CN105486312B - A kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system - Google Patents

A kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system Download PDF

Info

Publication number
CN105486312B
CN105486312B CN201610067447.XA CN201610067447A CN105486312B CN 105486312 B CN105486312 B CN 105486312B CN 201610067447 A CN201610067447 A CN 201610067447A CN 105486312 B CN105486312 B CN 105486312B
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mover
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610067447.XA
Other languages
Chinese (zh)
Other versions
CN105486312A (en
Inventor
王密
范城城
李德仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201610067447.XA priority Critical patent/CN105486312B/en
Publication of CN105486312A publication Critical patent/CN105486312A/en
Application granted granted Critical
Publication of CN105486312B publication Critical patent/CN105486312B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Navigation (AREA)

Abstract

Its error measure model is built the present invention provides a kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system, including according to angular displacement sensor measuring principle, takes into full account various error sources existing for its observation;System measurements equation is built based on multi-star sensor information fusion result;According to satellite attitude kinematics equation and angular displacement sensor measurement model structure system state equation;Finally using two-way Kalman filtering and overall weight adjustment Models, high frequency attitude parameter optimal estimation is realized.The present invention can realize low frequency star sensor and high frequency angular displacement sensor optimal information fusion, obtain the attitude data of high-frequency high-precision, so as to lay the foundation for high-resolution optical image high-precision geometric manipulations.

Description

A kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system
Technical field
The invention belongs to remote sensing satellite ground preprocessing technical field, a kind of star sensor and high frequency angular displacement are especially related to Sensor combinations method for determining posture and system.
Background technology
High-resolution optical satellite is one of important research field of China high-resolution earth observation systems development, future 10 years China is better than 1 meter of optical satellite (abbreviation sub-meter grade optical satellite), highest space point by several spatial resolutions are launched Resolution can even reach 0.1 meter or so.But the spatial resolution of higher is not meant to have the geometry of higher relatively smart Degree.Since high-resolution optical satellite push-scanning image frequency is hertz up to ten thousand, and traditional star sensor determines appearance with Gyro The posture frequency that mode exports is several hertz to tens hertz, it is difficult to meet its high-precision geometric manipulations demand.The present invention is directed to The problem, proposes a kind of low frequency star sensor and high frequency angular displacement sensor integrated attitude determination method.In recent years, angular displacement sensor Gradually it is mounted on a series of high-resolution optical satellites as a kind of novel gesture sensor and carries out in-orbit use, since it can To export up to ten thousand hertz of angle increment attitude data, it is carried out optimal information fusion with low frequency star sensor can obtain high frequency Attitude data, to meet the requirement of high-resolution optical image high-precision geometric manipulations.
The content of the invention
The present invention is difficult to meet the requirement of high-resolution optical satellite image geometric manipulations for current low frequency attitude data Problem, there is provided one kind is based on low frequency star sensor and high frequency angular displacement sensor high accuracy integrated attitude determination technical solution.
Technical solution provided by the invention is a kind of star sensor and high frequency angular displacement sensor integrated attitude determination method, including Following steps:
Step 1, it is as follows to build angular displacement sensor measurement model,
ωg=(1+ Δs+Λ) ω+b+ ηg
Wherein, ωgThe angular speed size obtained for angular displacement sensor measurement, Δ represent that angular displacement sensor installation misses Difference, Λ represent angular displacement sensor scale factor error, and ω is satellite body relative to the true angular velocity of inertial space, b tables Show angular displacement sensor drift size, ηgFor angular displacement sensor measurement noise;
Step 2, system measurements equation being built based on multi-star sensor information fusion result, realization is as follows,
Equipped with one group of orthogonal vector,Represent orthogonal vector actual value under body coordinate system,Represent Measured value of the orthogonal vector under inertial coodinate system,Represent orthogonal vector actual value under inertial coodinate system;
It is as follows to obtain measurement equation,
Zk=HkXk+Vk
Wherein, ZkRepresent measurement vector, HkRepresent observing matrix, XkRepresent state variable,Represent quaternary number optimal estimation Value,Represent by body to inertial system transition matrix, VkRepresent tkMoment observation noise sequence;
Step 3, system state equation is built according to satellite attitude kinematics equation and angular displacement sensor measurement model, it is real It is now as follows,
The state of being based on is obtained according to attitude kinematics equationsSystem state equation it is as follows,
W (t)=[- 0.5 ηg ηb]T
Wherein,Represent quantity of state differential value, X (t) represents quantity of state, and F (t) represents state-transition matrix differential, W (t) system noise sequence is represented,Represent angular velocity vector multiplication cross, I3×3Expression unit matrix, 03×3It is 0 to represent element Matrix,Represent error quaternion vector section, Δ bTRepresent error drift;
Linearisation discretization is carried out to system above state equation to obtain,
Xkk,k-1Xk-1k-1Wk-1
Wherein, Xk、Xk-1Represent tkMoment, tk-1Moment state variable, Φk,k-1Represent state-transition matrix, Γk-1Represent System noise drives battle array, Wk-1Represent system noise sequence;
Step 4, the system measurements equation and system state equation built respectively based on step 2 and step 3, using two-way card Kalman Filtering and overall weight adjustment Models, realize high frequency attitude parameter optimal estimation.
Moreover, attitude kinematics equations represent that following attitude kinematics equations represent as follows in step 3,
Wherein,Represent the differential value of quaternary number, q and ω represent satellite body coordinate system relative to inertial coodinate system respectively Attitude quaternion and three axis angular velocity of rotations, q=[q0 q1 q2 q3]T, ω=(ωxyz)。
Moreover, step 4 realize it is as follows,
(1) attitude prediction is carried out based on angle displacement measurement information
Based on angle displacement measurement information in tk-1Moment integrates following formula, obtains attitude of satellite quaternary number predicted value
Wherein,Represent tk-1Moment quaternary number optimal estimation value,Represent tk-1Moment angular speed optimal estimation value;
Angular displacement drift forecasting valuePrediction model it is as follows,
Wherein,Represent tk-1Moment angular displacement drift optimal estimation value;
For the predicted value of error covariance matrixIt is as follows to resolve model,
Wherein,Represent tk-1Moment error covariance matrix estimate, Qk-1Represent system interference variance matrix;
(2) attitude rectification is carried out based on star sensor measured value
In tkMoment, according to system measurements equation calculation observing matrix Hk, further calculate filtering gain Kk,
Wherein, Pk/k-1Represent error covariance matrix predicted value, then corresponding system state variablesFor,
Attitude of satellite quaternary number tkThe amendment updated value at momentWith the amendment updated value of angular displacement driftRespectively,
Wherein,Represent error quaternion estimate,Represent error drift amount estimate;
Error covariance matrix PkRenewal be calculated as,
Wherein, RkRepresent star sensor measuring noise square difference battle array, I represents unit matrix, HkUsing the state corrected after updating VariableRe-start calculating;
Initial filter, inverse filtering and forward filtering are carried out according to the above process (1) (2), are based ultimately upon forward filtering Overall weight adjustment is carried out with inverse filtering result.
The present invention also provides a kind of star sensor and high frequency angular displacement sensor integrated attitude determination system, including with lower module:
First module, it is as follows for building angular displacement sensor measurement model,
ωg=(1+ Δs+Λ) ω+b+ ηg
Wherein, ωgThe angular speed size obtained for angular displacement sensor measurement, Δ represent that angular displacement sensor installation misses Difference, Λ represent angular displacement sensor scale factor error, and ω is satellite body relative to the true angular velocity of inertial space, b tables Show angular displacement sensor drift size, ηgFor angular displacement sensor measurement noise;
Second module, for building system measurements equation based on multi-star sensor information fusion result, realization is as follows,
Equipped with one group of orthogonal vector,Represent orthogonal vector actual value under body coordinate system,Represent Measured value of the orthogonal vector under inertial coodinate system,Represent orthogonal vector actual value under inertial coodinate system;
It is as follows to obtain measurement equation,
Zk=HkXk+Vk
Wherein, ZkRepresent measurement vector, HkRepresent observing matrix, XkRepresent state variable,Represent quaternary number optimal estimation Value,Represent by body to inertial system transition matrix, VkRepresent tkMoment observation noise sequence;
3rd module, for building system mode according to satellite attitude kinematics equation and angular displacement sensor measurement model Equation, realization is as follows,
The state of being based on is obtained according to attitude kinematics equationsSystem state equation it is as follows,
W (t)=[- 0.5 ηg ηb]T
Wherein,Represent quantity of state differential value, X (t) represents quantity of state, and F (t) represents state-transition matrix differential, W (t) system noise sequence is represented,Represent angular velocity vector multiplication cross, I3×3Expression unit matrix, 03×3It is 0 to represent element Matrix,Represent error quaternion vector section, Δ bTRepresent error drift;
Linearisation discretization is carried out to system above state equation to obtain,
Xkk,k-1Xk-1k-1Wk-1
Wherein, Xk、Xk-1Represent tkMoment, tk-1Moment state variable, Φk,k-1Represent state-transition matrix, Γk-1Represent System noise drives battle array, Wk-1Represent system noise sequence;
4th module, for the system measurements equation built respectively based on the second module and the 3rd module and system mode side Journey, using two-way Kalman filtering and overall weight adjustment Models, realizes high frequency attitude parameter optimal estimation.
Moreover, attitude kinematics equations represent that following attitude kinematics equations represent as follows in the 3rd module,
Wherein,Represent the differential value of quaternary number, q and ω represent satellite body coordinate system relative to inertial coodinate system respectively Attitude quaternion and three axis angular velocity of rotations, q=[q0 q1 q2 q3]T, ω=(ωxyz)。
Moreover, the realization of the 4th module is as follows,
(1) attitude prediction is carried out based on angle displacement measurement information
Based on angle displacement measurement information in tk-1Moment integrates following formula, obtains attitude of satellite quaternary number predicted value
Wherein,Represent tk-1Moment quaternary number optimal estimation value,Represent tk-1Moment angular speed optimal estimation value;
Angular displacement drift forecasting valuePrediction model it is as follows,
Wherein,Represent tk-1Moment angular displacement drift optimal estimation value;
For the predicted value of error covariance matrixIt is as follows to resolve model,
Wherein,Represent tk-1Moment error covariance matrix estimate, Qk-1Represent system interference variance matrix;
(2) attitude rectification is carried out based on star sensor measured value
In tkMoment, according to system measurements equation calculation observing matrix Hk, further calculate filtering gain Kk,
Wherein, Pk/k-1Represent error covariance matrix predicted value, then corresponding system state variablesFor,
Attitude of satellite quaternary number tkThe amendment updated value at momentWith the amendment updated value of angular displacement driftRespectively,
Wherein,Represent error quaternion estimate,Represent error drift amount estimate;
Error covariance matrix PkRenewal be calculated as,
Wherein, RkRepresent star sensor measuring noise square difference battle array, I represents unit matrix, HkUsing the state corrected after updating VariableRe-start calculating;
Initial filter, inverse filtering and forward filtering are carried out according to the above process (1) (2), are based ultimately upon forward filtering Overall weight adjustment is carried out with inverse filtering result.
The present invention provides a kind of low frequency star sensor and high frequency angular displacement sensor integrated attitude determination technical solution, realize The high-precision fixed appearance advantage of star sensor has complementary advantages with the output of angular displacement sensor high-frequency angle increment, by provided by the invention Technical solution can obtain high-frequency, high-precision attitude of satellite data, be high-resolution optical satellite high-precision geometric manipulations Lay the foundation.
Brief description of the drawings
Fig. 1 is the flow chart of the embodiment of the present invention.
Embodiment
Below in conjunction with drawings and examples the present invention will be described in detail technical solution.
Star sensor shown in Figure 1 and high frequency angular displacement sensor integrated attitude determination techniqueflow chart, below for implementation Each step in example flow, is described in further detail the method for the present invention.
Step 1, according to angular displacement sensor operation principle, rational error measure model is built, takes into full account its measurement Various error sources present in value.
Angular displacement sensor can directly export the angle increment data of high frequency, obtain as a kind of inertial attitude sensor Measurement data be meant that the sampling instant compared to caused angle increment size in upper sampling instant time interval.According to upper Principle is stated to obtain:Assuming that angular displacement sensor data sampling period is T, the three axis angular displacement observation point of satellite of a certain moment t Wei not NX,Ny,Nz, then the three axis angular rate ω of moment t are obtainedxyz, specifically it is unfolded as follows:
Due to during angular displacement sensor operation on orbit existing error term include installation error, scale factor error, Drift error and measurement noise etc., therefore the error measure model for further obtaining angular displacement sensor is as follows:
ωg=(1+ Δs+Λ) ω+b+ ηg (2)
Wherein, ωgThe angular speed size obtained for angular displacement sensor measurement, Δ represent that angular displacement sensor installation misses Difference, Λ represent angular displacement sensor scale factor error, and ω is satellite body relative to the true angular velocity of inertial space, b tables Show angular displacement sensor drift size, ηgFor angular displacement sensor measurement noise.It is assumed here that angular displacement sensor measurement noise For white Gaussian noise, i.e.,σgRepresent error in measurement noise.
It is further assumed that the drift b of angular displacement sensor is sound-driving by white noise, it is expressed as:
Wherein,Represent the differential value of drift value, ηbFor angular displacement sensor and the noise of time correlation, meetσbRepresent error in drift noise.
Step 2, system measurements equation is built based on multi-star sensor information fusion result.
The present invention realizes multi-star sensor optimal information fusion, further structure based on multi-star sensor optical axis vector observation value System measurements equation is built, detailed process is as follows:
Assuming that one group of orthogonal vector expression way under body coordinate system, inertial coodinate system is as follows:
Wherein,Represent orthogonal vector actual value under body coordinate system,Represent orthogonal vector used Measured value under property coordinate system,Represent orthogonal vector actual value under inertial coodinate system.
It is further as follows according to measurement equation is derived by:
Zk=HkXk+Vk
Wherein, ZkRepresent measurement vector, HkRepresent observing matrix, XkRepresent state variable,Represent quaternary number optimal estimation Value,Represent by body to inertial system transition matrix, VkRepresent tkMoment observation noise sequence, and meet:E(Vk) represent observation noise serial mean,Observation noise sequence between representing at different moments Row covariance,Represent tjMoment observation noise matrix transposition, δkjRepresent Dick's Lay function;RkRepresent that star sensor measures to make an uproar Sound variance matrix.
Step 3, the state side based on attitude kinematics equations and angular displacement sensor error measure model construction system Journey.
The present invention further builds state equation according to attitude kinematics equations and angular displacement sensor measurement model, has Body process is as follows:
Attitude kinematics equations represent as follows:
Wherein,Represent the differential value of quaternary number, q and ω represent satellite body coordinate system relative to inertial coodinate system respectively Attitude quaternion and three axis angular velocity of rotations, q=[q0 q1 q2 q3]T, ω=(ωxyz)。
Further it is derived by based on stateSystem state equation:
Wherein,Represent quantity of state differential value, X (t) represents quantity of state, and F (t) represents state-transition matrix differential, W (t) system noise sequence is represented,Represent angular velocity vector multiplication cross, I3×3Expression unit matrix, 03×3It is 0 to represent element Matrix,Represent error quaternion vector section, Δ bTRepresent error drift, state equation derived above is continuous dynamic System filter equation is, it is necessary to be linearized and discretization, therefore carry out linearisation discretization and obtain:
Xkk,k-1Xk-1k-1Wk-1 (8)
Wherein, Xk、Xk-1Represent tkMoment, tk-1Moment state variable, Φk,k-1Represent state-transition matrix, Γk-1Represent System noise drives battle array, Wk-1Represent system noise sequence.
Step 4, the system measurements equation and system state equation built respectively based on step 2 and step 3, using two-way card Kalman Filtering and overall weight adjustment Models, realize high frequency attitude parameter optimal estimation.
Since star sensor output frequency is several hertz to tens hertz, and angular displacement sensor output frequency reaches up to ten thousand Hertz, the design of conventional integrated attitude determination wave filter can not meet to be actually needed.The present invention proposes a kind of double for the problem To Kalman filtering multifrequency many attitude sensor optimal information fusion is realized with the model algorithm that overall weight adjustment is combined.
(1) attitude prediction is carried out based on angle displacement measurement information
Based on angle displacement measurement information in tk-1Moment integrates following formula, can obtain the prediction of attitude of satellite quaternary number Value
Wherein,Represent tk-1Moment quaternary number optimal estimation value,Represent tk-1Moment angular speed optimal estimation value.
Angular displacement drift forecasting valuePrediction model it is as follows:
Wherein,Represent tk-1Moment angular displacement drift optimal estimation value.
For the predicted value of error covariance matrixIt is as follows to resolve model:
Wherein,Represent tk-1Moment error covariance matrix estimate, Qk-1Represent system interference variance matrix.
(2) attitude rectification is carried out based on star sensor measured value
In tkMoment, according to step 2 measurement equation calculating observation matrix Hk.Further calculate filtering gain Kk
Wherein, Pk/k-1Represent error covariance matrix predicted value, then corresponding system state variablesFor:
Attitude of satellite quaternary number tkThe amendment updated value at momentWith the amendment updated value of angular displacement driftRespectively:
Wherein,Represent error quaternion estimate,Represent error drift amount estimate.
Error covariance matrix PkRenewal be calculated as:
Wherein, RkRepresent star sensor measuring noise square difference battle array, I represents unit matrix, HkUsing the state corrected after updating VariableCalculating is re-started, the purpose for the arrangement is that making filtering that there is more preferable convergence.Correcting the attitude of satellite After the drift of quaternary number and angular displacement, state variableNeed to be re-set as zero.
Initial filter, inverse filtering and forward filtering are carried out according to the above process, (1) to (2) is first filtering;(2) It is inverse filtering to (1);Finally (1) to (2) is forward filtering, and the initial value filtered every time is the result of last time filtering;Finally Overall weight adjustment is carried out based on forward filtering and inverse filtering result.
Root symbol " f " represents forward filtering as a result, root symbol " b " represents inverse filtering as a result, root symbol " s " represents overall Weighted adjustment as a result,
Represent tkMoment forward filtering posture optimal estimation value,Represent tkMoment inverse filtering posture is optimal to be estimated EvaluationIt is inverse,Represent tkMoment forward and reverse filter result quaternary number error;
Represent forward and reverse quantity of state filter result error matrix,Represent to return to scalar sign, Represent tkMoment drift forward direction and inverse filtering optimal estimation value,
WithThe inverse of the forward and reverse optimal estimation value of error covariance matrix is represented respectively,Represent to arrange The error covariance matrix estimate of weighting;
Represent forward and reverse quantity of state filter result error matrix weighted average,Represent error quaternary Number overall weight mean vector partial results,Represent error drift overall weight average result;
Represent error quaternion overall weight as a result,Represent error drift overall weight result;
Represent tkMoment quaternary number overall weight as a result, Represent tkMoment drift value overall weight result.
When it is implemented, method provided by the present invention can realize automatic running flow based on software technology, mould can be also used Block mode realizes corresponding system.The embodiment of the present invention also provides a kind of star sensor and high frequency angular displacement sensor integrated attitude determination System, including with lower module:
First module, it is as follows for building angular displacement sensor measurement model,
ωg=(1+ Δs+Λ) ω+b+ ηg
Wherein, ωgThe angular speed size obtained for angular displacement sensor measurement, Δ represent that angular displacement sensor installation misses Difference, Λ represent angular displacement sensor scale factor error, and ω is satellite body relative to the true angular velocity of inertial space, b tables Show angular displacement sensor drift size, ηgFor angular displacement sensor measurement noise;
Second module, for building system measurements equation based on multi-star sensor information fusion result, realization is as follows,
Equipped with one group of orthogonal vector,Represent orthogonal vector actual value under body coordinate system,Represent Measured value of the orthogonal vector under inertial coodinate system,Represent orthogonal vector actual value under inertial coodinate system;
It is as follows to obtain measurement equation,
Zk=HkXk+Vk
Wherein, ZkRepresent measurement vector, HkRepresent observing matrix, XkRepresent state variable,Represent quaternary number optimal estimation Value,Represent by body to inertial system transition matrix, VkRepresent tkMoment observation noise sequence;
3rd module, for building system mode according to satellite attitude kinematics equation and angular displacement sensor measurement model Equation, realization is as follows,
The state of being based on is obtained according to attitude kinematics equationsSystem state equation it is as follows,
W (t)=[- 0.5 ηg ηb]T
Wherein,Represent quantity of state differential value, X (t) represents quantity of state, and F (t) represents state-transition matrix differential, W (t) system noise sequence is represented,Represent angular velocity vector multiplication cross, I3×3Expression unit matrix, 03×3It is 0 to represent element Matrix,Represent error quaternion vector section, Δ bTRepresent error drift;
Linearisation discretization is carried out to system above state equation to obtain,
Xkk,k-1Xk-1k-1Wk-1
Wherein, Xk、Xk-1Represent tkMoment, tk-1Moment state variable, Φk,k-1Represent state-transition matrix, Γk-1Represent System noise drives battle array, Wk-1Represent system noise sequence;
4th module, for the system measurements equation built respectively based on the second module and the 3rd module and system mode side Journey, using two-way Kalman filtering and overall weight adjustment Models, realizes high frequency attitude parameter optimal estimation.
Each module specific implementation can be found in corresponding steps, and it will not go into details by the present invention.
Instantiation described herein is only to spirit explanation for example of the invention.The technical field of the invention Technical staff can do various modifications or additions to described instantiation or substitute in a similar way, but Without departing from spirit of the invention or beyond the scope of the appended claims.

Claims (6)

1. a kind of star sensor and high frequency angular displacement sensor integrated attitude determination method, it is characterised in that comprise the following steps:
Step 1, it is as follows to build angular displacement sensor measurement model,
ωg=(1+ Δs+Λ) ω+b+ ηg
Wherein, ωgThe angular speed size obtained for angular displacement sensor measurement, Δ represent angular displacement sensor installation error, Λ tables Show angular displacement sensor scale factor error, ω is true angular velocity of the satellite body relative to inertial space, represents satellite sheet Body coordinate system is relative to three axis angular velocity of rotations of inertial coodinate system, b expression angular displacement sensor drift sizes, ηgFor angular displacement Sensor measurement noise;
Step 2, system measurements equation being built based on multi-star sensor information fusion result, realization is as follows,
Equipped with one group of orthogonal vector,Represent orthogonal vector actual value under body coordinate system,Represent orthogonal arrow The measured value under inertial coodinate system is measured,Represent orthogonal vector actual value under inertial coodinate system;
It is as follows to obtain measurement equation,
Zk=HkXk+Vk
<mrow> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>1</mn> </msubsup> <mo>&amp;times;</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>&amp;times;</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>3</mn> </msubsup> <mo>&amp;times;</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>9</mn> <mo>&amp;times;</mo> <mn>9</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>l</mi> <mrow> <mi>m</mi> <mi>i</mi> </mrow> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>l</mi> <mrow> <mi>m</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>l</mi> <mrow> <mi>m</mi> <mi>i</mi> </mrow> <mn>3</mn> </msubsup> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>3</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>9</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mrow>
Wherein, ZkRepresent measurement vector, HkRepresent observing matrix, XkRepresent state variable,Represent quaternary number optimal estimation value,Represent by body to inertial system transition matrix, VkRepresent tkMoment observation noise sequence;
Step 3, system state equation is built according to satellite attitude kinematics equation and angular displacement sensor measurement model, realized such as Under,
The state of being based on is obtained according to attitude kinematics equationsSystem state equation it is as follows,
<mrow> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mo>&amp;lsqb;</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mo>&amp;times;</mo> <mo>&amp;rsqb;</mo> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>0.5</mn> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
W (t)=[- 0.5 ηg ηb]T
Wherein,Represent quantity of state differential value, X (t) represents quantity of state, and F (t) represents state-transition matrix differential, and W (t) is represented System noise sequence,Represent angular velocity vector multiplication cross, I3×3Expression unit matrix, 03×3Represent the matrix that element is 0, Represent error quaternion vector section, Δ bTRepresent error drift, ηgFor angular displacement sensor measurement noise, ηbPassed for angular displacement Sensor and the noise of time correlation;
Linearisation discretization is carried out to system above state equation to obtain,
Xkk,k-1Xk-1k-1Wk-1
Wherein, Xk、Xk-1Represent tkMoment, tk-1Moment state variable, Φk,k-1Represent state-transition matrix, Γk-1Represent system noise Sound-driving battle array, Wk-1Represent system noise sequence;
Step 4, the system measurements equation and system state equation built respectively based on step 2 and step 3, using two-way Kalman Filtering and overall weight adjustment Models, realize high frequency attitude parameter optimal estimation.
2. star sensor and high frequency angular displacement sensor integrated attitude determination method according to claim 1, it is characterised in that:Step Attitude kinematics equations represent as follows in 3,
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>q</mi> <mo>&amp;CircleTimes;</mo> <mi>&amp;omega;</mi> </mrow>
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein,Represent the differential value of quaternary number, q and ω represent appearance of the satellite body coordinate system relative to inertial coodinate system respectively State quaternary number and three axis angular velocity of rotations, q=[q0 q1 q2 q3]T, ω=(ωxyz)。
3. star sensor according to claim 1 or claim 2 and high frequency angular displacement sensor integrated attitude determination method, it is characterised in that: Step 4 realize it is as follows,
(1) attitude prediction is carried out based on angle displacement measurement information
Based on angle displacement measurement information in tk-1Moment integrates following formula, obtains attitude of satellite quaternary number predicted value
<mrow> <msub> <mover> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CircleTimes;</mo> <msub> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow>
Wherein,Represent attitude of satellite quaternary number predicted value,Represent tk-1Moment quaternary number optimal estimation value,Represent tk-1Moment angular speed optimal estimation value;
Angular displacement drift forecasting valuePrediction model it is as follows,
<mrow> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow>
Wherein,Represent tk-1Moment angular displacement drift optimal estimation value;
For the predicted value of error covariance matrixIt is as follows to resolve model,
<mrow> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&amp;Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>&amp;Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&amp;Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow>
Wherein,Represent tk-1Moment error covariance matrix estimate, Qk-1Represent system interference variance matrix;
(2) attitude rectification is carried out based on star sensor measured value
In tkMoment, according to system measurements equation calculation observing matrix Hk, further calculate filtering gain Kk,
<mrow> <msub> <mi>K</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow>
Wherein, Pk/k-1Represent error covariance matrix predicted value, then corresponding system state variablesFor,
<mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
Attitude of satellite quaternary number tkThe amendment updated value at momentWith the amendment updated value of angular displacement driftRespectively,
<mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CircleTimes;</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow>
<mrow> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow>
Wherein,Represent error quaternion estimate,Represent error drift amount estimate;
Error covariance matrix PkRenewal be calculated as,
<mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mi>k</mi> </msub> <msubsup> <mi>K</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow>
Wherein, RkRepresent star sensor measuring noise square difference battle array, I represents unit matrix, HkUsing the state variable corrected after updatingRe-start calculating;
Initial filter, inverse filtering and forward filtering are carried out according to the above process (1) (2), be based ultimately upon forward filtering with it is anti- Overall weight adjustment is carried out to filter result.
4. a kind of star sensor and high frequency angular displacement sensor integrated attitude determination system, it is characterised in that including with lower module:
First module, it is as follows for building angular displacement sensor measurement model,
ωg=(1+ Δs+Λ) ω+b+ ηg
Wherein, ωgThe angular speed size obtained for angular displacement sensor measurement, Δ represent angular displacement sensor installation error, Λ tables Show angular displacement sensor scale factor error, ω is true angular velocity of the satellite body relative to inertial space, represents satellite sheet Body coordinate system is relative to three axis angular velocity of rotations of inertial coodinate system, b expression angular displacement sensor drift sizes, ηgFor angular displacement Sensor measurement noise;
Second module, for building system measurements equation based on multi-star sensor information fusion result, realization is as follows,
Equipped with one group of orthogonal vector,Represent orthogonal vector actual value under body coordinate system,Represent orthogonal arrow The measured value under inertial coodinate system is measured,Represent orthogonal vector actual value under inertial coodinate system;
It is as follows to obtain measurement equation,
Zk=HkXk+Vk
<mrow> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>1</mn> </msubsup> <mo>&amp;times;</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>&amp;times;</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>3</mn> </msubsup> <mo>&amp;times;</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>9</mn> <mo>&amp;times;</mo> <mn>9</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>l</mi> <mrow> <mi>m</mi> <mi>i</mi> </mrow> <mn>1</mn> </msubsup> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>1</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>l</mi> <mrow> <mi>m</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>l</mi> <mrow> <mi>m</mi> <mi>i</mi> </mrow> <mn>3</mn> </msubsup> <mo>-</mo> <msubsup> <mi>A</mi> <mrow> <mi>b</mi> <mi>i</mi> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <msubsup> <mi>l</mi> <mi>b</mi> <mn>3</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>9</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mrow>
Wherein, ZkRepresent measurement vector, HkRepresent observing matrix, XkRepresent state variable,Represent quaternary number optimal estimation value,Represent by body to inertial system transition matrix, VkRepresent tkMoment observation noise sequence;
3rd module, for building system mode side according to satellite attitude kinematics equation and angular displacement sensor measurement model Journey, realization is as follows,
The state of being based on is obtained according to attitude kinematics equationsSystem state equation it is as follows,
<mrow> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mo>&amp;lsqb;</mo> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mo>&amp;times;</mo> <mo>&amp;rsqb;</mo> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>0.5</mn> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
W (t)=[- 0.5 ηg ηb]T
Wherein,Represent quantity of state differential value, X (t) represents quantity of state, and F (t) represents state-transition matrix differential, and W (t) is represented System noise sequence,Represent angular velocity vector multiplication cross, I3×3Expression unit matrix, 03×3Represent the matrix that element is 0, Represent error quaternion vector section, Δ bTRepresent error drift, ηgFor angular displacement sensor measurement noise, ηbPassed for angular displacement Sensor and the noise of time correlation;
Linearisation discretization is carried out to system above state equation to obtain,
Xkk,k-1Xk-1k-1Wk-1
Wherein, Xk、Xk-1Represent tkMoment, tk-1Moment state variable, Φk,k-1Represent state-transition matrix, Γk-1Represent system noise Sound-driving battle array, Wk-1Represent system noise sequence;
4th module, for the system measurements equation and system state equation built respectively based on the second module and the 3rd module, Using two-way Kalman filtering and overall weight adjustment Models, high frequency attitude parameter optimal estimation is realized.
5. star sensor and high frequency angular displacement sensor integrated attitude determination system according to claim 4, it is characterised in that:3rd Attitude kinematics equations represent as follows in module,
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>q</mi> <mo>&amp;CircleTimes;</mo> <mi>&amp;omega;</mi> </mrow>
<mrow> <mover> <mi>q</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mtd> <mtd> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>3</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>q</mi> <mn>3</mn> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mtd> <mtd> <msub> <mi>q</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>q</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>y</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;omega;</mi> <mi>z</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein,Represent the differential value of quaternary number, q and ω represent appearance of the satellite body coordinate system relative to inertial coodinate system respectively State quaternary number and three axis angular velocity of rotations, q=[q0 q1 q2 q3]T, ω=(ωxyz)。
6. according to the star sensor of claim 4 or 5 and high frequency angular displacement sensor integrated attitude determination system, it is characterised in that: The realization of 4th module is as follows,
(1) attitude prediction is carried out based on angle displacement measurement information
Based on angle displacement measurement information in tk-1Moment integrates following formula, obtains attitude of satellite quaternary number predicted value
<mrow> <msub> <mover> <mover> <mi>q</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CircleTimes;</mo> <msub> <mover> <mi>&amp;omega;</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow>
Wherein,Represent attitude of satellite quaternary number predicted value,Represent tk-1Moment quaternary number optimal estimation value,Represent tk-1Moment angular speed optimal estimation value;
Angular displacement drift forecasting valuePrediction model it is as follows,
<mrow> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow>
Wherein,Represent tk-1Moment angular displacement drift optimal estimation value;
For the predicted value of error covariance matrixIt is as follows to resolve model,
<mrow> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&amp;Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>&amp;Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&amp;Gamma;</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow>
Wherein,Represent tk-1Moment error covariance matrix estimate, Qk-1Represent system interference variance matrix;
(2) attitude rectification is carried out based on star sensor measured value
In tkMoment, according to system measurements equation calculation observing matrix Hk, further calculate filtering gain Kk,
<mrow> <msub> <mi>K</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>H</mi> <mi>k</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow>
Wherein, Pk/k-1Represent error covariance matrix predicted value, then corresponding system state variablesFor,
<mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
Attitude of satellite quaternary number tkThe amendment updated value at momentWith the amendment updated value of angular displacement driftRespectively,
<mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;CircleTimes;</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow>
<mrow> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow>
Wherein,Represent error quaternion estimate,Represent error drift amount estimate;
Error covariance matrix PkRenewal be calculated as,
<mrow> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>H</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mo>+</mo> <msub> <mi>K</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mi>k</mi> </msub> <msubsup> <mi>K</mi> <mi>k</mi> <mi>T</mi> </msubsup> </mrow>
Wherein, RkRepresent star sensor measuring noise square difference battle array, I represents unit matrix, HkUsing the state variable corrected after updatingRe-start calculating;
Initial filter, inverse filtering and forward filtering are carried out according to the above process (1) (2), be based ultimately upon forward filtering with it is anti- Overall weight adjustment is carried out to filter result.
CN201610067447.XA 2016-01-30 2016-01-30 A kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system Active CN105486312B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610067447.XA CN105486312B (en) 2016-01-30 2016-01-30 A kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610067447.XA CN105486312B (en) 2016-01-30 2016-01-30 A kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system

Publications (2)

Publication Number Publication Date
CN105486312A CN105486312A (en) 2016-04-13
CN105486312B true CN105486312B (en) 2018-05-15

Family

ID=55673449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610067447.XA Active CN105486312B (en) 2016-01-30 2016-01-30 A kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system

Country Status (1)

Country Link
CN (1) CN105486312B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649766A (en) * 2020-06-01 2020-09-11 哈尔滨理工大学 Method and device for actively suppressing noise of angle value of magnetoelectric encoder

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106275508B (en) * 2016-08-15 2019-03-01 上海航天控制技术研究所 A kind of shortest path attitude maneuver control method of satellite around spatial axes
CN106767767A (en) * 2016-11-23 2017-05-31 上海航天控制技术研究所 A kind of micro-nano multimode star sensor system and its data fusion method
CN107389069B (en) * 2017-07-25 2020-08-21 上海航天控制技术研究所 Ground attitude processing method based on bidirectional Kalman filtering
CN107588768B (en) * 2017-08-21 2020-07-07 中国科学院长春光学精密机械与物理研究所 Star map-based inter-frame angular velocity calculation method
CN107702709B (en) * 2017-08-31 2020-09-25 西北工业大学 Time-frequency domain hybrid identification method for non-cooperative target motion and inertia parameters
CN108195403B (en) * 2017-12-28 2020-05-22 中国人民解放军国防科技大学 Method and device for constructing star sensor on-orbit attitude measurement data comprehensive error model
CN109141394B (en) * 2018-07-06 2020-07-24 中科星图股份有限公司 High-precision satellite attitude determination method based on multiple attitude sensors
CN108871312B (en) * 2018-07-09 2020-04-10 北京控制工程研究所 Combined attitude determination method for gravity gradiometer and star sensor
CN111240297A (en) * 2018-11-28 2020-06-05 中国科学院沈阳自动化研究所 Spacecraft attitude control system fault diagnosis method based on Kalman filter
CN109741381B (en) * 2019-01-23 2020-07-03 张过 Satellite-borne push-broom optical sensor high-frequency error elimination method based on parallel observation
CN110703596B (en) * 2019-08-01 2021-04-23 中国科学院力学研究所 Master satellite attitude forecasting method and system of satellite-arm coupling system
CN110793540B (en) * 2019-09-11 2021-03-26 北京控制工程研究所 Method for improving attitude measurement precision of multi-probe star sensor
CN113720330B (en) * 2021-11-01 2022-02-08 武汉大学 Sub-arc-second-level high-precision attitude determination design and implementation method for remote sensing satellite
CN114485574B (en) * 2021-12-21 2023-03-21 武汉大学 Three-linear array image POS auxiliary ground positioning method based on Kalman filtering model
CN115507845B (en) * 2022-10-18 2023-07-25 闽江学院 Satellite attitude fusion estimation method considering virtual observation values

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567564A (en) * 1980-08-19 1986-01-28 Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung Arrangement for the attitude stabilization of flexible vehicles with weakly-dampened structural vibrations and discontinuous control intervention
CN101556155A (en) * 2009-05-20 2009-10-14 上海微小卫星工程中心 Small satellite attitude determination system and method thereof
CN102114918A (en) * 2010-12-31 2011-07-06 北京航空航天大学 Attitude control feedback loop based on combined fixed attitude of multi-rate sensor
CN102607564A (en) * 2012-03-09 2012-07-25 北京航空航天大学 Small satellite autonomous navigation system based on starlight/ geomagnetism integrated information and navigation method thereof
CN102879011A (en) * 2012-09-21 2013-01-16 北京控制工程研究所 Lunar inertial navigation alignment method assisted by star sensor
CN103940433A (en) * 2014-05-12 2014-07-23 哈尔滨工业大学 Satellite attitude determining method based on improved self-adaptive square root UKF (Unscented Kalman Filter) algorithm

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012009198A2 (en) * 2010-07-14 2012-01-19 University Of Florida Research Foundation, Inc. System and method for assessing the performance of an attitude control system for small satellites

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567564A (en) * 1980-08-19 1986-01-28 Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung Arrangement for the attitude stabilization of flexible vehicles with weakly-dampened structural vibrations and discontinuous control intervention
CN101556155A (en) * 2009-05-20 2009-10-14 上海微小卫星工程中心 Small satellite attitude determination system and method thereof
CN102114918A (en) * 2010-12-31 2011-07-06 北京航空航天大学 Attitude control feedback loop based on combined fixed attitude of multi-rate sensor
CN102607564A (en) * 2012-03-09 2012-07-25 北京航空航天大学 Small satellite autonomous navigation system based on starlight/ geomagnetism integrated information and navigation method thereof
CN102879011A (en) * 2012-09-21 2013-01-16 北京控制工程研究所 Lunar inertial navigation alignment method assisted by star sensor
CN103940433A (en) * 2014-05-12 2014-07-23 哈尔滨工业大学 Satellite attitude determining method based on improved self-adaptive square root UKF (Unscented Kalman Filter) algorithm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649766A (en) * 2020-06-01 2020-09-11 哈尔滨理工大学 Method and device for actively suppressing noise of angle value of magnetoelectric encoder

Also Published As

Publication number Publication date
CN105486312A (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105486312B (en) A kind of star sensor and high frequency angular displacement sensor integrated attitude determination method and system
CN105698764B (en) A kind of Optical remote satellite image time-varying system error modeling compensation method and system
CN109991636A (en) Map constructing method and system based on GPS, IMU and binocular vision
CN100462682C (en) Self boundary marking method based on forecast filtering and UPF spacecraft shading device
CN102621565B (en) Transfer aligning method of airborne distributed POS (Position and Orientation System)
CN108036785A (en) A kind of aircraft position and orientation estimation method based on direct method and inertial navigation fusion
CN106289246A (en) A kind of rods arm measure method based on position and orientation measurement system
CN108592945A (en) Online calibration method for errors of inertia/astronomical combination system
CN107728182A (en) Flexible more base line measurement method and apparatus based on camera auxiliary
CN108279010A (en) A kind of microsatellite attitude based on multisensor determines method
CN106643806B (en) A kind of inertial navigation system alignment precision appraisal procedure
CN101726295A (en) Unscented Kalman filter-based method for tracking inertial pose according to acceleration compensation
CN107270893A (en) Lever arm, time in-synchronization error estimation and the compensation method measured towards real estate
CN104848862B (en) The punctual method and system in a kind of ring fire detector precision synchronous location
CN101949703A (en) Strapdown inertial/satellite combined navigation filtering method
CN103674021A (en) Integrated navigation system and method based on SINS (Strapdown Inertial Navigation System) and star sensor
CN106767837A (en) Based on the spacecraft attitude method of estimation that volume quaternary number is estimated
CN103114846B (en) A kind for the treatment of system afterwards of the deviational survey data based on optic fiber gyroscope inclinometer
CN103884340B (en) A kind of information fusion air navigation aid of survey of deep space fixed point soft landing process
Sun et al. Adaptive sensor data fusion in motion capture
CN109740209A (en) Hypersonic aircraft on-line parameter identification method and the mechanical model for using it
CN116295511B (en) Robust initial alignment method and system for pipeline submerged robot
CN114061591B (en) Contour line matching method based on sliding window data backtracking
CN109343550A (en) A kind of estimation method of the spacecraft angular speed based on moving horizon estimation
CN110906933A (en) AUV (autonomous Underwater vehicle) auxiliary navigation method based on deep neural network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant