CN105523753B - 可见/短波红外/中波红外yag透明陶瓷及其制造方法 - Google Patents

可见/短波红外/中波红外yag透明陶瓷及其制造方法 Download PDF

Info

Publication number
CN105523753B
CN105523753B CN201610006374.3A CN201610006374A CN105523753B CN 105523753 B CN105523753 B CN 105523753B CN 201610006374 A CN201610006374 A CN 201610006374A CN 105523753 B CN105523753 B CN 105523753B
Authority
CN
China
Prior art keywords
wave infrared
crystalline ceramics
medium
short
visible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610006374.3A
Other languages
English (en)
Other versions
CN105523753A (zh
Inventor
毛小建
王传逢
张龙
许杨阳
姜本学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201610006374.3A priority Critical patent/CN105523753B/zh
Publication of CN105523753A publication Critical patent/CN105523753A/zh
Application granted granted Critical
Publication of CN105523753B publication Critical patent/CN105523753B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种可见/短波红外/中波红外YAG透明陶瓷,仅含有重量比为0.01‑0.1%的MgO作为烧结助剂,产品的透过范围覆盖300nm‑6μm,并且600nm处的透过率不小于76%,1‑4μm波段的透过率不小于80%,及其制造方法。本发明仅添加重量比为0.01‑0.1wt%的MgO,既不需要添加SiO2作为烧结助剂也不含有其他氧化物。本发明的产品具有良好的可见/红外透过性能,且具有更好的热导率。

Description

可见/短波红外/中波红外YAG透明陶瓷及其制造方法
技术领域
本发明涉及一种可见/短波红外/中波红外透明陶瓷及其制造方法,具体涉及仅添加MgO作为烧结助剂经两步真空烧结制备YAG透明陶瓷及其制品。
背景技术
钇铝石榴石(简称YAG)具有立方结构,无双折射效应,高温蠕变小,光学性质和力学性能优异,广泛应用于激光器基质材料,还可用于制作高温可见光和红外窗口。与YAG单晶体相比,YAG透明陶瓷可以满足制备大功率激光器所需的大尺寸样品和更高的掺杂浓度,因此在取代YAG单晶方面已显示出良好的应用前景,并成为近年来材料领域的一个研究热点。YAG作为透明陶瓷基质,常常掺Nd3+、Yb3+、Er3+、Eu3+、Cr3+、Pr3+等,这些掺杂离子通常以氧化物的形式加入原料中一起烧结。既作为功能离子,又作为烧结助剂能够促进烧结。另外,除了添加功能离子外仍然需要添加SiO2以及MgO作为共同的烧结助剂,这些添加的离子(Nd3 +、Yb3+、Er3+、Eu3+、Cr3+、Pr3+)会在不同的波段产生吸收,SiO2声子能量大,在常用的3-5μm中红外波段有强烈的吸收。此外,添加物质越多,YAG热导率越小,使得其抗热震性变差。
因此,作为可见/近红外/中红外透明陶瓷窗口,需要尽量避免上述各种离子的引入,避免它们引起YAG透明陶瓷光学性能的下降。
发明内容
本发明公开一种可见/短波红外/中波红外YAG透明陶瓷,其透过范围覆盖300nm-6μm,并且600nm处的透过率不小于76%,1-4μm波段的透过率不小于80%,其中仅添加重量比(除特殊说明,本发明的组成均为重量百分比)为0.01-0.1%的MgO。本发明同时提供一种可见/短波红外/中波红外YAG透明陶瓷的制造方法。
本发明的技术方案如下:
一种可见/短波红外/中波红外YAG透明陶瓷,其特点是MgO重量比为YAG的0.01-0.1%,其透过范围覆盖300nm-6μm,并且600nm处的透过率不小于76%,1-4μm波段的透过率不小于80%。
该YAG透明陶瓷的平均晶粒大小为4-5μm。
600nm处的透过率不小于78%。
一种制造所述的可见/短波红外/中波红外YAG透明陶瓷的方法,以纯度不小于99.99%,平均粒径介于0.2-1μm的高纯Y2O3和Al2O3粉体为原料,其特征在于包含如下步骤:
①将原料粉体按照Y3Al5O12的化学计量比球磨混合均匀,同时仅添加0.01-0.1wt%的MgO作为烧结助剂;
②将步骤1的混合料通过冷等静压压制成型,获得素坯;
③将上述素坯预烧后在真空钨丝炉中烧结,初次烧结温度为1730℃-1830℃,烧结时间为5-15小时;
④然后炉温继续升高30℃-80℃进行二次烧结,烧结时间为5-30小时。
作为本发明的一个优选方案,烧结助剂的添加量为0.03-0.05wt%。
与现有技术相比,本发明的有益效果是提供一种可见/短波红外/中波红外YAG透明陶瓷的制备方法,仅添加重量比为0.01-0.1wt%的MgO,既不需要添加SiO2作为烧结助剂也不含有其他氧化物。本发明的产品具有良好的可见/红外透过性能,且具有更好的热导率。
附图说明
图1是本发明实施例1所制得的YAG透明陶瓷的SEM形貌图;
图2为实施例1所制得的YAG透明陶瓷的可见/短波红外透过率曲线;
图3为实施例1所制得的YAG透明陶瓷的中波红外透过率曲线;
图4为实施例2所制得的YAG透明陶瓷的可见/近红外透过率曲线;
图5为实施例2所制得的YAG透明陶瓷的中波红外透过率曲线;
图6为实施例3所制得的YAG透明陶瓷的可见/近红外透过率曲线;
图7为实施例3所制得的YAG透明陶瓷的中波红外透过率曲线;
图8为实施例4所制得的YAG透明陶瓷的可见/近红外透过率曲线;
图9为实施例4所制得的YAG透明陶瓷的中波红外透过率曲线;
图10为实施例5所制得的YAG透明陶瓷的可见/近红外透过率曲线;
图11为实施例5所制得的YAG透明陶瓷的中波红外透过率曲线;
具体实施方式
下面结合实施例对本发明作进一步说明,这些实例仅用于说明本发明但不应以此限制本发明的保护范围。本发明所用的高纯原料为透明陶瓷领域公知的纯度不小于99.99%。本发明产品的可见/短波红外/中波红外的光学透过率测试在Perkin Elmer分光光度计Lambda750以及Nicolet傅立叶变换红外光谱仪FT-IR 5700上进行,测试样品两面抛光,厚度均为5mm。
实施例1
以市售高纯Al2O3、Y2O3及高纯纳米MgO为原料,其中Al2O3粉体平均粒径为0.45μm,Y2O3粉体平均粒径为0.2μm。按Y3Al5O12的化学计量比称取Al2O3及Y2O3,并加入0.04wt%MgO组成粉体原料。采用乙醇作为球磨介质,以高纯Al2O3球作为球磨介质,以250r/min的转速球磨5h,将粉体原料制成均匀的浆料。将浆料干燥后过200目筛,采用冷等静压成型技术200MPa压制成素坯。将素坯在真空度优于5*10-3Pa的真空钨丝炉中烧结,以2-10℃/min的速度升温至在1780℃保温8h,然后升温至1840℃保温25h。所得产品的显微结构如图1所示,没有气孔等缺陷。平均晶粒大小为4-5μm。产品的透过率如图2、图3所示,透过范围为300nm-6μm,并且600nm处透过率达到82.4%,1-4μm波段的透过率达到83.8-84.5%。
对比例1
将实施例1中获得的素坯在实施例1所述的真空钨丝炉中一步烧结,以2-10℃/min的速度升温至1780℃保温33h。测得产品在600nm处透过率为58%,1-4μm波段的透过率介于60-63%。
对比例2
将实施例1中获得的素坯在实施例1所述的真空钨丝炉中一步烧结,以2-10℃/min的速度升温至1840℃保温33h。测得产品在600nm处透过率为65%,1-4μm波段的透过率介于67-70%。
实施例2
以市售高纯Al2O3、Y2O3及高纯纳米MgO为原料,其中Al2O3粉体平均粒径为0.2μm,Y2O3粉体平均粒径为0.6μm。按Y3Al5O12的化学计量比称取Al2O3及Y2O3,并加入0.03wt%MgO组成粉体原料。球磨混合以及素坯成型的步骤同实施例1。将素坯在真空度优于5*10-3Pa的真空钨丝炉中烧结,以2-10℃/min的速度升温至1730℃保温15h,然后升温至1810℃保温30h。产品的透过率如图4、图5所示,透过范围为300nm-6μm,并且600nm处透过率达到80.9%,1-4μm波段的透过率达到82.6-83%。
实施例3
以市售高纯Al2O3、Y2O3及MgO为原料,其中Al2O3粉体平均粒径为0.8μm,Y2O3粉体平均粒径为1.0μm。按Y3Al5O12的化学计量比称取Al2O3及Y2O3,并加入0.1wt%MgO组成粉体原料。采用乙醇作为球磨介质,以高纯Al2O3球作为球磨介质,以250r/min的转速球磨48h,将粉体原料制成均匀的浆料。将浆料干燥后过200目筛,采用冷等静压成型技术在200MPa压制成素坯。将素坯在真空度优于5*10-3Pa的真空钨丝炉中烧结,以及2-10℃/min的速度升温至1830℃保温5h,然后升温至1880℃保温20h。产品的透过率如图6、图7所示,透过范围为300nm-6μm,并且600nm处透过率达到80.1%,1-4μm波段的透过率达到82.9-83.2%。
实施例4
采用与实施例1相同的原料,按Y3Al5O12的化学计量比称取,其中MgO的添加量为0.05wt%。采用实施例1中球磨混合以及素坯成型的步骤制造素坯。将素坯在真空度优于5*10-3Pa的真空钨丝炉中烧结,以2-10℃/min的速度升温至1730℃保温10h,然后升温至1760℃保温30h。产品的透过率如图8、图9所示,透过范围为300nm-6μm,并且600nm处透过率达到78.1%,1-4μm波段的透过率达到82.9-83.7%。
实施例5
采用与实施例2相同的原料,按Y3Al5O12的化学计量比称取,其中MgO的添加量为0.01wt%。采用实施例1中球磨混合以及素坯成型的步骤制造素坯。将素坯在真空度优于5*10-3Pa的真空钨丝炉中烧结,以2-10℃/min的速度升温至1750℃保温10h,然后升温至1810℃保温20h。产品的透过率如图10、图11所示,透过范围为300nm-6μm,并且600nm处透过率达到76.5%,1-4μm波段的透过率达到80.3-81.2%。

Claims (5)

1.一种可见/短波红外/中波红外YAG透明陶瓷的制造方法,以纯度不小于99.99%,平均粒径介于0.2-1μm的高纯Y2O3和Al2O3粉体为原料,其特征在于包含如下步骤:
①将原料粉体按照Y3Al5O12的化学计量比球磨混合均匀,同时仅添加0.01-0.1wt%的MgO作为烧结助剂;
②将步骤①的混合料通过冷等静压压制成型,获得素坯;
③将上述素坯预烧后在真空钨丝炉中烧结,初次烧结温度为1730℃-1830℃,烧结时间为5-15小时;
④然后炉温继续升高30℃-80℃进行二次烧结,烧结时间为5-30小时,制得的可见/短波红外/中波红外YAG透明陶瓷,其透过范围覆盖300nm-6μm,并且600nm处的透过率不小于76%,1-4μm波段的透过率不小于80%。
2.如权利要求1所述的方法,其特征是所述的MgO作为烧结助剂的添加量为0.03-0.05wt%。
3.一种由权利要求1所述的方法制得的可见/短波红外/中波红外YAG透明陶瓷,其特征是仅添加MgO,MgO重量百分比为YAG的0.01-0.1%。
4.如权利要求3所述的一种可见/短波红外/中波红外YAG透明陶瓷,其特征在于该YAG透明陶瓷的平均晶粒大小为4-5μm。
5.如权利要求3所述的一种可见/短波红外/中波红外YAG透明陶瓷,其特征在于600nm处的透过率不小于78%。
CN201610006374.3A 2016-01-06 2016-01-06 可见/短波红外/中波红外yag透明陶瓷及其制造方法 Active CN105523753B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610006374.3A CN105523753B (zh) 2016-01-06 2016-01-06 可见/短波红外/中波红外yag透明陶瓷及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610006374.3A CN105523753B (zh) 2016-01-06 2016-01-06 可见/短波红外/中波红外yag透明陶瓷及其制造方法

Publications (2)

Publication Number Publication Date
CN105523753A CN105523753A (zh) 2016-04-27
CN105523753B true CN105523753B (zh) 2018-05-08

Family

ID=55766332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610006374.3A Active CN105523753B (zh) 2016-01-06 2016-01-06 可见/短波红外/中波红外yag透明陶瓷及其制造方法

Country Status (1)

Country Link
CN (1) CN105523753B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107540372B (zh) * 2016-06-24 2022-03-08 中国科学院上海光学精密机械研究所 中波红外窗口及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924073A (zh) * 2012-11-16 2013-02-13 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
CN103102156A (zh) * 2011-11-10 2013-05-15 中国科学院福建物质结构研究所 凝胶注模成型制备Re:YAG透明陶瓷
CN104962993A (zh) * 2015-05-26 2015-10-07 哈尔滨工业大学 一种大尺寸镁铝尖晶石-钇铝石榴石共晶陶瓷的垂直布里奇曼制备法
CN105110792A (zh) * 2015-09-22 2015-12-02 中国工程物理研究院化工材料研究所 一种高均匀yag透明陶瓷粉体的球磨制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294723A (ja) * 1992-04-10 1993-11-09 Kurosaki Refract Co Ltd 固体レーザ用多結晶透明yagセラミックスの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102156A (zh) * 2011-11-10 2013-05-15 中国科学院福建物质结构研究所 凝胶注模成型制备Re:YAG透明陶瓷
CN102924073A (zh) * 2012-11-16 2013-02-13 北京雷生强式科技有限责任公司 采用热压后处理制备掺杂钇铝石榴石透明激光陶瓷的方法
CN104962993A (zh) * 2015-05-26 2015-10-07 哈尔滨工业大学 一种大尺寸镁铝尖晶石-钇铝石榴石共晶陶瓷的垂直布里奇曼制备法
CN105110792A (zh) * 2015-09-22 2015-12-02 中国工程物理研究院化工材料研究所 一种高均匀yag透明陶瓷粉体的球磨制备方法

Also Published As

Publication number Publication date
CN105523753A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN101284733B (zh) 钇铝石榴石和氧化钇双晶相透明陶瓷及其制备方法
CN104557013B (zh) 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN102311258B (zh) 激活离子受控掺杂的钇铝石榴石基激光透明陶瓷材料及其制备方法
de Camargo et al. Structural and spectroscopic properties of rare-earth (Nd 3+, Er 3+, and Yb 3+) doped transparent lead lanthanum zirconate titanate ceramics
CN107555992B (zh) 一种微波介质陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN105986159B (zh) 一种W–Ni–Mn合金的快速制备方法
CN114773048A (zh) 一种复合陶瓷材料的制备方法及其应用
CN102850048B (zh) 一种铌镁钛酸铋陶瓷材料及其制备方法
CN106167406A (zh) 钽酸钇高温陶瓷及其制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN105523753B (zh) 可见/短波红外/中波红外yag透明陶瓷及其制造方法
CN115010491B (zh) 一种高熵稀土钽酸盐陶瓷材料及其制备方法
CN111635223A (zh) 一种复合微波介质陶瓷及其制备方法
Liu et al. Preparation of spray-dried powders leading to Nd: YAG ceramics: The effect of PVB adhesive
CN107345134B (zh) 一种高灵敏度稀土掺杂钨青铜荧光探温材料
CN106946557A (zh) 一种复合体系ltcc材料及其制备方法
CN110372370B (zh) 一种微波介质陶瓷及其制备方法
CN110937898B (zh) 一种倍半氧化物窗口材料的制备方法
CN107382314A (zh) 一种钡基复合钙钛矿结构的微波介质陶瓷
CN102211941A (zh) Er,Yb双掺杂YAG多晶透明陶瓷材料制备方法
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法
CN113603475B (zh) 一种三价铬离子掺杂镁铝尖晶石透明陶瓷的制备方法
CN115448717A (zh) 一种稀土基钼酸盐高熵负热膨胀陶瓷材料及其制备方法
CN104150904A (zh) 用于中红外激光的Er3+单掺氧化镧钇透明陶瓷的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant