CN105506621A - 一种石墨烯复合材料及其生产工艺 - Google Patents

一种石墨烯复合材料及其生产工艺 Download PDF

Info

Publication number
CN105506621A
CN105506621A CN201510847934.3A CN201510847934A CN105506621A CN 105506621 A CN105506621 A CN 105506621A CN 201510847934 A CN201510847934 A CN 201510847934A CN 105506621 A CN105506621 A CN 105506621A
Authority
CN
China
Prior art keywords
substrate
graphene
composite material
layer
graphene composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510847934.3A
Other languages
English (en)
Other versions
CN105506621B (zh
Inventor
金虎
彭鹏
董泽琳
武文鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou two-dimensional warm ene Technology Co., Ltd.
Original Assignee
2d Carbon (changzhou) Tech Inc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 2d Carbon (changzhou) Tech Inc Ltd filed Critical 2d Carbon (changzhou) Tech Inc Ltd
Priority to CN201510847934.3A priority Critical patent/CN105506621B/zh
Publication of CN105506621A publication Critical patent/CN105506621A/zh
Application granted granted Critical
Publication of CN105506621B publication Critical patent/CN105506621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Abstract

本发明公开了一种石墨烯复合材料及其生产工艺,其中石墨烯复合材料包括基底以及交替沉积在基底表面的石墨烯层和金属纳米颗粒层。本发明基于超细化喷涂工艺设计制备的复合材料具有超高强度和优秀的表面润滑性且容易覆盖在任意基材表面,可以作为一种良好的界面材料,有效的防止因摩擦引起的材料及能量的损耗。相对于其它石墨烯复合材料制作工艺,喷涂不但工艺简单便捷,应用范围广,而且可以在有效的控制双组份占比的同时保证复合材料整体的均一性,因此该复合材料的实用价值很高。

Description

一种石墨烯复合材料及其生产工艺
技术领域
本发明涉及一种石墨烯复合材料及其生产工艺。
背景技术
高强度材料成本较高且表面润滑性不足,因此在接触面上容易因过度摩擦造成损耗,影响使用寿命。而在石墨烯复合材料方面,目前大部分的石墨烯与金属的复合材料都是通过在溶液中将金属盐在石墨烯表面还原成纳米颗粒,该方法得到的复合材料为粉体材料,此种复合材料虽然在测试中可以表现出良好的强度性能以及热物理性能,并且石墨烯的存在也大大增强了该材料的润滑性,但是,粉体复合材料结构松散,双组份的均一性难有保障,此外粉体材料多经过热压烧结得到块体使用,并不适合作为表面修饰材料。
发明内容
本发明的第一个目的是提供一种具有超高强度和优秀的表面润滑性且容易覆盖在任意基材表面的石墨烯复合材料。
实现本发明第一个目的的技术方案是:一种石墨烯复合材料,包括基底以及交替沉积在基底表面的石墨烯层和金属纳米颗粒层。
本发明的第二个目的是提供前述石墨烯复合材料的生产工艺。
实现本发明第二个目的的技术方案是:一种石墨烯复合材料的生产工艺,包括以下步骤:
①、选取平整的基底,并清洗基底表面。
②、将粉体石墨烯置于易挥发有机溶剂中,超声分散,得到石墨烯分散液。
③、将纳米金属颗粒置于活化液中,经过回流后用清水多次清洗,除去溶液中的活化物质,然后加入易挥发有机溶剂得到金属纳米颗粒分散液。
④、将清洁好的平整的基底置于喷涂设备中并将其加热,然后分别将石墨烯分散液和金属纳米颗粒分散液置于两个不同的喷涂墨水腔中;首先在基底表面喷涂一层石墨烯分散液层,由于基底有所加热,易挥发有机溶剂迅速挥发,便在基底得到一层均匀的石墨烯层;随后在该表面继续喷涂一层金属纳米颗粒分散液层,干燥后得到一层的金属纳米颗粒层;上述两次喷涂为一个喷涂循环,该喷涂循环至少进行1次。
⑤、对步骤④制得的材料进行高温烧结处理。
所述步骤①中选取的基底材料为金属或者陶瓷或者半导体。
所述步骤④中的基底置于喷涂设备中后加热至40~100℃。
所述步骤④制得的材料中石墨烯层的厚度为1nm~1000nm,金属纳米颗粒层厚度1nm~1000nm。
所述步骤⑤的烧结环境为真空环境,烧结温度为600~1000℃,时间为1~60分钟。
采用了上述技术方案,本发明具有以下的有益效果:(1)本发明设计的纳米级层状堆叠结构的石墨烯复合材料与传统的混合结构石墨烯复合材料不同,本发明的结构更有利于展现出石墨烯材料的优秀性能,该结构的复合材料表现出超高强度和优秀的表面润滑性。
(2)本发明基于超细化喷涂工艺设计制备的石墨烯复合材料容易覆盖在任意基材表面,可以作为一种良好的界面材料,其超高的强度和优秀的表面润滑性可以有效的防止因摩擦引起的材料及能量的损耗,增加基底产品的使用寿命,拓展其使用范围,特别是在极限工作环境下将起到重要作用。相对于其它石墨烯复合材料制作工艺,喷涂不但工艺简单便捷,应用范围广,而且可以在有效的控制双组份占比的同时保证复合材料整体的均一性,因此该复合材料的实用价值很高。
(3)本发明的石墨烯复合材料可以直接喷涂在其它任何产品的平整表面,对其进行表面加工改性,增强其强度及耐摩擦性(即润滑性),喷涂的方法简便快捷,成本较低,适合大规模生产。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为本发明的石墨烯复合材料的结构示意图。
附图中的标号为:
金属纳米颗粒层1、石墨烯层2、基底3。
具体实施方式
(实施例1)
见图1,本实施例的石墨烯复合材料,包括基底3以及交替沉积在基底3表面的石墨烯层2和金属纳米颗粒层1。
本实施例的石墨烯复合材料的生产工艺,包括以下步骤:
①、选取平整的基底3,并清洗基底3表面,基底3材料为金属或者陶瓷或者半导体。。
②、将粉体石墨烯置于易挥发有机溶剂中,超声分散,得到石墨烯分散液。
③、将纳米金属颗粒置于活化液中,经过回流后用清水多次清洗,除去溶液中的活化物质,然后加入易挥发有机溶剂得到金属纳米颗粒分散液。
④、将清洁好的平整的基底3置于喷涂设备中并将其加热至40~100℃,然后分别将石墨烯分散液和金属纳米颗粒分散液置于两个不同的喷涂墨水腔中。首先在基底3表面喷涂一层石墨烯分散液层,由于基底3有所加热,易挥发有机溶剂迅速挥发,便在基底3得到一层均匀的石墨烯层2。随后在该表面继续喷涂一层金属纳米颗粒分散液层,干燥后得到一层的金属纳米颗粒层1。上述两次喷涂为一个喷涂循环,该喷涂循环至少进行1次。制得的材料中石墨烯层2的厚度为1nm~1000nm,金属纳米颗粒层1厚度1nm~1000nm。
⑤、对步骤④制得的材料进行高温烧结处理,烧结环境为真空环境,烧结温度为600~1000℃,时间为1~60分钟。
本实施例的石墨烯复合材料的多层结构使其较好的表现出双组份材料的优点,石墨烯层2的加入不仅提升了其强度,更增强了其表面的润滑性。以铜为例,从表1中可以看出经过该复合材料修饰的基底3表面的强度及润滑性均有明显提升,其中表面硬度提升最明显的为实例七,提升百分比为83.3%,且摩擦系数减少了47.3%,该复合材料的喷涂工艺使其可以在任意平整基底3进行表面改性,较好的强度及润滑性不仅减少了材料本体的摩擦损耗,保护其内部结构完好,较低的界面摩擦也较小了能耗,节约了资源。
基底 石墨烯层厚度 铜纳米颗粒层厚度 循环次数 硬度 摩擦系数
对比例一 铜板 - - - 42HB 0.19
实例一 铜板 5nm 50nm 10 44HB 0.11
实例二 铜板 5nm 100nm 10 51HB 0.13
实例三 铜板 5nm 50nm 20 49HB 0.09
实例四 铜板 5nm 100nm 20 53HB 0.12
实例五 铜板 10nm 50nm 10 75HB 0.09
实例六 铜板 10nm 100nm 10 67HB 0.15
实例七 铜板 10nm 50nm 20 77HB 0.1
实例八 铜板 10nm 100nm 20 62HB 0.11
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种石墨烯复合材料,其特征在于:包括基底(3)以及交替沉积在基底(3)表面的石墨烯层(2)和金属纳米颗粒层(1)。
2.一种石墨烯复合材料的生产工艺,其特征在于:包括以下步骤:
①、选取平整的基底(3),并清洗基底(3)表面。
②、将粉体石墨烯置于易挥发有机溶剂中,超声分散,得到石墨烯分散液。
③、将纳米金属颗粒置于活化液中,经过回流后用清水多次清洗,除去溶液中的活化物质,然后加入易挥发有机溶剂得到金属纳米颗粒分散液。
④、将清洁好的平整的基底(3)置于喷涂设备中并将其加热,然后分别将石墨烯分散液和金属纳米颗粒分散液置于两个不同的喷涂墨水腔中;首先在基底(3)表面喷涂一层石墨烯分散液层,由于基底(3)有所加热,易挥发有机溶剂迅速挥发,便在基底(3)得到一层均匀的石墨烯层(2);随后在该表面继续喷涂一层金属纳米颗粒分散液层,干燥后得到一层的金属纳米颗粒层(1);上述两次喷涂为一个喷涂循环,该喷涂循环至少进行1次。
⑤、对步骤④制得的材料进行高温烧结处理。
3.根据权利要求2所述的一种石墨烯复合材料的生产工艺,其特征在于:所述步骤①中选取的基底(3)材料为金属或者陶瓷或者半导体。
4.根据权利要求2所述的一种石墨烯复合材料的生产工艺,其特征在于:所述步骤④中的基底(3)置于喷涂设备中后加热至40~100℃。
5.根据权利要求2所述的一种石墨烯复合材料的生产工艺,其特征在于:所述步骤④制得的材料中石墨烯层(2)的厚度为1nm~1000nm,金属纳米颗粒层(1)厚度1nm~1000nm。
6.根据权利要求2所述的一种石墨烯复合材料的生产工艺,其特征在于:所述步骤⑤的烧结环境为真空环境,烧结温度为600~1000℃,时间为1~60分钟。
CN201510847934.3A 2015-11-26 2015-11-26 一种石墨烯复合材料及其生产工艺 Active CN105506621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510847934.3A CN105506621B (zh) 2015-11-26 2015-11-26 一种石墨烯复合材料及其生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510847934.3A CN105506621B (zh) 2015-11-26 2015-11-26 一种石墨烯复合材料及其生产工艺

Publications (2)

Publication Number Publication Date
CN105506621A true CN105506621A (zh) 2016-04-20
CN105506621B CN105506621B (zh) 2018-08-31

Family

ID=55714909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510847934.3A Active CN105506621B (zh) 2015-11-26 2015-11-26 一种石墨烯复合材料及其生产工艺

Country Status (1)

Country Link
CN (1) CN105506621B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634039A (zh) * 2017-08-01 2018-01-26 全普光电科技(上海)有限公司 一种散热膜及其制备方法
CN111195584A (zh) * 2018-11-16 2020-05-26 北京赛菲斯技术有限公司 一种零件表面改性方法
CN116682597A (zh) * 2023-08-03 2023-09-01 浙江正泰电器股份有限公司 金属-石墨烯复合导体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474899A (zh) * 2009-01-16 2009-07-08 南开大学 石墨烯-无机材料复合多层薄膜及其制备方法
EP2261397A1 (de) * 2009-06-03 2010-12-15 Wieland-Werke AG Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs
CN102148099A (zh) * 2010-12-20 2011-08-10 电子科技大学 石墨烯染料敏化太阳能电池及其生产方法
CN102590173A (zh) * 2012-01-19 2012-07-18 东南大学 一种基于石墨烯的表面增强拉曼散射探针的制备方法
CN102660740A (zh) * 2012-05-29 2012-09-12 东南大学 一种石墨烯和金属纳米颗粒复合薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474899A (zh) * 2009-01-16 2009-07-08 南开大学 石墨烯-无机材料复合多层薄膜及其制备方法
EP2261397A1 (de) * 2009-06-03 2010-12-15 Wieland-Werke AG Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs
CN102148099A (zh) * 2010-12-20 2011-08-10 电子科技大学 石墨烯染料敏化太阳能电池及其生产方法
CN102590173A (zh) * 2012-01-19 2012-07-18 东南大学 一种基于石墨烯的表面增强拉曼散射探针的制备方法
CN102660740A (zh) * 2012-05-29 2012-09-12 东南大学 一种石墨烯和金属纳米颗粒复合薄膜的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634039A (zh) * 2017-08-01 2018-01-26 全普光电科技(上海)有限公司 一种散热膜及其制备方法
CN111195584A (zh) * 2018-11-16 2020-05-26 北京赛菲斯技术有限公司 一种零件表面改性方法
CN116682597A (zh) * 2023-08-03 2023-09-01 浙江正泰电器股份有限公司 金属-石墨烯复合导体及其制备方法和应用
CN116682597B (zh) * 2023-08-03 2023-10-24 浙江正泰电器股份有限公司 金属-石墨烯复合导体及其制备方法和应用

Also Published As

Publication number Publication date
CN105506621B (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
Zhang et al. Recent progress for silver nanowires conducting film for flexible electronics
Liang et al. General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment
Xu et al. Ag–graphene hybrid conductive ink for writing electronics
CN105506621A (zh) 一种石墨烯复合材料及其生产工艺
CN105623136B (zh) 一种聚合物导电复合材料及其制备方法
Zhao et al. Construction of SiCNWS@ NiCo2O4@ PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption
Xie et al. ZnO nanowires decoration on carbon fiber via hydrothermal synthesis for paper-based friction materials with improved friction and wear properties
Xu et al. Pressure-assisted low-temperature sintering for paper-based writing electronics
Pan et al. Effects of rare earth oxide additive on surface and tribological properties of polyimide composites
JP2015506061A5 (zh)
TW201603656A (zh) 石墨烯印刷線路結構
CN104294205A (zh) 一种ZrO2-HfO2涂层及其制备方法
Mani et al. Flexural properties of multiscale nanocomposites containing multiwalled carbon nanotubes coated glass fabric in epoxy/graphene matrix
Choi et al. A study on thermal conductivity of electroless Ni–B plated multi-walled carbon nanotubes-reinforced composites
Zhao et al. Super-hydrophobic surfaces of SiO2-coated SiC nanowires: Fabrication, mechanism and ultraviolet-durable super-hydrophobicity
TW201020301A (en) Powder coating method and paint thereof
Beshkar et al. Superhydrophobic–superoleophilic copper–graphite/styrene–butadiene–styrene based cotton filter for efficient separation of oil derivatives from aqueous mixtures
KR20050037877A (ko) 금속나노분말을 이용한 탄소나노튜브/금속 나노복합재료제조방법
Li et al. Hybridization and Characteristics of Fe and Fe− Co Nanoparticles with Polymer Particles
TWI422628B (zh) 奈米金屬-聚合物複合導電薄膜與其製備方法
CN110000069A (zh) 一种二硫化钼/氧化铝/石墨润滑减摩复合涂层及其制备方法
KR102244823B1 (ko) 전기영동 증착법을 이용한 산화 그래핀의 3차원 구조 금속 표면 코팅방법
Ji et al. Effects of oxidation processes and microstructures on the hydrophilicity of copper surface
Cho et al. Dispersion stability of 1-octanethiol coated Cu nanoparticles in a 1-octanol solvent for the application of nanoink
JP2008307526A5 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190911

Address after: 213149 Jiangsu province west of the city of Changzhou Taihu science and Technology Industrial Park orchid Road No. 8

Patentee after: Changzhou two-dimensional warm ene Technology Co., Ltd.

Address before: 213000 No. 6 Xiangyun Road, Wujin Economic Development Zone, Jiangsu, Changzhou

Patentee before: 2D CARBON (CHANGZHOU) TECH INC., LTD.

TR01 Transfer of patent right