CN105555707B - 液态烃热中和重整的催化剂和方法 - Google Patents

液态烃热中和重整的催化剂和方法 Download PDF

Info

Publication number
CN105555707B
CN105555707B CN201480035568.5A CN201480035568A CN105555707B CN 105555707 B CN105555707 B CN 105555707B CN 201480035568 A CN201480035568 A CN 201480035568A CN 105555707 B CN105555707 B CN 105555707B
Authority
CN
China
Prior art keywords
catalyst
hydrogen
gas
rich
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480035568.5A
Other languages
English (en)
Other versions
CN105555707A (zh
Inventor
F·I·奥-姆哈施
S·阿莫德
R·C·庞特斯比藤考特
M·J·B·卡都索
V·P·德索扎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petroleo Brasileiro SA Petrobras
Saudi Arabian Oil Co
King Fahd University of Petroleum and Minerals
Original Assignee
Petroleo Brasileiro SA Petrobras
Saudi Arabian Oil Co
King Fahd University of Petroleum and Minerals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleo Brasileiro SA Petrobras, Saudi Arabian Oil Co, King Fahd University of Petroleum and Minerals filed Critical Petroleo Brasileiro SA Petrobras
Publication of CN105555707A publication Critical patent/CN105555707A/zh
Application granted granted Critical
Publication of CN105555707B publication Critical patent/CN105555707B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • C01B2203/1017Packed bed of catalytic structures, e.g. particles, packing elements characterised by the form of the structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)

Abstract

本发明涉及用于石油基液态烃燃料的热中和重整的四组分催化剂(Ni‑Ce2O3‑Pt‑La2O3;K促进剂)和七组分催化剂(Ni,La2O3,Ce2O3,Pt,ZrO2,Rh和Re)以及铝酸镁载体。

Description

液态烃热中和重整的催化剂和方法
技术领域
本发明涉及重整石油基液态烃燃料的催化剂和方法,更具体地,涉及重整石油基液态烃燃料的多组分催化剂和热中和方法。
背景技术
常规合成气/氢生产技术主要使用天然气、LPG和轻质石脑油作为原料。到目前为止,由于存在对快速去活化催化剂起到重要作用的硫、高芳族含量和高碳含量,没有成熟的催化剂用于由重质液态烃燃料(C10+)生产合成气或氢。
随着对于用于新兴运输技术中的加氢处理的合成气/氢的需求增加,对由其它资源而不是天然气和LPG生产合成气/氢的需求变得甚至更加重要。
尽管全世界每年的总氢产量超过5000千亿m3/年,但对甚至更大量的氢需求仍是主要的瓶颈,尤其是随着生产超低硫燃料的新立法要求和压力,同时可得的油资源变得更重且具有较高含量的硫和金属。
精炼厂中对额外氢的需求明显增长,并且对于可预见的未来将以快节奏继续增长。
此外,用于汽车和固定应用的氢基燃料电池由于多种原因(包括它们的较高效率和较低排放)而大受欢迎。虽然如此,在汽车和居住应用中使用纯氢作为燃料仍面临许多障碍和具有许多限制。运输氢的基础设施不足,更换气态氢可能很慢,并且存储氢也有问题。生产和使用氢的替代方案的范围从未来太阳能基氢生产到更实用的烃重整。使用液态/气态烃燃料来生产氢被认为是大规模生产氢的快速解决方案。除了重整的经济性和容易性,该选择被视为比使用现有分布网络更实际。
由烃燃料转化为氢可以通过若干方法进行,包括烃蒸汽重整(HSR)、部分氧化重整(POR)和自热重整(ATR)。烃蒸汽重整包括在催化剂存在下蒸汽与燃料反应以产生氢和CO,如对于甲烷CH4和辛烷C8H18(2,2,4-三甲基戊烷)的反应式(1)和(2)所给出的,其用于替代汽油。由于蒸汽重整吸热,因此需要燃烧一些燃料和经由换热器将热量转移至重整器。
CH4+H2O=CO+3H2,ΔΗ°298=+206.2kJ/mol (1)
C8H18+8H2O=8CO+17H2,ΔΗ°298=+1273.2kJ/mol (2)
用于车载重整的反应方法的选择取决于多个因素,包括应用的操作特征(例如改变功率需求、快速启动和频繁停车)和燃料电池组的类型。HSR受限于传热,和本身不能快速响应功率需求的变化(即"负荷跟随")。当功率需求快速下降时,催化剂会过热,引起烧结,这将导致活性损失,ATR可以克服HSR的负荷跟随限制,这是因为吸热反应所需要的热量在催化剂床内产生,这种性能允许对改变功率需求的响应更快和启动更快。
为了供应蒸汽重整所需的大量热,自热方法包括:在进入催化重整器之前原料的先期燃烧;然后将经加热的气体引入催化剂床。因此,热量供应受限于反应物气体的热容,和不能实现必要的改进。最近,使用催化燃烧来燃烧一部分烃进料。但由于催化燃烧受限于约1000-1100℃的最大催化剂床温度,该情况也不是完全不同于先期均匀燃烧。
尽管Inui等人在美国专利7,700,005、7,820,140和8,008,226(在本文通过参考引入)中公开了用于产生富氢气体的热中和重整液态烃的各种多组分催化剂,Bittencourt等人的Brazilian专利申请PI000656-7 A2公开了使用负载在铝酸镁上的镍型催化剂(碱促进以增加催化剂活性)蒸汽重整燃料,但本发明的催化剂和方法比现有技术有明显改进,避免了在长期测试重质烃燃料(C10+)期间由硫和焦炭沉积导致的催化剂失活,而硫和焦炭沉积将损害催化剂效率及增加热中和重整成本。
发明内容
在一个实施方案中,本发明提供了用于使用热中和重整方法生产富氢合成气的多组分催化剂,所述热中和重整方法可以在水和富氧气体或空气的存在下用于重整轻质和重质石油基液态烃燃料,并由于在蒸汽重整和燃烧的不同催化功能之间的协同作用而具有低的可检测的由于焦炭形成或硫化导致的催化剂失活。利用高的气时空速实现了液态烃燃料的完全转化。
在上述基础上,已发现本发明方法可有效用于通过使用催化剂使重质液态烃燃料与富氧气体或空气和蒸汽反应产生富氢气体,所述催化剂使燃烧和蒸汽重整反应以组合模式进行。所述催化剂包含在由一种或多种铝或硅的氧化物组成的单一耐火载体上的若干金属组分(Ni、Rh、Re和Pt)和若干氧化物(Ce2O3、La2O3和ZrO2)。热中和重整方法的效率在很大程度上受催化剂影响。七组分催化剂(要求保护的催化剂A)预期比现有技术显示出更长的寿命,这是由于它的蒸汽重整功能、表面积、孔径、脱氢活性的速率(表4)显示出更好的性能以及成本有效性。而四组分催化剂(要求保护的催化剂B)相比于催化剂A和现有技术催化剂甚至更加成本有效,这是因为简化的催化剂制备程序、更少的活性金属和没有氨处理。催化剂B对于处理轻质原料也是优选的。
在本发明的另一个实施方案中,提供一种制备多组分催化剂的方法,所述多组分催化剂包含选自稀土族金属氧化物的多种氧化物组分如氧化镧和氧化铈,和可以包含负载在铝酸镁、铝酸钙或它们的混合物上的周期表第IV族的成员如氧化锆和多种金属组分(包括镍),组合有一种或多种选自铑、铼和铂的金属,以形成蒸汽重整催化剂。而且,已经证明在催化剂载体中结合碱金属可提高效率。
本发明提供了改进的热中和催化剂,该催化剂具有负载在铝酸镁上的七种组分(Ni,Rh,Re,Pt,Ce2O3,La2O3,ZrO2)或者为优选模式的四组分催化剂(Ni,Pt,Ce2O3,La2O3)和在催化剂载体中结合碱金属如钾以提高过程效率。设计所述催化剂结构以强化高氢产量,具有用于避免焦炭形成和催化剂金属硫化两者的意外效果。这提供了具有双重优势的催化剂,也就是说,防止或最小化焦炭形成和同时改进催化剂寿命。
根据本发明的再一个实施方案,还提供了一种生产由氢和少量一氧化碳组成的富氢合成气的方法。该方法包括经多组分催化剂接触气化的液态烃、空气/氧和蒸汽。本发明方法可以经宽范围的操作条件来进行。操作条件水平由所使用的原料和所需转化率决定。
设计本发明催化剂进行热中和重整反应以由液态烃(包括LPG、轻质石脑油、重质石脑油、汽油、煤油、柴油、它们的替代燃料和这些燃料中一些或全部的混合物)生产合成气。催化剂床可以处理非常高的气时空速(GHSV大于45000h-1),由于这个特征,相比于其中5000h-1气时空速用于工业应用的常规蒸汽重整器技术,反应器尺寸可以明显减小。当预期使用该催化剂用于其中反应器尺寸非常重要的车载车辆燃料处理器时,这是重要的功能。本发明的预期应用是集成用于辅助动力应用(APU)的燃料电池技术和燃烧发动机。本发明还可以用于大型精炼和石油化工应用以生产氢或合成气,优势在于相比于常规蒸汽重整催化剂有关防止或最小化焦炭形成以及改进的催化剂寿命。
附图说明
图1的图线给出了根据现有技术方法的运行时间对烃原料转化和干气产品组成(无氮)的百分比。
图2的图线给出了当使用本发明的四组分催化剂时运行时间对烃原料转化和干气产品组成(无氮)的百分比。
图3的图线给出了当使用本发明的七组分催化剂时运行时间对烃原料转化和干气产品组成(无氮)的百分比。
具体实施方式
本发明催化剂包含稀土族金属氧化物的成员如氧化镧和/或氧化铈及它们的混合物,和可以包含IV族的成员如锆氧化物,选自元素镍、镍的可还原化合物及它们的混合物的成员,铂族金属的成员如元素铂或铂的化合物。铂族金属可以用作多种金属,例如两种或三种,包括铑或铑的化合物及它们的混合物。此外,来自元素周期表VIIB的促进剂如铼可以用于提高热中和重整液态烃原料的效率。多组分催化剂负载在铝酸镁、铝酸钙或它们的混合物上。同时,碱金属如钾可以结合至载体以提高对催化剂上焦炭积累的耐受性。
本发明七组分催化剂的组成以及各个成分的重量范围如下:0.5-15%Ni,0.5-10%Ce2O3,0.5-5%La2O3,0.1-2%Pt,0-1%ZrO2,0-2%Rh,和0-2%Re。当存在时,钾的浓度为0.5-5.0%。催化剂的剩余部分包括含有氧化铝(优选θ-氧化铝)、铝酸镁或它们的混合物的耐火载体。还可以结合基于铝酸钙的耐火水泥以增加催化剂的机械强度。催化剂的比表面积为约15-125平方米/克,优选高于50平方米/克。
所述载体可以以不同的形状来提供,例如球形、挤出物和环形,其具有一个或多个孔和其它形状的开孔,这取决于该方法中希望的最大压降。为了生产用于燃料电池的富氢气体,优选使用球形(例如直径为2-3毫米的那些)、简单的挤出物(例如直径为1-4毫米的那些)、复杂的挤出物(例如三叶形或四叶形或拉西环,例如10 x 10 x 4(外径x高x内径))的耐火载体。用于燃料电池的优选形式为蜂窝形。为了大规模生产富氢气体(本文定义为氢高于100,000Nm3/天的生产装置),优选使用具有多个孔的环形载体。
本发明催化剂可以根据各种方法来制备。七组分催化剂(被理解为包含Ni,Rh,Re,Pt,Ce2O3,La2O3和ZrO2)优选通过在载体上浸渍、煅烧和还原多个组分的多步骤程序来制备。催化剂浸渍使用可溶盐组分、优选硝酸盐的水溶液来进行。浸渍的优选顺序为首先浸渍铑和铼金属盐,其当随后热处理时分解以形成相应的氧化物。浸渍之后,复合材料在约120℃以缓慢的加热速率来干燥,优选为约0.5℃/min的速率,然后温度保持在120℃约1小时。然后将温度以相同的速率升至约250℃,和然后温度保持在250℃约1.5小时。所有的热处理利用空气或富氧气体进行。在浸渍后,催化剂优选在富氧气体热处理之前用富氨气体在60℃处理10-30分钟。催化剂制备中的第一步骤结束于在400-450℃温度下富氢气体还原2小时。第二步骤以相似于第一步骤的方式使用Pt和Zr的盐进行。第三步骤相似于第一和第二阶段使用Ni、Ce和La的盐进行。第三步骤中的还原步骤在400-1100℃、优选600-800℃、最优选700-750℃下进行。该最终还原步骤可在氢或合成气生产的过程反应器中原位进行,这具有所导致的成本优势。
本发明优选的实施方案是四组分催化剂,其被理解为包含多个组分Ni、Pt、Ce2O3、La2O3。四组分催化剂优选通过在400-1100℃、优选600-800℃、最优选700-750℃下的单一步骤浸渍、煅烧和还原来制备。耐火载体利用包含Ni、Ce、La和Pt的可溶盐、优选硝酸盐的水溶液来浸渍。浸渍之后,复合材料在约120℃以缓慢的加热速率来干燥,优选为约0.5℃/min的速率,然后温度保持在120℃约1小时。然后将温度以相同的速率升至约250℃,和然后温度保持在250℃约1.5小时。热处理利用空气或富氧气体进行。最后催化剂制备步骤为在400-450℃在空气或富氧气体中煅烧。该最后制备阶段为还原步骤,同时在400-1100℃、优选600-800℃和最优选700-750℃下流动H2或富氢气体。该最终还原步骤可在氢或合成气生产的过程反应器中原位进行,这具有所导致的成本优势。取决于载体中孔的体积,可能需要进行多步骤浸渍、干燥和煅烧以获得所有组分的希望含量。
本发明提供了显著改进的多组分催化剂,该催化剂用于由液态石油馏分如轻质石脑油、煤油和柴油在固定床反应器中与水蒸汽和富含氧的气体反应生产富氢气体的方法。催化剂同时起到吸热蒸汽重整和放热燃烧的催化作用,具有高的热中和重整效率和低的可检测失活。由催化燃烧产生的热量引起在相同催化剂表面上的烃的吸热蒸汽重整,导致超快速重整。
根据本发明制备的催化剂具有所希望的特性:(1)通过消耗所有供应的氧能够完全氧化烃原料,和产生高的燃烧反应热;(2)对于吸热的蒸汽重整反应非常活泼,消耗由氧化反应产生的热量和提供真正的热中和重整;(3)具有长的活性寿命;和(4)能够以非常高的至合成气的转化率处理从轻质石脑油至柴油的液态烃。据信催化剂的良好性能与通过与高热和水热耐受性和低焦炭沉积特性的载体相关的催化剂表面上活性相出现的氧和氢过量有关。
根据本发明的另一个实施方案,还提供了用于生产由氢、一氧化碳和二氧化碳以及少量的甲烷(通常约1.5vol%甲烷)组成的富氢合成气的方法。该方法包括经多组分催化剂接触气化的液态烃、空气/氧和蒸汽。本发明方法可以经宽范围的操作条件来进行。操作条件水平由所使用原料和所要求转化率决定。本发明方法用于以高气时空速由低硫中间馏出物石油馏分(例如重质石脑油、煤油和柴油)生产富氢气体,同时在这些条件下仍保持液态烃完全转化。
放热和吸热反应之间的传热在与本发明催化剂的高活性和稳定性相关的相同催化剂床上直接进行,这允许本发明中液态烃重整所需要的催化反应器体积小于常规蒸汽重整反应器尺寸的1/20,和小于自热重整器尺寸的1/10。此外,可以省去如在常规烃蒸汽重整中需要的加热反应器所需的大的加热炉。
根据本发明,使用铝酸镁载体产生热中和催化剂,相比于基于氧化铝型载体的现有技术具有更高的活性、累积焦炭的趋势降低和较高水平的耐用性。载体的优异特性允许简化制备催化剂的程序,减少了贵金属含量,优选Rh和Re不用于催化剂配制物,这有益于降低催化剂的生产成本。
一般地,相比于现有技术,本发明提供如下优点(表4):
1、简化的和/或较少的催化剂制备步骤
2、较低的催化剂成本
3、较高的液态烃转化率,这对于预期应用很重要
4、所需要的微晶尺寸利用简化的和/或较少的催化剂制备步骤来实现
5、标志较好催化剂性能的较高的表面积
6、提高重质烃转化率的较高的孔体积和孔径
7、标志较好催化剂性能的较高的脱氢活性速率
8、标志较好催化剂性能的甲烷转化的较高的蒸汽重整转化率
现在在实施例中详细描述各个发明,包括具体实施方案和变型,但是本发明不限于这些实施方案、变型或实施例,它们用于使本领域技术人员能够实施和使用本发明。
给出下面的实施例来描述本发明的性质及其实施方式,但不应认为限制本发明内容。给出了两个实施例及一个现有技术实施例来描述本发明。对于每个实施例,详细给出了催化剂制备方法、催化剂加氢活性测试、催化剂蒸汽重整活性测试、微晶尺寸测定、物理特性测定和利用重质石脑油进料的催化剂性能评估。
实施例1(现有技术方法)
催化剂制备方法:
该实施例描述了用于根据现有技术(US7,700,005)重整的热中和方法的具有七种组分的多组分催化剂的制备。
