CN105551829A - 一种夹心结构多孔炭/石墨烯复合材料及超级电容应用 - Google Patents

一种夹心结构多孔炭/石墨烯复合材料及超级电容应用 Download PDF

Info

Publication number
CN105551829A
CN105551829A CN201510938992.7A CN201510938992A CN105551829A CN 105551829 A CN105551829 A CN 105551829A CN 201510938992 A CN201510938992 A CN 201510938992A CN 105551829 A CN105551829 A CN 105551829A
Authority
CN
China
Prior art keywords
composite material
graphene
graphene composite
porous charcoal
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510938992.7A
Other languages
English (en)
Inventor
解勤兴
周姝雯
解超
张宇峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201510938992.7A priority Critical patent/CN105551829A/zh
Publication of CN105551829A publication Critical patent/CN105551829A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种类三明治夹心结构多孔炭/石墨烯复合材料及其制备方法和超级电容应用:将聚丙烯腈纳米纤维布用石墨烯溶液进行表面涂布,在200-300度条件下进行预氧化1-2小时,然后在600-1000度进行碳化和活化,经水洗、干燥后得到多孔炭/石墨烯复合材料。用本发明技术方案制备的多孔炭/石墨烯复合材料为电极组装的超级电容器性能优异,具有高比能量、高比功率、高倍率性能和长循环寿命等特点。

Description

一种夹心结构多孔炭/石墨烯复合材料及超级电容应用
技术领域
本发明涉及无机非金属材料技术领域,特别是涉及一种新型超级电容器用多孔碳/石墨烯复合材料及其制备方法。
背景技术
活性炭具有高比表面积、高稳定性和孔径可控等特点,因而广泛用做超级电容器电极材料。但是活性炭基超级电容器具有能量密度低的缺点,其推广和使用受到很大的限制。石墨烯具有高比表面积(理论值为2650m2/g)、高导电性等特点,在超级电容储能方面具有很强的应用前景,其理论比容量高达550F/g(Small,2014,10(17):3480-3498;Chemistry,2014,20(43):13838-13852)。但是应该看到,石墨烯的制备工艺繁琐、成本高昂,同时大规模制备过程中容易造成石墨烯片的再重叠,从而导致性能的损失,因此文献报道的单一石墨烯基超级电容器不仅价格昂贵,而且其比电容远远低于理论值(ChemSusChem,2010,3(2):136-168)。
发明内容
为了克服上述现有技术的不足,本发明以聚丙烯腈纳米纤维布为碳源,制备出一种新型类三明治夹心结构氮掺杂多孔碳/石墨烯复合材料,并以此为电极组装超级电容器。由于所制材料具有特殊的夹心多孔结构、高比表面积,同时氮原子具有的赝电容特性,所组装的超级电容器具有高比电容、高倍率和高循环性能,同时能量密度大大提高。
本发明所采用的技术方案是:
采用的聚丙烯腈纳米纤维内可掺杂0~2wt.%石墨烯和碳纳米管中的一种或两种;
采用的石墨烯是氧化石墨烯、还原石墨烯中的一种或两种;
将聚丙烯腈纳米纤维布用石墨烯溶液在表面涂布、干燥后在200~300度条件下进行预氧化1~3小时,然后在600~1000度进行碳化和活化,经水洗、干燥后得到多孔炭/石墨烯复合材料。
附图说明
图1为实施例1产物的扫描电镜图。
图2为实施例2产物的扫描电镜图
图3为水系超级电容器在电流密度为1A/g时的充放电曲线。
图4为水系超级电容器的比电容与电流密度之间的关系曲线。
图5为有机系超级电容器在不同电流密度下的充放电曲线。
图6为水系及有机系超级电容器的功率密度与能量密度之间的关系曲线。
具体实施方式
实施例1:多孔炭/石墨烯复合材料的制备
利用静电纺丝法制备聚丙烯腈纳米纤维布。将聚丙烯腈纳米纤维布在0.1%氧化石墨烯溶液中浸渍涂布,并干燥。将得到的复合纤维在空气中300度保温1小时,再在氮气氛中750度碳化1小时。将产物与KOH以1∶4的质量比混合,并在氮气氛下700度活化2小时。用蒸馏水洗涤、鼓风干燥后得到产物,如图1所示。
实施例2:多孔炭/石墨烯复合材料的制备
利用静电纺丝法制备含0.5%氧化石墨烯的聚丙烯腈复合纳米纤维布。将聚丙烯腈纳米纤维布在0.1%氧化石墨烯溶液中浸渍涂布,并干燥。将得到的复合纤维在空气中300度保温1小时,再在氮气氛中750度碳化1小时。将产物与KOH以1∶4的质量比混合,并在氮气氛下700活化2小时。用蒸馏水洗涤、鼓风干燥后得到产物,如图2所示
实施例3:材料的电化学性能测试
采用两电极超级电容***在室温下测试材料的电化学性质,其中电解液为6M氢氧化钾水溶液及1M四氟硼酸四乙基胺(TEABF4)的乙腈(AN)溶液,采用上海CHI660E电化学工作站对超级电容器进行充放电测试,电压范围为0-1.0V(KOH)和0-2.5V(TEABF4/AN)。结果如下:
(1)由图3可见,用本技术方案制备的电极材料所组装的水系超级电容器呈现典型的等腰三角形充放电曲线,没有明显的压降说明内阻很小。由图4可见,实施例1和实施例2所制备的复合材料0.1A/g时的比电容分别高达362.0F/g和381.6F/g,20A/g时仍保持为216.0F/g和257.0F/g,呈现出良好的倍率性能。
(2)由图5可见,用本技术方案制备的电极材料所组装的有机系超级电容器呈现典型的等腰三角形充放电曲线,没有明显的压降说明内阻很小。在电流密度为1A/g时比电容高达156.0F/g,5A/g时仍保持143.2F/g,呈现出良好的倍率性能。
(3)由图6可见,用本技术方案制备的电极材料所组装的水系和有机系超级电容器均具有高能量密度和高功率密度。其中以实施例1和实施例2所制备复合材料为电极的水系超级电容器在0.1A/g时的能量密度分别高达12.6Wh/kg和13.2Wh/kg,远高于文献报道数值(JournalofPowerSources,2013,240:109-113;JournalofPowerSources,2012,209:152-157),甚至优于报道的碳纳米纤维、碳纳米管及石墨烯基超级电容器(ACSSustainableChemistry&Engineering,2014,2,1525-1533;ElectrochemistryCommunications,2011,13:355-358)。以实施例2所制备复合材料为电极的有机系超级电容器具有更高的能量密度和功率密度。

Claims (6)

1.一种多孔炭/石墨烯复合材料的制备方法,其具体步骤为:将聚丙烯腈纳米纤维布用石墨烯水溶液进行涂布,干燥后在200~300度条件下进行预氧化1~3小时,然后在600~1000度进行碳化和活化,经水洗、干燥后得到多孔炭/石墨烯复合材料。
2.根据权利要求1所述一种多孔炭/石墨烯复合材料的制备方法,其特征在于所述聚丙烯腈纳米纤维内可掺杂0~2wt.%石墨烯和碳纳米管中的一种或两种。
3.根据权利要求1、2所述一种多孔炭/石墨烯复合材料的制备方法,其特征在于所述石墨烯为氧化石墨烯和还原石墨烯中一种或两种。
4.一种多孔炭/石墨烯复合材料,所述复合材料通过权利1~3中任一项所述的方法制备。
5.一种多孔炭/石墨烯复合材料,所述复合材料具有类三明治夹心多孔结构。
6.权利要求1~5所述的多孔炭/石墨烯复合材料可用作超级电容器电极。
CN201510938992.7A 2015-12-16 2015-12-16 一种夹心结构多孔炭/石墨烯复合材料及超级电容应用 Pending CN105551829A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510938992.7A CN105551829A (zh) 2015-12-16 2015-12-16 一种夹心结构多孔炭/石墨烯复合材料及超级电容应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510938992.7A CN105551829A (zh) 2015-12-16 2015-12-16 一种夹心结构多孔炭/石墨烯复合材料及超级电容应用

Publications (1)

Publication Number Publication Date
CN105551829A true CN105551829A (zh) 2016-05-04

Family

ID=55830953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510938992.7A Pending CN105551829A (zh) 2015-12-16 2015-12-16 一种夹心结构多孔炭/石墨烯复合材料及超级电容应用

Country Status (1)

Country Link
CN (1) CN105551829A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106952738A (zh) * 2017-03-09 2017-07-14 安徽大学 一种具有柔性自支撑结构的电极及其制备方法与应用
CN108711520A (zh) * 2018-05-22 2018-10-26 青岛大学 一种基于聚丙烯腈的氧化碳布的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167298A (zh) * 2014-07-28 2014-11-26 复旦大学 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
CN104477878A (zh) * 2014-12-04 2015-04-01 中国科学院山西煤炭化学研究所 一种石墨烯基多级孔炭材料及制法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167298A (zh) * 2014-07-28 2014-11-26 复旦大学 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
CN104477878A (zh) * 2014-12-04 2015-04-01 中国科学院山西煤炭化学研究所 一种石墨烯基多级孔炭材料及制法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QINXING XIE等: "Sandwich-like nitrogen-enriched porous carbon/graphene composites as electrodes for aqueous symmetric supercapacitors with high energy density", 《ELECTROCHIMICA ACTA》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106952738A (zh) * 2017-03-09 2017-07-14 安徽大学 一种具有柔性自支撑结构的电极及其制备方法与应用
CN106952738B (zh) * 2017-03-09 2019-04-09 安徽大学 一种具有柔性自支撑结构的电极及其制备方法与应用
CN108711520A (zh) * 2018-05-22 2018-10-26 青岛大学 一种基于聚丙烯腈的氧化碳布的制备方法及其应用

Similar Documents

Publication Publication Date Title
Ma et al. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance
Zhao et al. Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density
Wang et al. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors
Senthilkumar et al. Advances and prospects of fiber supercapacitors
Bavio et al. Flexible symmetric and asymmetric supercapacitors based in nanocomposites of carbon cloth/polyaniline-carbon nanotubes
CN102087921B (zh) 一种自支撑超级电容器电极材料及其制备方法
Luo et al. Carbon fibers surface-grown with helical carbon nanotubes and polyaniline for high-performance electrode materials and flexible supercapacitors
CN104485234A (zh) 基于纺织纤维和电沉积聚吡咯制备柔性超级电容器
Shi et al. Preparation and electrochemical performance of electrospun biomass-based activated carbon nanofibers
CN104616905A (zh) 聚苯胺-碳层-氮化钛纳米线阵列复合材料及其制备方法和应用
CN111118883B (zh) 一种纤维素基碳纳米纤维复合材料及其制备和应用
CN103762091A (zh) 一种蜂窝状多孔二氧化锰纳米纤维的制备方法及其超级电容器应用
CN104241601A (zh) 一种免金属集流体的锂电池或超级电容电极的制备方法
CN112593313B (zh) 一种氮、磷掺杂多孔中空碳纳米纤维的制备方法及应用
CN103896246A (zh) 杂原子掺杂的多孔碳纳米管的制备方法及其应用
Ran et al. Nano vanadium nitride incorporated onto interconnected porous carbon via the method of surface-initiated electrochemical mediated ATRP and heat-treatment approach for supercapacitors
WO2014078423A1 (en) Nanostructured materials
Tang et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature
Mu et al. Hollowed-out tubular carbon@ MnO2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials
Chang et al. Flexible and compressible electrochemical capacitors based on polypyrrole/carbon fibers integrated into sponge
CN108039285A (zh) 一种轻质柔性中空复合超级电容器电极材料的制备方法
CN110136994B (zh) 一种高能量密度的纤维状超级电容器及其制备方法
Zhou et al. Sustainable production of oxygen-rich hierarchically porous carbon network from corn straw lignin and silk degumming wastewater for high-performance electrochemical energy storage
KR101629835B1 (ko) 다성분 도핑을 통한 3차원 그래핀 복합체의 제조방법 및 이를 이용한 슈퍼커패시터
CN105551829A (zh) 一种夹心结构多孔炭/石墨烯复合材料及超级电容应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160504