定具体尺寸控制其孔径、壁厚以及孔隙率,生成单元晶胞实体;
S2.对单元晶胞实体进行复制阵列操作,得到空间多孔网络实体;
S3.导入通过逆向工程得到的股骨三维曲面模型,对模型缩放至实际需要的比例;
S4.对多孔网络实体和股骨三维曲面进行裁剪与布尔运算操作,得到多孔主体部分;
S5.通过三维建模绘制股骨柄端和螺钉定位孔部位,并合并多孔主体部分使之成为单一输出多孔植入体实体;
S6.将多孔植入体实体保存成输出格式文件并传输至分层软件中,加底面支撑;
S7.打开光纤选择性激光熔化设备金属材料3D打印机,对多孔植入体实体进行打印;
S8.清理基板,用铲锉将3D打印的多孔植入体取出;
S9.对多孔植入体进行喷砂处理,使其表面光洁;
S10.对多孔植入体进行封装。
优选的,步骤S1中,所述三维设计软件为solidworks或pro-eUG。
优选的,步骤S6中,所述输出格式文件为stl,并且所述分层软件为ontofab。
优选的,步骤S7中,所述光纤选择性激光熔化设备金属材料3D打印机型号为SLM125HL。
进一步,步骤S7中,所述打印参数设定为:纯钛密度为4.55g/cm3、激光光斑直径d=80-85μm、扫描间距h=100-200μm、功率P=70-100W、扫描速度V=100-500mm/s、铺粉厚度t=40-70μm。
本发明提供了由O-intersectinglines单元填充的多孔植入体及其制备方法,与现有技术相比,由此镂空实体所堆叠而成的多孔网络结构接近骨结构,具有高孔隙率、高连通率及较大的表面接触面积,适合新生骨长入及营养组织液的流通,多孔结构与纯钛材料提供足够高强度也避免太多应力遮挡,高度互联的贯通孔结构能够提供广泛的骨长入,理想材料使得摩擦系数提供良好的初始稳定性,具备良好植入体的潜力,具有可观的临床医用前景;多孔植入体的制备方法更可靠可行,便于采用3D打印进行加工。
附图说明
图1为二阶O-intersectinglines单元示意图;
图2为三阶O-intersectinglines单元示意图;
图3为二阶O-intersectinglines单元堆叠示意图;
图4为三阶O-intersectinglines单元堆叠示意图;
图5为由O-intersectinglines单元填充的多孔植入体示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合附图和具体的实施例对本发明的技术方案进行详细说明。
请参照图1、图3和图5,一种由O-intersectinglines单元填充的多孔植入体,其主要面向股骨柄,包括股骨柄端、多孔主体部分和螺钉定位孔部位,所述股骨柄端用于定位所述多孔植入体,所述螺钉定位孔部位用于固定植入体与宿主,所述多孔主体部分主要由O-intersectinglines单元填充而成的三维贯通多孔网络实体,所述O-intersectinglines单元形式为二阶圆柱相贯单元结构,所述多孔网络实体是由O-intersectinglines单元圆柱体在空间相贯交叉所扫描而成的镂空实体,所述镂空实体由O-intersectinglines单元圆柱面在空间两两互相垂直、线性堆叠而成,所述多孔网格实体孔径为500μm、管道壁厚为100μm、孔隙率为72%,所述多孔植入体主要由可植入人体金属材料制成,优选纯钛金属、钛合金、不锈钢和钴铬钼合金,所述股骨柄端、所述多孔主体部分和所述螺钉定位孔部位连成一个整体,不需另外装配直接一次性成型。
请参照图2、图4和图5,一种由O-intersectinglines单元填充的多孔植入体,其主要面向股骨柄,包括股骨柄端、多孔主体部分和螺钉定位孔部位,所述股骨柄端用于定位所述多孔植入体,所述螺钉定位孔部位用于固定植入体与宿主,所述多孔主体部分主要由O-intersectinglines单元填充而成的三维贯通多孔网络实体,所述O-intersectinglines单元形式为三阶圆柱相贯单元结构,所述多孔网络实体是由O-intersectinglines单元圆柱体在空间相贯交叉所扫描而成的镂空实体,所述镂空实体由O-intersectinglines单元圆柱面在空间两两互相垂直、线性堆叠而成,所述多孔网格实体孔径为500μm、管道壁厚为100μm、孔隙率为69%,所述多孔植入体主要由可植入人体金属材料制成,优选纯钛金属、钛合金、不锈钢和钴铬钼合金,所述股骨柄端、所述多孔主体部分和所述螺钉定位孔部位连成一个整体,不需另外装配直接一次性成型。
本发明所述的多孔植入体的制备方法包括以下步骤:
S1.在计算机上利用三维设计软件绘制O-intersectinglines单元的三维模型,三维模型圆柱面在空间两两互相垂直,线性堆叠,通过给定具体尺寸控制其孔径、壁厚以及孔隙率,生成单元晶胞实体;
具体如下:在计算机上运用solidworks三维设计软件,绘制O-intersectinglines二阶或三阶圆柱相贯线性空间网格单元,标注尺寸使孔径大小为500μm、壁厚大小为100μm、孔隙率为65%-75%;
S2.对单元晶胞实体进行复制阵列操作,得到空间多孔网络实体;
S3.导入通过逆向工程得到的股骨三维曲面模型,对模型缩放至实际需要的比例;
S4.对多孔网络实体和股骨三维曲面进行裁剪与布尔运算操作,得到多孔主体部分;
S5.通过三维建模绘制股骨柄端和螺钉定位孔部位,并合并多孔主体部分使之成为单一输出多孔植入体实体;
S6.将多孔植入体实体保存成输出格式文件并传输至分层软件中,加底面支撑;
其中,输出格式文件stl,分层软件为ontofab;
S7.打开光纤选择性激光熔化设备金属材料3D打印机,对多孔植入体实体进行打印;
具体如下:打开SLM125HL光纤选择性激光熔化设备金属材料3D打印机,对多孔植入体进行打印,其中打印参数设置为:纯钛密度为4.55g/cm3、激光光斑直径d=83μm、扫描间距h=100-200μm、功率P=70-100W、扫描速度V=100-500mm/s、铺粉厚度t=30-70μm;
S8.清理基板,用铲锉将3D打印的多孔植入体取出;
S9.对多孔植入体进行喷砂处理,使其表面光洁;
S10.对多孔植入体进行封装。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (5)

1.一种由O-intersectinglines单元填充的多孔植入体的制备方法,其特征在于,包括以下步骤:
S1.在计算机上利用三维设计软件绘制O-intersectinglines单元的三维模型,三维模型圆柱面在空间两两互相垂直,线性堆叠,通过给定具体尺寸控制其孔径、壁厚以及孔隙率,生成单元晶胞实体;
S2.对单元晶胞实体进行复制阵列操作,得到空间多孔网络实体;
S3.导入通过逆向工程得到的股骨三维曲面模型,对模型缩放至实际需要的比例;
S4.对多孔网络实体和股骨三维曲面进行裁剪与布尔运算操作,得到多孔主体部分;
S5.通过三维建模绘制股骨柄端和螺钉定位孔部位,并合并多孔主体部分使之成为单一输出多孔植入体实体;
S6.将多孔植入体实体保存成输出格式文件并传输至分层软件中,加底面支撑;
S7.打开光纤选择性激光熔化设备金属材料3D打印机,对多孔植入体实体进行打印;
S8.清理基板,用铲锉将3D打印的多孔植入体取出;
S9.对多孔植入体进行喷砂处理,使其表面光洁;
S10.对多孔植入体进行封装。
2.根据权利要求1所述的多孔植入体的制备方法,其特征在于,步骤S1中,所述三维设计软件为solidworks或pro-eUG。
3.根据权利要求1所述的多孔植入体的制备方法,其特征在于,步骤S6中,所述输出格式文件为stl,并且所述分层软件为ontofab。
4.根据权利要求1所述的多孔植入体的制备方法,其特征在于,步骤S7中,所述光纤选择性激光熔化设备金属材料3D打印机型号为SLM125HL。
5.根据权利要求1所述的多孔植入体的制备方法,其特征在于,步骤S7中,所述打印参数设定为:纯钛密度为4.55g/cm3、激光光斑直径d=80-85μm、扫描间距h=100-200μm、功率P=70-100W、扫描速度V=100-500mm/s、铺粉厚度t=40-70μm。
CN201510940064.4A 2015-12-15 2015-12-15 一种由O-intersecting lines单元填充的多孔植入体的制备方法 Pending CN105559947A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510940064.4A CN105559947A (zh) 2015-12-15 2015-12-15 一种由O-intersecting lines单元填充的多孔植入体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510940064.4A CN105559947A (zh) 2015-12-15 2015-12-15 一种由O-intersecting lines单元填充的多孔植入体的制备方法

Publications (1)

Publication Number Publication Date
CN105559947A true CN105559947A (zh) 2016-05-11

Family

ID=55870979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510940064.4A Pending CN105559947A (zh) 2015-12-15 2015-12-15 一种由O-intersecting lines单元填充的多孔植入体的制备方法

Country Status (1)

Country Link
CN (1) CN105559947A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106109064A (zh) * 2016-06-15 2016-11-16 东北大学 一种脊柱融合器
WO2018019215A1 (zh) * 2016-07-29 2018-02-01 北京形梦信息技术有限公司 一种骨修复支架及其制备方法
CN107790719A (zh) * 2017-11-13 2018-03-13 成都优材科技有限公司 基于激光选区熔化的金属精细多孔结构成型方法
CN108245288A (zh) * 2018-03-26 2018-07-06 江苏天行增材制造科技有限公司 一种治疗桡骨远端肿瘤的3d打印假体及制造方法
CN109622958A (zh) * 2018-12-20 2019-04-16 华中科技大学 一种采用极小曲面多孔结构制备钛合金植入体的方法
CN110384573A (zh) * 2018-04-18 2019-10-29 智塑健康科技有限公司 用于髋关节植入物的轻质股骨柄
CN111818879A (zh) * 2019-10-15 2020-10-23 宽岳医疗器材(苏州)有限公司 植入物及其制造方法和孔隙率计算方法
WO2021080243A1 (ko) * 2019-10-23 2021-04-29 주식회사 비트러스트메디텍 동물용 대퇴골 임플란트
JP7204177B2 (ja) 2018-08-23 2023-01-16 株式会社デルコ 人工股関節用部品およびその製造方法
US11751997B2 (en) 2019-10-15 2023-09-12 b-ONE Medical (Suzhou) Co., Ltd. Implant and a method of making the implant and a method of calculating porosity of a porous material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058167A1 (en) * 1998-05-14 1999-11-18 Hayes Medical, Inc. Implant with composite coating
CN201394098Y (zh) * 2009-06-01 2010-02-03 北京爱康宜诚医疗器材有限公司 人工髋关节骨融合股骨柄
US20110014081A1 (en) * 2004-12-30 2011-01-20 Howmedica Osteonics Corp. Laser-produced porous structure
CN102796910A (zh) * 2012-01-31 2012-11-28 重庆润泽医药有限公司 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法
EP2647453A2 (en) * 2012-04-06 2013-10-09 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
CN203291079U (zh) * 2013-06-13 2013-11-20 重庆润泽医药有限公司 一种髋关节股骨柄替换物
CN103495731A (zh) * 2013-09-03 2014-01-08 广州中国科学院先进技术研究所 一种选择性激光熔化制备纯钛多孔结构的方法
CN104646669A (zh) * 2013-11-25 2015-05-27 广州中国科学院先进技术研究所 生物医用多孔纯钛植入材料及其制备方法
CN104784760A (zh) * 2015-03-25 2015-07-22 华南协同创新研究院 一种低弹性模量一体化钛基股骨柄及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999058167A1 (en) * 1998-05-14 1999-11-18 Hayes Medical, Inc. Implant with composite coating
US20110014081A1 (en) * 2004-12-30 2011-01-20 Howmedica Osteonics Corp. Laser-produced porous structure
CN201394098Y (zh) * 2009-06-01 2010-02-03 北京爱康宜诚医疗器材有限公司 人工髋关节骨融合股骨柄
CN102796910A (zh) * 2012-01-31 2012-11-28 重庆润泽医药有限公司 一种采用激光选区烧结成型制备多孔钽医用植入材料的方法
EP2647453A2 (en) * 2012-04-06 2013-10-09 Howmedica Osteonics Corp. Surface modified unit cell lattice structures for optimized secure freeform fabrication
CN203291079U (zh) * 2013-06-13 2013-11-20 重庆润泽医药有限公司 一种髋关节股骨柄替换物
CN103495731A (zh) * 2013-09-03 2014-01-08 广州中国科学院先进技术研究所 一种选择性激光熔化制备纯钛多孔结构的方法
CN104646669A (zh) * 2013-11-25 2015-05-27 广州中国科学院先进技术研究所 生物医用多孔纯钛植入材料及其制备方法
CN104784760A (zh) * 2015-03-25 2015-07-22 华南协同创新研究院 一种低弹性模量一体化钛基股骨柄及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARCO A. LOPEZ-HEREDIA等: "Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering", 《BIOMATERIALS》 *
肖冬明: "面向植入体的多孔结构建模及激光选区熔化直接制造研究", 《中国博士学位论文全文数据库》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106109064A (zh) * 2016-06-15 2016-11-16 东北大学 一种脊柱融合器
WO2018019215A1 (zh) * 2016-07-29 2018-02-01 北京形梦信息技术有限公司 一种骨修复支架及其制备方法
CN107661160A (zh) * 2016-07-29 2018-02-06 北京形梦信息技术有限公司 一种骨修复支架及其制备方法
CN107790719A (zh) * 2017-11-13 2018-03-13 成都优材科技有限公司 基于激光选区熔化的金属精细多孔结构成型方法
CN108245288A (zh) * 2018-03-26 2018-07-06 江苏天行增材制造科技有限公司 一种治疗桡骨远端肿瘤的3d打印假体及制造方法
CN110384573B (zh) * 2018-04-18 2020-09-22 智塑健康科技有限公司 用于髋关节植入物的轻质股骨柄
CN110384573A (zh) * 2018-04-18 2019-10-29 智塑健康科技有限公司 用于髋关节植入物的轻质股骨柄
JP7204177B2 (ja) 2018-08-23 2023-01-16 株式会社デルコ 人工股関節用部品およびその製造方法
CN109622958B (zh) * 2018-12-20 2020-06-02 华中科技大学 一种采用极小曲面多孔结构制备钛合金植入体的方法
CN109622958A (zh) * 2018-12-20 2019-04-16 华中科技大学 一种采用极小曲面多孔结构制备钛合金植入体的方法
CN111818879A (zh) * 2019-10-15 2020-10-23 宽岳医疗器材(苏州)有限公司 植入物及其制造方法和孔隙率计算方法
CN111818879B (zh) * 2019-10-15 2023-05-12 宽岳医疗器材(苏州)有限公司 植入物及其制造方法和孔隙率计算方法
US11751997B2 (en) 2019-10-15 2023-09-12 b-ONE Medical (Suzhou) Co., Ltd. Implant and a method of making the implant and a method of calculating porosity of a porous material
WO2021080243A1 (ko) * 2019-10-23 2021-04-29 주식회사 비트러스트메디텍 동물용 대퇴골 임플란트
KR20210048198A (ko) * 2019-10-23 2021-05-03 주식회사 비트러스트메디텍 동물용 대퇴골 임플란트
KR102350091B1 (ko) 2019-10-23 2022-01-12 주식회사 비트러스트메디텍 동물용 대퇴골 임플란트

Similar Documents

Publication Publication Date Title
CN105559947A (zh) 一种由O-intersecting lines单元填充的多孔植入体的制备方法
CN105496611A (zh) 一种由O-intersecting lines单元填充的多孔植入体
CN204581484U (zh) 一种具有三维贯通多孔结构的3d打印骨螺钉
US8532806B1 (en) Process for manufacture of joint implants
CN101416906B (zh) 一种医用金属人工骨小梁
San Cheong et al. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants
He et al. Custom fabrication of a composite hemi‐knee joint based on rapid prototyping
CN109172049A (zh) 一种基于分层片状杆连接的多孔网状结构骨科修复植入体的设计制作方法及植入体
CN104758042A (zh) 一种具有三维贯通多孔结构的骨螺钉
Cai et al. A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement
CN104887351A (zh) 一种高强度小孔径金属骨小梁及其制备方法
CN102579163A (zh) 骶骨人工假体
Mumith et al. Additive manufacturing: current concepts, future trends
CN104784760A (zh) 一种低弹性模量一体化钛基股骨柄及其制备方法
Jiankang et al. Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques
CN105326583A (zh) 一种髂骨缺损重建假体
JP2021526061A (ja) 指関節プロテーゼ及びその製造方法
CN110840626A (zh) 一种股骨柄假体的设计方法
CN105342728A (zh) 一种全骶骨人工假体
Chen et al. Multi-level customized 3D printing for autogenous implants in skull tissue engineering
CN102429747A (zh) 寰椎融合假体
CN109472096B (zh) 一种宏观与微观拓扑优化结合的植入体设计方法
CN202342236U (zh) 融合假体
Tian et al. Biological response of 3D-printed β-tricalcium phosphate bioceramic scaffolds with the hollow tube structure
Cheng et al. 3D-printed porous condylar prosthesis for temporomandibular joint replacement: Design and biomechanical analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160511