催化剂通过浸渍直径约2-4毫米和载体表面积约85平方米/克的氧化铝球来制备。131克的载体型氧化铝用75.6ml含有0.84克的硝酸铑III(CAS10139-58-9-Sigma Aldrich,产品代码83750)和0.59克的氧化铼VII(CAS1314-68-7-Sigma Aldrich,产品代码1314-68-7)的水溶液来浸渍。催化剂以0.5℃/min的速率从环境温度干燥至60℃和然后在富NH3气氛中暴露于60℃达10分钟。然后催化剂以l℃/min的速率从60℃升至120℃和之后以1.4℃/min的速率从120℃升至350℃进行热处理。然后催化剂在430℃在流动的H2中还原,冷却至30-60℃和暴露于空气流进行钝化,以获得Rh-Re/氧化铝样品。
取少量的该样品用于过程对比。111克的样品Rh-Re/氧化铝用70.3ml含有2.53克的硝酸氧锆水合物(CAS12985-18-3 Sigma Aldrich,产品代码380679)和1.82克的四胺铂(Il)氯化物一水合物(CAS13933-33-0 Alfa Aesar,产品代码10836)的水溶液来浸渍。类似于制备Rh-Re/氧化铝样品进行干燥、煅烧和氢还原步骤以获得Pt-ZrO2/Rh-Re/氧化铝样品。
取少量的该样品再次用于过程对比。100克的Pt-ZrO2/Rh-Re/氧化铝样品用63.3ml含有2.97克的硝酸镧六水合物(CAS10277-43-7Alfa Aesar,产品代码44346)、8.87克的硝酸铈(III)(CAS10294-41-4,Sigma Aldrich,产品代码392219)和33.23克的硝酸镍六水合物(CAS10277-43-7,Sigma Aldrich,产品代码203874)的水溶液来浸渍。类似于制备Pt-ZrO2/Rh-Re/氧化铝进行干燥和煅烧步骤。
然后,催化剂在430℃和然后在430-1160℃在流动的H2中还原,冷却至30℃和暴露于空气流进行钝化,以获得多组分催化剂Ni-Ce2O3-La2O3/Pt-ZrO2/Rh-Re/氧化铝样品。最终催化剂的标称组成(%w/w)为:负载在稳定氧化铝上的0.2%Rh,0.3%Re,0.8%Pt,1.0ZrO2,1.0 La2O3,6%Ni,3%Ce2O3
催化剂加氢活性测试
该实验的目的在于通过测定催化剂的金属面积来评估金属功能。这通过在环己烷脱氢反应中活性测定来评估。环己烷转化使用以下条件在微活性装置中进行:催化剂质量为0.1克,粒度60-270目;40-80ml/min的H2流;环己烷进料通过使氢鼓泡通过维持在10℃的饱和器而获得;大气压和反应温度330-390℃。在反应之前,催化剂在550℃在H2流(40ml/min)中预处理2小时。反应物和产物通过气相色谱(HP5890)使用Plot Al2O3/KCl柱在150℃下操作来分析。活性表示为环己烷的总转化率和脱氢反应速率,由R=X Fao/W给出,其中X=至苯的转化率,W=催化剂质量(g),和流量Fao=环己烷摩尔数(mol/s)。
实施例 脱氢活性速率
现有技术 16.4
催化剂蒸汽重整活性测试
该实验的目的在于使用甲烷评估催化剂的蒸汽重整功能。实验在工业设备(AutoChem II,Micromeritcs)中进行。测试使用200mg的小于170目的粉碎的催化剂进行。催化剂在650℃的温度和大气压下经通过40ml/min含氢气体来预处理和在50℃用水蒸汽饱和10%。在500℃、大气压和蒸汽/碳之比2.3mol/mol下进行甲烷蒸汽重整活性的测定。来自反应器的流出物气体通过气相色谱分析和由甲烷转化率(X%)测定活性。
实施例 蒸汽重整转化率(%)
现有技术 26
微晶尺寸测定
这是为了说明根据本发明使用铝酸镁制备的催化剂(公开于实施例2和3)提供了微晶尺寸中尺寸降低的镍,其不高于使用现有技术利用最贵载体氧化铝获得的镍。金属镍晶体尺寸通过(峰:200)XRD衍射线来估算。据信金属镍颗粒的小尺寸有助于焦炭形成引起的失活较低。
实施例 微晶尺寸(nm)
现有技术 17
物理特性
这是为了描述本发明的高金属BET表面积、孔体积和孔径。
注释:SBET=通过N2吸附的比表面积;Vp=通过N2解吸的孔体积(BJH分布);dm=孔平均直径(通过4V/A)
利用重质石脑油的催化剂性能评估
催化剂性能评估利用重质石脑油燃料在微反应器装置中进行。重质石脑油进料的特性如下:
催化剂评估在固定床流反应器***中进行。反应***由气体和液体进料段、预热段、反应器段和产物收集段组成。气体通过质量流控制器进料;液体进料通过精确HPLC泵来泵送。反应器管具有17.5mm的直径和由Haynes230合金制成。温度由温度控制器监测和控制的三区域电加热炉加热反应器***。提供热电偶来测量反应器的内部温度。水和重质石脑油在进入反应器之前在预加热器中气化和在静态混合器中与空气混合。产物收集段由压力控制阀门、气液分离器、液位控制器和产物釜组成。负载6ml的催化剂和置于反应器管中心在惰性碳化硅层之间。碳化硅层的顶部还用作预热区。
进料混合物在预热区中加热升至350℃。反应器在氮流20l/h下加热升至起始温度410℃。将水泵送至预加热器和气化,和以相当于蒸汽与烃进料(H2O/C)摩尔比2.1的流率输送蒸汽。烃进料以O2/C之比0.5泵送。总气时空速(GHSV)为约45000h-1。在没有外部供热下反应器温度在几分钟内升至约800-820℃。收集气体样品和在两个气相色谱仪(一个装配有TCD和另一个配备有FID)中分析。实验进行60小时以上,图1中所示图线和表1给出了所有的结果。
表1
实施例2(利用七组分催化剂A的本发明)
催化剂制备方法:
该实施例描述了根据本发明使用铝酸镁作为载体制备具有七种组分的多组分催化剂。铝酸镁通过在1050℃在空气中煅烧工业水滑石(SudChemie,产品代码T-2701 1/16英寸,在氧化铝余量中具有30%w/w MgO)4小时来制备。载体具有表面积67.6m2/g、通过N2吸附的孔体积0.35cm3/g、通过水吸收的孔体积0.9cm3/g和铝酸镁的标准X射线衍射特征。催化剂以与实施例1相同的方式来制备,只是最终还原步骤在730℃而不是1160℃下进行。最终催化剂的标称组成(%w/w)为:负载在铝酸镁上的0.2%Rh,0.3%Re,0.8%Pt,1.0 ZrO2,1.%La2O3,6%Ni,3%Ce2O3
催化剂加氢活性测试:
该实验的目的在于通过测定催化剂的金属面积来评估金属功能。这通过在环己烷脱氢反应中活性测定来评估。环己烷转化使用以下条件在微活性装置中进行:催化剂质量为0.1克,粒度60-270目;40-80ml/min的H2流;通过维持在10℃的饱和器进料环己烷;大气压和反应温度330-390℃。在反应之前,催化剂在550℃在H2流(40ml/min)中预处理2小时。反应物和产物通过气相色谱(HP5890)使用Plot A12O3/KCl柱在150℃下操作来分析。活性表示为环己烷的总转化率和脱氢反应速率,由R=X Fao/W给出,其中X=至苯的转化率,W=催化剂质量(g),和流量Fao=环己烷摩尔数(mol/s)。
实施例 脱氢活性速率
A 31
催化剂蒸汽重整活性测试
该实验的目的在于使用甲烷评估催化剂的蒸汽重整功能。实验在工业设备(AutoChem II,Micromeritcs)中进行。测试使用200mg的小于170目的粉碎的催化剂进行。催化剂在650℃的温度和大气压下经通过40ml/min含氢气体来预处理和在50℃用水蒸汽饱和10%。在500℃、大气压和蒸汽/碳之比2.3mol/mol下进行甲烷蒸汽重整活性的测定。来自反应器的流出物气体通过气相色谱分析和由甲烷转化率(X%)测定活性。
实施例 蒸汽重整转化率(%)
A 31
微晶尺寸测定
这是为了描述根据本发明使用铝酸镁制备的催化剂提供了微晶尺寸中尺寸降低的镍,其不高于使用现有技术利用最贵载体氧化铝获得的镍。金属镍晶体尺寸通过(峰:200)XRD衍射线来估算。据信金属镍颗粒的小尺寸有助于焦炭形成引起的失活较低。
实施例 微晶尺寸(nm)
A 16
物理特性
这是为了描述本发明的高金属BET表面积、孔体积和孔径。
注释:SBET=通过N2吸附的比表面积;Vp=通过N2解吸的孔体积(BJH分布);dm=孔平均直径(通过4V/A)
利用重质石脑油的催化剂评估
催化剂评估利用重质石脑油燃料在微反应器装置中进行。重质石脑油进料的特性如下:
催化剂评估在固定床流反应器***中进行。反应***由气体和液体进料段、预热段、反应器段和产物收集段组成。气体通过质量流控制器进料;液体进料通过精确HPLC泵来泵送。反应器管具有17.5mm的直径和由Haynes230合金制成。温度由温度控制器监测和控制的三区域电加热炉加热反应器***。提供热电偶来测量反应器的内部温度。水和重质石脑油在进入反应器之前在预加热器中气化和在静态混合器中与空气混合。产物收集段由压力控制阀门、气液分离器、液位控制器和产物釜组成。负载6ml的催化剂和置于反应器管中心在惰性碳化硅层之间。碳化硅层的顶部还用作预热区。进料混合物在预热区中加热升至350℃。反应器在氮流20l/h下加热升至起始温度410℃。将水泵送至预加热器和气化,和以相当于蒸汽与烃进料(H2O/C)摩尔比2.1的流率输送蒸汽。烃进料以O2/C之比0.5泵送。总气时空速(GHSV)为约45000h-1。在没有外部供热下反应器温度在几分钟内升至约800-820℃。收集气体样品和在两个气相色谱仪(一个装配有TCD和另一个配备有FID)中分析。实验进行60小时以上,以下图2中的图线和表2给出了所有的结果。
表2
实施例3(利用四组分催化剂B的本发明)
催化剂制备方法:
该实施例描述了根据本发明使用利用K促进的铝酸镁作为载体制备具有四种组分的多组分催化剂。用180ml含有7.37g氢氧化钾的水溶液浸渍200克的工业水滑石(SudChemie,产品代码T-27011/16英寸,在氧化铝余量中具有30%w/w MgO)来制备铝酸镁载体。所述材料在100℃干燥过夜和然后在1050℃在空气中煅烧4小时。载体具有表面积85.7m2/g和孔体积0.70cm3g。174克经制备的载体用140ml含有0.70克的四胺铂(II)氯化物一水合物(CAS13933-33-0 Alfa Aesar,产品代码10836)、5.14克的硝酸镧六水合物(CAS10277-43-7 Alfa Aesar,产品代码44346)、15.36克的硝酸铈(III)(CAS10294-41-4,Sigma Aldrich,产品代码392219)和57.51克的硝酸镍六水合物(CAS10277-43-7,SigmaAldrich,产品代码203874)的水溶液来浸渍。催化剂以l℃/min的速率从环境温度升至120℃和之后以1.4℃/min的速率从120℃升至350℃进行干燥。然后催化剂在730℃在流动的H2中还原,冷却至30℃和暴露于空气流进行钝化,以获得Pt-Ni-Ce2O3-La2O3/K-铝酸镁催化剂。最终催化剂的标称组成(%w/w)为:负载在铝酸镁上的1.0%Pt,1.0 La2O3,6%Ni,3%Ce2O3,2.7%K2O。
催化剂加氢活性测试
该实验的目的在于通过测定催化剂的金属面积来评估金属功能。这通过在环己烷脱氢反应中活性测定来评估。环己烷转化使用以下条件在微活性装置中进行:催化剂质量为0.1克,粒度60-270目;40-80ml/min的H2流;通过维持在10℃的饱和器进料环己烷;大气压和反应温度330-390℃。在反应之前,催化剂在550℃在H2流(40ml/min)中预处理2小时。反应物和产物通过气相色谱(HP5890)使用Plot Al2O3/KCl柱在150℃下操作来分析。活性表示为环己烷的总转化率和脱氢反应速率,由R=X Fao/W给出,其中X=至苯的转化率,W=催化剂质量(g),和流量Fao=环己烷摩尔数(mol/s)。
实施例 脱氢活性速率
B 18
催化剂蒸汽重整活性测试
该实验的目的在于使用甲烷评估催化剂的蒸汽重整功能。实验在工业设备(AutoChem II,Micromeritcs)中进行。测试使用200mg的小于170目的粉碎的催化剂进行。催化剂在650℃的温度和大气压下经通过40ml/min含氢气体来预处理和在50℃用水蒸汽饱和10%。在500℃、大气压和蒸汽/碳之比2.3mol/mol下进行甲烷蒸汽重整活性的测定。来自反应器的流出物气体通过气相色谱分析和由甲烷转化率(X%)测定活性。
实施例 蒸汽重整转化率(%)
A(新发明) 36
微晶尺寸测定
这是为了说明根据本发明使用铝酸镁制备的催化剂提供了微晶尺寸中尺寸降低的镍,其不高于使用现有技术利用最贵载体氧化铝获得的镍。金属镍晶体尺寸通过(峰:200)XRD衍射线来估算。据信金属镍颗粒的小尺寸有助于使焦炭形成引起的失活较低。
实施例 微晶尺寸(nm)
B 14
物理特性
这是为了描述本发明的高金属BET表面积、孔体积和孔径。
注释:SBET=通过N2吸附的比表面积;Vp=通过N2解吸的孔体积(BJH分布);dm=孔平均直径(通过4V/A)
利用重质石脑油的催化剂评估
催化剂评估利用重质石脑油燃料在微反应器装置中测试。重质石脑油进料的特性如下:
催化剂评估在固定床流反应器***中进行。反应***由气体和液体进料段、预热段、反应器段和产物收集段组成。
气体通过质量流控制器进料;液体进料通过精确HPLC泵来泵送。反应器管具有17.5mm的直径和由Haynes230合金制成。温度由温度控制器监测和控制的三区域电加热炉加热反应器***。提供热电偶来测量反应器的内部温度。水和重质石脑油在进入反应器之前在预加热器中气化和在静态混合器中与空气混合。产物收集段由压力控制阀门、气液分离器、液位控制器和产物釜组成。负载6ml的催化剂和置于反应器管中心在惰性碳化硅层之间。碳化硅层的顶部还用作预热区。进料混合物在预热区中加热升至350℃。反应器在氮流20l/h下加热升至起始温度410℃。将水泵送至预加热器和气化,和以相当于蒸汽与烃进料(H2O/C)摩尔比2.1的流率输送蒸汽。烃进料以O2/C之比0.5泵送。总气时空速(GHSV)为约45000h-1。在没有外部供热下反应器温度在几分钟内升至约800-820℃。收集气体样品和在两个气相色谱仪(一个装配有TCD和另一个配备有FID)中分析。实验进行60小时以上,以下图3中的图线和表3给出了所有的结果。
表3
以下表4给出的是现有技术和本发明催化剂性能的比较以及现有技术和本发明某些过程参数的比较。

Claims (27)

1.一种由液态烃燃料生产富氢合成气的热中和重整方法,其包括:
a、提供液态烃燃料、富氧气体或空气和蒸汽的混合物至反应器的内部区域,所述内部区域包括由含有负载在铝酸镁上的Ni、La2O3、Ce2O3、Pt、ZrO2、Rh和Re的组合的燃烧及蒸汽和/或CO2重整催化剂组成的催化剂床,该催化剂由以下步骤制备:
用包含铑盐和铼盐的水溶液浸渍铝酸镁载体,然后在富NH3气氛中干燥、煅烧和氢还原以获得铑-铼/铝酸镁载体;
用锆盐和铂盐的水溶液浸渍铑-铼/铝酸镁载体,然后在富NH3气氛中干燥、煅烧和氢还原以获得Pt-ZrO2-Rh-Re/铝酸镁载体;和
用镧盐、铈盐和镍盐的水溶液浸渍Pt-ZrO2-Rh-Re/铝酸镁载体,然后在富NH3气氛中干燥、煅烧和在700-750℃下还原;
b、预热所述燃料、富氧气体或空气和蒸汽的混合物至350-450℃的温度;和
c、以30,000-70,000h-1的气时空速使经预热的混合物与所述催化剂床接触,引起放热燃烧反应,使反应温度升至800-900℃,和还引起吸热蒸汽重整反应足够的时间以重整液态燃料产生富氢合成气。
2.权利要求1的方法,其中所述液态烃燃料为石油基燃料。
3.权利要求2的方法,其中所述液态石油基燃料选自链烷烃、轻质石脑油、重质石脑油、煤油和柴油。
4.权利要求1的方法,其中所述气时空速为35,000-50,000h-1
5.权利要求1的方法,其中由放热燃烧反应产生的热量由在相同催化剂床上的吸热反应中和及补偿。
6.权利要求1的方法,其中所述反应在不存在外部供热的情况下进行。
7.权利要求1的方法,其中避免了焦炭形成。
8.权利要求1的方法,其中所述催化剂可以重整包含小于200ppm硫的原料。
9.权利要求3的方法,其中约99%液态石油基燃料转化成合成气H2/CO/CO2/CH4
10.权利要求1的方法,其中使用选自水煤气变换和优先氧化、甲烷化和膜技术及PSA的氢纯化技术来进一步纯化由该方法产生的合成气。
11.权利要求1的方法,其中富氢合成气用作装有高温或低温燃料电池的车辆中的车载重整器的进料。
12.权利要求1的方法,其中富氢合成气用作内燃机中的氢富集的进料。
13.权利要求1的方法,其中富氢合成气用于固定发电设施应用。
14.权利要求1的方法,其中所述重整催化剂由以下步骤制备:
用包含硝酸铑和铼氧化物的水溶液浸渍铝酸镁载体,然后在富NH3气氛中干燥、煅烧和氢还原以获得铑-铼/铝酸镁载体;
用硝酸氧锆水合物和四胺铂(II)氯化物的水溶液浸渍铑-铼/铝酸镁载体,然后在富NH3气氛中干燥、煅烧和氢还原以获得Pt-ZrO2-Rh-Re/铝酸镁载体;和
用硝酸镧六水合物、硝酸铈(III)和硝酸镍六水合物的水溶液浸渍Pt-ZrO2-Rh-Re/铝酸镁载体,然后在富NH3气氛中干燥、煅烧和在700-750℃下还原。
15.一种由液态烃燃料生产富氢合成气的热中和重整方法,其包括:
a、提供液态烃燃料、富氧气体或空气和蒸汽的混合物至反应器的内部区域,所述内部区域包括由负载在铝酸镁上和包含钾化合物作为促进剂的Ni-Ce2O3-Pt-La2O3的组合的燃烧及蒸汽和/或CO2重整催化剂组成的催化剂床;
b、预热混合物至350-450℃的温度;和
c、以30,000-70,000h-1的气时空速使所述混合物与所述催化剂床接触,引起放热燃烧反应,使反应温度升至800-900℃,和还引起吸热蒸汽重整反应足够的时间以重整液态燃料产生富氢合成气。
16.权利要求15的方法,其中所述液态烃燃料为石油基燃料。
17.权利要求16的方法,其中所述石油基液体选自链烷烃、轻质石脑油、重质石脑油、煤油和柴油。
18.权利要求15的方法,其中所述气时空速为35,000-50,000h-1
19.权利要求15的方法,其中由放热燃烧反应产生的热量由在相同催化剂床上的吸热反应中和及补偿。
20.权利要求15的方法,其中所述反应在不需要外部供热的情况下进行。
21.权利要求15的方法,其中避免了焦炭形成。
22.权利要求17的方法,其中约99%液态石油基燃料转化成合成气H2/CO/CO2/CH4
23.权利要求15的方法,其中由该方法产生的合成气可以进一步纯化以产生高纯氢。
24.权利要求15的方法,其中富氢合成气用作装有高温或低温燃料电池的车辆中的车载重整器的进料。
25.权利要求15的方法,其中富氢合成气用作内燃机中的氢富集的进料。
26.权利要求15的方法,其中富氢合成气用于固定发电设施应用。
27.权利要求15的方法,其中液态烃燃料的硫含量为200ppm或更少。
CN201480035568.5A 2013-07-10 2014-06-26 液态烃热中和重整的催化剂和方法 Active CN105555707B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/938,376 US9499403B2 (en) 2013-07-10 2013-07-10 Catalyst and process for thermo-neutral reforming of liquid hydrocarbons
US13/938,376 2013-07-10
PCT/US2014/044375 WO2015006064A1 (en) 2013-07-10 2014-06-26 Catalyst and process for thermo-neutral reforming of liquid hydrocarbons

Publications (2)

Publication Number Publication Date
CN105555707A CN105555707A (zh) 2016-05-04
CN105555707B true CN105555707B (zh) 2018-01-26

Family

ID=51230180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480035568.5A Active CN105555707B (zh) 2013-07-10 2014-06-26 液态烃热中和重整的催化剂和方法

Country Status (5)

Country Link
US (2) US9499403B2 (zh)
EP (2) EP3208232A1 (zh)
JP (2) JP6039136B2 (zh)
CN (1) CN105555707B (zh)
WO (1) WO2015006064A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2876236A1 (en) 2012-06-12 2013-12-19 Monash University Breathable electrode and method for use in water splitting
WO2015013767A1 (en) 2013-07-31 2015-02-05 Aquahydrex Pty Ltd Electro-synthetic or electro-energy cell with gas diffusion electrode(s)
US10478808B2 (en) 2015-07-01 2019-11-19 Sabic Global Technologies B.V. Synthesis of oxygen-mobility enhanced CeO2 and use thereof
WO2017085626A2 (en) * 2015-11-19 2017-05-26 Sabic Global Technologies B.V. Oxidative conversion of variable feed c1 - oil to olefins, aromatic hydrocarbons, low molecular weight paraffinic hydrocarbons & syngas mixture
CA3117964C (en) 2016-04-21 2023-10-17 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture
EP3449523B1 (en) 2016-04-29 2021-10-27 Fuelcell Energy, Inc. Methanation of anode exhaust gas to enhance carbon dioxide capture
EP3456411A4 (en) * 2016-05-12 2019-12-18 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences CATALYST, ITS PREPARATION METHOD AND ITS APPLICATION IN THE PREPARATION OF SYNTHESIS GAS
CN107185535B (zh) * 2016-05-31 2020-12-08 浙江理工大学 一种无光除醛催化剂、包含所述催化剂的除醛体系及其用途
WO2018172736A1 (en) * 2017-03-23 2018-09-27 Bae Systems Plc Electrical power generation on a vehicle
US11434021B2 (en) 2017-03-23 2022-09-06 Bae Systems Plc Electrical power generation on a vehicle
CN109908906B (zh) * 2017-12-13 2021-10-08 中国石油化工股份有限公司 一种制合成气催化剂及其制备方法
US10787618B2 (en) 2018-01-23 2020-09-29 Saudi Arabian Oil Company Modified USY-zeolite catalyst for reforming hydrocarbons
FR3088338B1 (fr) * 2018-11-08 2021-10-29 Ifp Energies Now Procede de reformage en lit fixe utilisant un catalyseur de forme particuliere
KR20210122260A (ko) 2019-02-01 2021-10-08 아쿠아하이드렉스, 인크. 제한된 전해질을 갖춘 전기화학적 시스템
US11305264B2 (en) * 2019-09-12 2022-04-19 Saudi Arabian Oil Company Manufacturing hydrocracking catalyst
US11472700B2 (en) 2019-12-27 2022-10-18 Saudi Arabian Oil Company Catalyst and process for thermo-neutral reforming of petroleum-based liquid hydrocarbons
US11358128B2 (en) 2019-12-30 2022-06-14 Saudi Arabian Oil Company High activity reforming catalyst formulation and process for low temperature steam reforming of hydrocarbons to produce hydrogen
US11975969B2 (en) 2020-03-11 2024-05-07 Fuelcell Energy, Inc. Steam methane reforming unit for carbon capture
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US20220009774A1 (en) * 2020-07-13 2022-01-13 Saudi Arabian Oil Company Dry reforming of hydrocarbons
US11332678B2 (en) 2020-07-23 2022-05-17 Saudi Arabian Oil Company Processing of paraffinic naphtha with modified USY zeolite dehydrogenation catalyst
US11274068B2 (en) 2020-07-23 2022-03-15 Saudi Arabian Oil Company Process for interconversion of olefins with modified beta zeolite
US11154845B1 (en) 2020-07-28 2021-10-26 Saudi Arabian Oil Company Hydrocracking catalysts containing USY and beta zeolites for hydrocarbon oil and method for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11420192B2 (en) 2020-07-28 2022-08-23 Saudi Arabian Oil Company Hydrocracking catalysts containing rare earth containing post-modified USY zeolite, method for preparing hydrocracking catalysts, and methods for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11142703B1 (en) 2020-08-05 2021-10-12 Saudi Arabian Oil Company Fluid catalytic cracking with catalyst system containing modified beta zeolite additive
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11618858B1 (en) 2021-12-06 2023-04-04 Saudi Arabian Oil Company Hydrodearylation catalysts for aromatic bottoms oil, method for producing hydrodearylation catalysts, and method for hydrodearylating aromatic bottoms oil with hydrodearylation catalysts
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890024A (zh) * 2003-12-11 2007-01-03 约翰逊马西有限公司 重整催化剂
CN101460437A (zh) * 2004-12-23 2009-06-17 沙特***石油公司 基于石油的液态烃的热中和重整
CN101679155A (zh) * 2006-12-26 2010-03-24 沙特***石油公司 使用多组分催化剂的石油基热中性重整

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274591A (en) * 1975-12-17 1977-06-22 Nippon Soken Catalysts for reforming hydrocarbon fuels
US6245303B1 (en) 1998-01-14 2001-06-12 Arthur D. Little, Inc. Reactor for producing hydrogen from hydrocarbon fuels
AU1767901A (en) 1999-11-17 2001-05-30 Conoco Inc. Cobalt-based catalysts and process for producing synthesis gas
JP4596735B2 (ja) 2000-12-05 2010-12-15 テキサコ ディベラップメント コーポレイション コンパクト燃料プロセッサーの起動のために触媒を加熱する装置及び方法
US7829227B2 (en) 2003-04-04 2010-11-09 Texaco Inc. Integrated fuel processor apparatus and enclosure and methods of using same
US7438889B2 (en) 2005-06-24 2008-10-21 University Of South Carolina Use of complex metal oxides in the autothermal generation of hydrogen
US7354560B2 (en) 2006-01-31 2008-04-08 Haldor Topsoe A/S Process for the production of hydrogen
CN101400600A (zh) 2006-02-13 2009-04-01 环球油品公司 用于生产氢的方法
GB0816705D0 (en) * 2008-09-12 2008-10-22 Johnson Matthey Plc Shaped heterogeneous catalysts
BRPI1000656B1 (pt) 2010-03-08 2018-04-24 Petroleo Brasileiro S.A. - Petrobras Método de obtenção de catalisador para reforma a vapor e para a produção de hidrogênio ou gás de síntese
BRPI1002970B1 (pt) * 2010-08-18 2020-10-13 Petroleo Brasileiro S. A. processo para a produção de hidrogênio a partir do etanol
CN102744072B (zh) 2012-08-03 2014-09-17 太原理工大学 一种用于甲烷二氧化碳重整制合成气的催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890024A (zh) * 2003-12-11 2007-01-03 约翰逊马西有限公司 重整催化剂
CN101460437A (zh) * 2004-12-23 2009-06-17 沙特***石油公司 基于石油的液态烃的热中和重整
CN101679155A (zh) * 2006-12-26 2010-03-24 沙特***石油公司 使用多组分催化剂的石油基热中性重整

Also Published As

Publication number Publication date
JP6039136B2 (ja) 2016-12-07
CN105555707A (zh) 2016-05-04
EP3208232A1 (en) 2017-08-23
WO2015006064A1 (en) 2015-01-15
US20160257564A1 (en) 2016-09-08
US20150013225A1 (en) 2015-01-15
JP2016528143A (ja) 2016-09-15
US9714169B2 (en) 2017-07-25
JP6097874B1 (ja) 2017-03-15
US9499403B2 (en) 2016-11-22
EP3019444A1 (en) 2016-05-18
JP2017052695A (ja) 2017-03-16
EP3019444B1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
CN105555707B (zh) 液态烃热中和重整的催化剂和方法
AU2017201051B2 (en) Catalytic structures for auto thermal steam reforming (ATR) of hydrocarbons
US8597383B2 (en) Metal supported silica based catalytic membrane reactor assembly
WO2008082589A9 (en) Oil-based thermo-neutral reforming with a multi-component catalyst
KR20230051151A (ko) 스팀 개질
Subramani et al. Catalytic steam reforming technology for the production of hydrogen and syngas
Bozdağ et al. Effects of synthesis route on the performance of mesoporous ceria-alumina and ceria-zirconia-alumina supported nickel catalysts in steam and autothermal reforming of diesel
US11472700B2 (en) Catalyst and process for thermo-neutral reforming of petroleum-based liquid hydrocarbons
US11358128B2 (en) High activity reforming catalyst formulation and process for low temperature steam reforming of hydrocarbons to produce hydrogen
JP2006143752A (ja) プロパンまたはブタンを主成分とする液化石油ガスの製造方法
Sabri Catalysts for Hydrogen Production by the Auto-Thermal Reforming of Glycerol
Mozammel Catalyst development and process intensification towards syngas production through methane reforming

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant