CN105528658B - 一种计及户用分布式电源的居民用户合作博弈用电安排方法 - Google Patents

一种计及户用分布式电源的居民用户合作博弈用电安排方法 Download PDF

Info

Publication number
CN105528658B
CN105528658B CN201610049104.0A CN201610049104A CN105528658B CN 105528658 B CN105528658 B CN 105528658B CN 201610049104 A CN201610049104 A CN 201610049104A CN 105528658 B CN105528658 B CN 105528658B
Authority
CN
China
Prior art keywords
electricity
user
load
residential
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610049104.0A
Other languages
English (en)
Other versions
CN105528658A (zh
Inventor
高丙团
张文虎
刘晓峰
汤奕
李辰龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610049104.0A priority Critical patent/CN105528658B/zh
Publication of CN105528658A publication Critical patent/CN105528658A/zh
Application granted granted Critical
Publication of CN105528658B publication Critical patent/CN105528658B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种计及户用分布式电源的居民用户合作博弈用电安排方法,多个居民用户之间采取合作博弈的方式优化自身负荷的用电安排,合作博弈的结果有效降低了各个居民用户的能源消耗费用,具有明确的利益导向。此外,本发明还将配有储能装置的户用分布式电源引入到居民用户家庭中,使得居民用户可以使用分布式电源发出的电能,安排负荷用电时段的选择更多,从而电力消费比普通居民用户少。

Description

一种计及户用分布式电源的居民用户合作博弈用电安排方法
技术领域
本发明涉及智能电网中需求侧居民用户智能用电技术领域,尤其涉及一种计及户用分布式电源的居民用户合作博弈用电安排方法。
背景技术
进入新世纪后,由于传统电网的安全运行水平逐渐受到诟病,全球气候不断变暖、能源危机加重以及用电负荷迅速增加,利用新能源和可再生能源接入电网发电的技术亟待发展与完善。同时,在绿色环保、节能减排以及发展低碳经济等意识的驱动下,智能电网的概念应运而生。
在智能电网中,需求侧管理(DSM)对于控制能源消耗、提高能源使用效率起着重要作用,同时它能够降低负荷曲线的峰均比,达到电力的供需平衡。目前,随着智能电表逐渐进入居民用户家庭,优化居民用户能源消耗已经成了智能电网中的研究热点之一。智能电价是针对居民用户进行需求侧管理的常用方法,电网公司通过发布实时电价鼓励用户将其可转移负荷从用电高峰时段转移至非高峰时段。
在智能电网环境下,电网公司和需求侧居民用户之间往往存在着信息交互,而博弈论方法目前已经被大量运用以解决这些交互中的优化问题。在智能DSM中,电网公司能够根据居民用户具体的负荷需求,给予用户一定的激励,主要以发布合适的电价政策的形式,使用户的负荷特性曲线趋于平稳;用户则根据电价政策积极调整其用电模式,使自身的负荷用电安排趋于最优。因此,存在着多个居民用户关于各自负荷用电安排策略之间的博弈,博弈的目标是使所有用户的获益最大化,即使得每个用户的能源消耗费用均为最小。
迄今为止,已有不少学者研究博弈论用于解决智能电网中负荷用电问题并取得了重要进展。然而,针对上述内容的研究还没有考虑把分布式电源作为居民用户电能自发自用的一种方式,即分布式电源未来可以影响到居民用户的负荷用电计划,并且在现有的研究中对于居民用户智能用电的博弈模型主要涉及的是非合作博弈模型,而对于合作博弈模型并没有作详细讨论。
发明内容
本发明的目的是提出一种采用分布式电源和合作博弈模型的计及户用分布式电源的居民用户合作博弈用电安排方法。
本发明所述的计及户用分布式电源的居民用户合作博弈用电安排方法,包括以下的步骤:
S1:引入配有储能装置的户用分布式电源至居民用户家庭中,将分布式电源接入电网发电,负荷在用电高峰时段优先使用分布式电源发出的电能,此外也使用居民用户从电网公司购得的电能,从而构建出居民用户的负荷用电模型;
S2:根据电网公司发布的智能电价,建立电网公司的电能成本模型,居民用户根据电价通过安排可转移负荷的用电方案参与能源消耗调度,从而建立居民用户的电力消耗模型和家庭负荷控制模型;
S3:根据电网公司发布的智能电价,给出各居民用户的电力消费支付函数,通过安排可转移负荷的用电方案和储能装置的充放电计划,以各居民用户用电费用最少为目标,建立各居民用户参与能源消耗调度的合作博弈模型;
S4:各居民用户之间通过信息互联网将各自负荷的用电信息进行交互、汇总和处理,最后求解出联网的户用能源消耗调度终端合作博弈的纳什均衡点。
进一步,所述步骤S1中的负荷用电模型包括不可转移负荷模型、可转移负荷模型和配有储能装置的户用分布式电源模型。
进一步,所述步骤S2中的电力消耗模型包括第n个居民用户从电网公司购得的外部电量的消耗量xn,a和分布式电源配备的储能装置中的内部电量的消耗量yn,a,外部电量的消耗量xn,a和内部电量的消耗量yn,a叠加得到居民用户所有负荷总的电力消耗量;其中,a为负荷。
进一步,所述步骤S3中,根据电网公司的电能成本模型Ch(·)可得电力消费支付函数为:
Figure GDA0002270716500000021
其中,H={1,2,...,24},Ωn为第n个居民用户消耗的电量相对于所有居民用户所消耗的总电量的比例,
Figure GDA0002270716500000022
为第m个居民用户的负荷a在h个小时内的外部电量消耗量,
Figure GDA0002270716500000023
为第m个居民用户的负荷a在h个小时内的内部电量消耗量,Am为第m个居民用户所有家庭负荷的集合。
进一步,所述步骤S3中的合作博弈模型为:
Figure GDA0002270716500000031
其中,bn≥0,
Figure GDA0002270716500000032
为第m个居民用户的负荷a在h个小时内的外部电量消耗量,
Figure GDA0002270716500000033
为第m个居民用户的负荷a在h个小时内的内部电量消耗量,
Figure GDA0002270716500000034
为第n个居民用户的分布式电源配备的储能装置在h个小时内储存的电量,Ωn为第n个居民用户消耗的电量相对于所有用户所消耗的总电量的比例,Φn为第n个居民用户的分布式电源发出的电量相对于所有配有分布式电源的居民用户发出的总电量的比例,Xn为第n个居民用户的负荷用电策略,X-n为除第n个居民用户以外的其它用户的负荷用电策略,Ch(·)为电网公司的电能成本模型,H'={t|α(t)≤t≤β(t)},α(t)为分布式电源配备的储能装置电量存满的时刻,β(t)为分布式电源停止发电的时刻。
与现有技术相比,本发明的有益效果在于:
1)本发明考虑了户用分布式电源作为户用电力自发自用的方式,分布式电源与家庭用电的交互也是未来智能电网发展的趋势之一;
2)本发明中,多个居民用户之间采取合作博弈的方式优化自身负荷的用电安排,合作博弈的结果有效降低了各个居民用户的能源消耗费用,具有明确的利益导向;
3)本发明将配有储能装置的户用分布式电源引入到居民用户家庭中,使得居民用户可以使用分布式电源发出的电能,安排负荷用电时段的选择更多,从而电力消费比普通居民用户少。
附图说明
图1为本发明的智能电网环境下居民用户参与ECS的合作博弈场景图;
图2为本发明的居民用户参与能量消费安排前每小时的负荷用电量;
图3为本发明的居民用户参与能量消费安排前在光伏电池板配备的储能装置中的剩余电量的各时段内居民用户向电网售电所得的收益;
图4为本发明的居民用户参与能量消费安排后每小时的负荷用电量;
图5为本发明的居民用户参与能量消费安排后每小时的售电收益;
图6为本发明的所有居民用户在参与能量消费安排前后的电费。
具体实施方式
下面结合附图对本发明作更进一步的说明。
本发明公开了一种计及户用分布式电源的居民用户合作博弈用电安排方法,包括以下的步骤:
S1:引入配有储能装置的户用分布式电源至居民用户家庭中,将分布式电源接入电网发电,负荷在用电高峰时段优先使用分布式电源发出的电能,此外也使用居民用户从电网公司购得的电能,从而构建出居民用户的负荷用电模型;
S2:根据电网公司发布的智能电价,建立电网公司的电能成本模型,居民用户根据电价通过安排可转移负荷的用电方案参与能源消耗调度,从而建立居民用户的电力消耗模型和家庭负荷控制模型;
S3:根据电网公司发布的智能电价,给出各居民用户的电力消费支付函数,通过安排可转移负荷的用电方案和储能装置的充放电计划,以各居民用户用电费用最少为目标,建立各居民用户参与能源消耗调度的合作博弈模型;
S4:各居民用户之间通过信息互联网将各自负荷的用电信息进行交互、汇总和处理,最后求解出联网的户用能源消耗调度终端合作博弈的纳什均衡点。
步骤S2中的电能成本模型为:
其中,ah>0,bh≥0,ah、bh和ch都是常数,基于分时电价,将式(1)中的参数取值设定如表1所示。
表1电能成本模型中的参数取值
Figure GDA0002270716500000042
不失一般性,用配有储能蓄电池的光伏电池板作为分布式电源。各居民用户之间的合作博弈模型为:
Figure GDA0002270716500000051
其中:bn≥0,
Figure GDA0002270716500000052
为第m个居民用户的负荷a在h个小时内的外部电量消耗量,
Figure GDA0002270716500000053
为第m个居民用户的负荷a在h个小时内的内部电量消耗量,
Figure GDA0002270716500000054
为第n个居民用户的光伏电池板在h个小时内储存的电量,Ωn为第n个居民用户消耗的电量相对于所有用户所消耗的总电量的比例,Φn为第n个居民用户的光伏电池板发出的电量相对于所有配有光伏电池板的居民用户发出的总电量的比例,Xn为第n个居民用户的负荷用电策略,X-n为除第n个居民用户以外的其它用户的负荷用电策略,Ch(·)为电网公司的电能成本模型,Am为第m个居民用户所有家庭负荷的集合,H'={t|α(t)≤t≤β(t)},α(t)为光伏电池板配备的储能电池电量存满的时刻,β(t)为光伏电池板停止发电的时刻。
在上述合作博弈模型中,所有用户将参与负荷用电安排以减少用电费用支出,直到该博弈达到纳什均衡点:
Figure GDA0002270716500000055
上式表明:在纳什均衡点处,当其他用户的用电计划保持不变时,任意一个用户再改变其负荷用电安排时,该用户都不会获得更大的收益。
场景描述如下:该场景中有1个电网公司和N个居民用户(以下算例中取N=5),用户负荷的日用电量如表2所示。
表2用户负荷的日用电量(kW·h)
Figure GDA0002270716500000056
此外,用户2、3、4装设有户用光伏电池板,且都配有储能蓄电池,蓄电池的基本参数如下:容量为5kW·h,放电深度为60%。
用户负荷一天的工作时段如下:对于不可转移负荷,电灯在下午6点到晚上12点工作,冰箱全天工作;对于可转移负荷,洗衣机在下午6点到晚上11点都可以工作,工作时长为1小时,洗碗机在上午8点到上午10点以及晚上8点到晚上10点两个时段工作,每次工作时长1小时;电动汽车在晚上8点到次日早上7点都可以充电,但须在7点前充满电以满足出行需要。另外,光伏电池板仅在白天工作发电,其工作时段为早上7点到晚上7点。
通过本发明的合作博弈方法,可得到用户用电计划安排及费用如图2-图6所示。图2为用户参与能量消费安排(ECS)前每小时的负荷用电量,图2的(a)图表示负荷使用从电网购得的电能,图2的(b)图表示光伏电池板发出的电量除了直接被负荷使用之外还有电量剩余。图3为用户参与ECS前,在光伏电池板配备的储能电池中剩余电量的各时段内用户向电网售电所得的收益,图4和图5分别为用户参与ECS后每小时的负荷用电量和售电收益。对比图2、图4和图3、图5可以发现:在用户参与ECS后,原本用电高峰时段的负荷被转移到凌晨的用电低谷时段,因而负荷耗电量大大减少;用户的售电收益由参与ECS前的0.321美元增加为参与ECS后的0.366美元,因此用户的用电费用得到明显减少。图6为所有用户在参与ECS前后的电费,由此可以得出:在参与ECS后,用户的电费都显著减少(尽管用户1和5没有装设光伏电池板,但因其也参与了合作博弈,所以电费也减少了)。此外,总负荷的需求分布经能源消耗调度后变得更为平缓、均匀,这对于电网公司是有益的。因此,电网公司通过电价的形式鼓励了居民用户积极地参与到负荷用电的合作博弈中。

Claims (4)

1.一种计及户用分布式电源的居民用户合作博弈用电安排方法,其特征在于:包括以下的步骤:
S1:引入配有储能装置的户用分布式电源至居民用户家庭中,将分布式电源接入电网发电,负荷在用电高峰时段优先使用分布式电源发出的电能,此外也使用居民用户从电网公司购得的电能,从而构建出居民用户的负荷用电模型;
S2:根据电网公司发布的智能电价,建立电网公司的电能成本模型,居民用户根据电价通过安排可转移负荷的用电方案参与能源消耗调度,从而建立居民用户的电力消耗模型和家庭负荷控制模型;
S3:根据电网公司发布的智能电价,给出各居民用户的电力消费支付函数,通过安排可转移负荷的用电方案和储能装置的充放电计划,以各居民用户用电费用最少为目标,建立各居民用户参与能源消耗调度的合作博弈模型;
所述步骤S3中的合作博弈模型为:
Figure FDA0002270716490000011
其中,bn≥0,
Figure FDA0002270716490000012
为第m个居民用户的负荷a在h个小时内的外部电量消耗量,
Figure FDA0002270716490000013
为第m个居民用户的负荷a在h个小时内的内部电量消耗量,
Figure FDA0002270716490000014
为第n个居民用户的分布式电源配备的储能装置在h个小时内储存的电量,Ωn为第n个居民用户消耗的电量相对于所有用户所消耗的总电量的比例,Φn为第n个居民用户的分布式电源发出的电量相对于所有配有分布式电源的居民用户发出的总电量的比例,Xn为第n个居民用户的负荷用电策略,X-n为除第n个居民用户以外的其它用户的负荷用电策略,Ch(·)为电网公司的电能成本模型,H'={t|α(t)≤t≤β(t)},α(t)为分布式电源配备的储能装置电量存满的时刻,β(t)为分布式电源停止发电的时刻,H={1,2,...,24},N为居民用户数量,Am为第m个居民用户所有家庭负荷的集合;
S4:各居民用户之间通过信息互联网将各自负荷的用电信息进行交互、汇总和处理,最后求解出联网的户用能源消耗调度终端合作博弈的纳什均衡点。
2.根据权利要求1所述的计及户用分布式电源的居民用户合作博弈用电安排方法,其特征在于:所述步骤S1中的负荷用电模型包括不可转移负荷模型、可转移负荷模型和配有储能装置的户用分布式电源模型。
3.根据权利要求1所述的计及户用分布式电源的居民用户合作博弈用电安排方法,其特征在于:所述步骤S2中的电力消耗模型包括第n个居民用户从电网公司购得的外部电量的消耗量xn,a和分布式电源配备的储能装置中的内部电量的消耗量yn,a,外部电量的消耗量xn,a和内部电量的消耗量yn,a叠加得到居民用户所有负荷总的电力消耗量;其中,a为负荷。
4.根据权利要求1所述的计及户用分布式电源的居民用户合作博弈用电安排方法,其特征在于:所述步骤S3中,根据电网公司的电能成本模型Ch(·)可得电力消费支付函数为:
Figure FDA0002270716490000021
其中,H={1,2,...,24},Ωn为第n个居民用户消耗的电量相对于所有居民用户所消耗的总电量的比例,
Figure FDA0002270716490000022
为第m个居民用户的负荷a在h个小时内的外部电量消耗量,
Figure FDA0002270716490000023
为第m个居民用户的负荷a在h个小时内的内部电量消耗量,Am为第m个居民用户所有家庭负荷的集合。
CN201610049104.0A 2016-01-25 2016-01-25 一种计及户用分布式电源的居民用户合作博弈用电安排方法 Active CN105528658B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610049104.0A CN105528658B (zh) 2016-01-25 2016-01-25 一种计及户用分布式电源的居民用户合作博弈用电安排方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610049104.0A CN105528658B (zh) 2016-01-25 2016-01-25 一种计及户用分布式电源的居民用户合作博弈用电安排方法

Publications (2)

Publication Number Publication Date
CN105528658A CN105528658A (zh) 2016-04-27
CN105528658B true CN105528658B (zh) 2020-02-18

Family

ID=55770872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610049104.0A Active CN105528658B (zh) 2016-01-25 2016-01-25 一种计及户用分布式电源的居民用户合作博弈用电安排方法

Country Status (1)

Country Link
CN (1) CN105528658B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877397B (zh) * 2017-03-22 2019-08-23 燕山大学 一种考虑需求侧响应的基于博弈论的主动配电网孤岛恢复方法
CN107886818A (zh) * 2017-10-25 2018-04-06 东南大学 一种基于合作博弈的智能家庭能量管理实验***
US11817707B2 (en) 2018-12-19 2023-11-14 King Fahd University Of Petroleum And Minerals Smart meter system and method for managing demand response in a smart grid
CN110594962B (zh) * 2019-08-26 2021-04-02 中国科学院广州能源研究所 一种基于模糊需求响应的分布式能源***优化配置方法
CN110932295A (zh) * 2019-11-28 2020-03-27 星络智能科技有限公司 一种家庭式蓄电管理***
CN113471964B (zh) * 2021-06-25 2023-07-28 国网浙江海盐县供电有限公司 一种基于分布式电源的用户侧用电调度***及方法
CN113988448B (zh) * 2021-11-05 2024-07-02 重庆大学 计及电动汽车的家庭用户电能供需平衡优化方法及***

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208030A (zh) * 2013-03-11 2013-07-17 浙江工业大学 一种能够减小用电代价均值及其波动的电耗调度方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208030A (zh) * 2013-03-11 2013-07-17 浙江工业大学 一种能够减小用电代价均值及其波动的电耗调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Game-Theoretic Energy Management for Residential Users with Dischargeable Plug-in Electric Vehicles;Bingtuan Gao等;《Energies》;20141118;第7499-7518页 *

Also Published As

Publication number Publication date
CN105528658A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN105528658B (zh) 一种计及户用分布式电源的居民用户合作博弈用电安排方法
Hou et al. Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load
Jiang et al. A multiagent-based hierarchical energy management strategy for maximization of renewable energy consumption in interconnected multi-microgrids
Zhao et al. Integrated analysis of high-penetration PV and PHEV with energy storage and demand response
CN111882105B (zh) 含共享储能***的微电网群及其日前经济优化调度方法
Yu System contributions of residential battery systems: New perspectives on PV self-consumption
Yao et al. Real-time energy management optimization for smart household
Yang et al. Enhancing utilization of PV energy in building microgrids via autonomous demand response
Wang et al. Optimal configuration and pricing strategies for electric-heat cloud energy storage: A Stackelberg game approach
Feng et al. Flexible optimal scheduling of power system based on renewable energy and electric vehicles
Wang et al. Research on user-side flexible load scheduling method based on greedy algorithm
TWI725606B (zh) 電動車充電站分散式電能管理方法
Gupta et al. Optimal provision for enhanced consumer satisfaction and energy savings by an intelligent household energy management system
Khorram et al. Optimization-based home energy management system under different electricity pricing schemes
Elweddad et al. Energy management and optimization of microgrid system using particle swarm optimization algorithm
Lu et al. Day-ahead energy scheduling in residential areas based on orderly charge and discharge of electric vehicles
Zhao et al. Co-benefit and profit sharing model for operation of neighboring industrial PV prosumers
Jiarui et al. Research on Demand Response Strategy of Electricity Market Based on Intelligent Power Consumption
Adika et al. Energy management for a customer owned grid-tied photovoltaic micro generator
Cao et al. A Novel Game-Theoretic-based Security-Constrained Unit Commitment Including Wind and Vehicle-to-Grid
Xu et al. Generation and Load Integrated Optimal Scheduling Incorporating Distributed Energy Storage and Adjustable Load
Farzaneh et al. Deterministic mean field game for energy management in a utility with many users
Tan et al. Distributed demand response for plug-in electrical vehicles in the smart grid
Gao et al. Optimal Scheduling of Integrated Energy Systems Considering Master-slave Games and User Comfort
Wang et al. Research on Optimal Operation of Building Shared Energy Storage Based on Cooperative Game

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant