CN105470184B - 一种硅片的安全运输方法 - Google Patents

一种硅片的安全运输方法 Download PDF

Info

Publication number
CN105470184B
CN105470184B CN201511022415.XA CN201511022415A CN105470184B CN 105470184 B CN105470184 B CN 105470184B CN 201511022415 A CN201511022415 A CN 201511022415A CN 105470184 B CN105470184 B CN 105470184B
Authority
CN
China
Prior art keywords
piece
silicon chip
fork
film releasing
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511022415.XA
Other languages
English (en)
Other versions
CN105470184A (zh
Inventor
徐冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Naura Microelectronics Equipment Co Ltd
Original Assignee
Beijing North Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing North Microelectronics Co Ltd filed Critical Beijing North Microelectronics Co Ltd
Priority to CN201511022415.XA priority Critical patent/CN105470184B/zh
Publication of CN105470184A publication Critical patent/CN105470184A/zh
Priority to US15/281,115 priority patent/US10046460B2/en
Application granted granted Critical
Publication of CN105470184B publication Critical patent/CN105470184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/0095Manipulators transporting wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39024Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40014Gripping workpiece to place it in another place
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40385Compare offline teached point with online teached point, modify rest as function of error

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

本发明提供了一种硅片的安全运输方法,首先将硅片承载装置分为多个区域并且获取空载或满载时硅片承载装置的各个区域的取片或放片的离线示教数据,然后根据所述离线示教数据对各个区域的硅片进行取片或放片操作,在取片或放片过程中,对硅片的实际参数数据进行实时探测和修正,从而确保硅片承载装置在满载、半载或空载状态下的安全取片或放片操作。

Description

一种硅片的安全运输方法
技术领域
本发明涉及半导体加工设备技术领域,具体涉及一种硅片的安全运输方法。
背景技术
硅片的安全存取和运输是集成电路大生产线一个非常重要的技术指标;在生产过程中通常要求运输设备自身导致的硅片破片率应小于十万分之一。作为批量式硅片热处理***,相对于单片式工艺***,每个生产工艺所需的硅片传输、硅片放置和取片次数更多,因而对硅片传输、硅片放置和取片的安全性和可靠性要求更高。
目前,机械手被广泛应用于半导体集成电路制造技术领域中,机械手是硅片传输***中的重要设备,用于存取和运输工艺处理前和工艺处理后的硅片,其能够接受指令,精确地定位到三维或二维空间上的某一点进行取放硅片,既可对单枚硅片进行取放作业,也可对多枚硅片进行取放作业。
目前,批量式硅片热处理***的硅片传取环节的位置参数一般采用离线示教的方式获取并存储在控制器中,同时按周期进行检测和校准。机械手根据存储的离线示教的数据对承载机构上放置的硅片进行取放操作。当机械手在对硅片进行取放作业时,硅片承载机构由于环境温度变化、负载变化以及机械结构变形等因素的影响,机械手按离线存储的位置坐标取放承载机构上的硅片时,存在产生碰撞导致硅片或设备受损的风险,造成不可弥补的损失。同时,由于硅片在热处理过程中产生的受热变形等情况也会使硅片的实际分布状态与离线示教位置参数有不同,使得机械手取放硅片的运动处于非安全状态,
请参阅图1,图1为现有技术中机械手在硅片传输、硅片放置和取片时的位置结构示意图。如图所示,当硅片2在支撑部件3上处于倾斜等异常状态时,机械手1在自动存取硅片2的运动处于非安全工作状态,非常容易造成硅片2及设备(包括机械手1)的损伤。在机械手1完成硅片放置后或准备取片前,需对支撑部件3上硅片组中的硅片2分布状态进行准确的位姿识别,同时对识别出的各种异常状态提供准确应对措施,以实现安全取放片。
由于硅片承载装置的位姿会随着硅片负载的变化和温度的变化而产生变化,导致取放片过程中摩擦或刮痕等损伤产品的问题,因此,在取放片过程中对硅片位姿进行修正是十分重要的。
发明内容
为了克服以上问题,本发明旨在提供一种硅片的安全运输方法,在进行取片或放片的过程中负载和环境温度变化时对硅片位置的示教数据进行实时监测和修正,确保安全取放片。
为了达到上述目的,本发明提供了硅片安全运输的方法,所述半导体设备包括用于放置多个硅片的所述硅片承载装置和用于拾取和运输硅片的机械手,所述硅片承载装置具有支撑部件,所述硅片水平放置于支撑部件上,多个所述硅片在竖直方向上排列,所述机械手具有片叉,所述片叉上下表面固定有不在同一条直线上的三个或以上的传感器组,所述传感器组用于定义一个或多个基准面;所述机械手按照示教数据进行移动,硅片安全运输方法包括:
步骤01:将所述硅片承载装置从上到下依次分为多个区域,对每个区域在空载或满载时,使所述机械手离线运行取片或放片过程,从而获得对空载或满载时所述硅片承载装置的每个区域中的硅片进行取片或放片操作的离线示教数据;其中,离线示教数据包括机械手运行中的指定位置以及所述指定位置的离线参数数据;在离线取片过程中,所述离线示教数据包括硅片的厚度、相邻硅片的间距、预向上取片位置上的机械手的片叉底部到所述片叉下方硅片上表面的距离、预退出取片位置上的机械手的片叉顶部到所述待取硅片上方的相邻的支撑部件的距离、以及所述预向上取片位置到预退出取片位置之间的距离;或者在离线放片过程中,所述离线示教数据包括硅片的厚度、相邻硅片的间距、预退出放片位置上的机械手的片叉底部到片叉下方硅片上表面的距离、预向下放片位置上的机械手的片叉顶部到片叉上方相邻的支撑部件的距离、以及预向下放片位置到预退出放片位置之间的距离;
步骤02:执行取片或放片操作指令,按照所述离线示教数据使所述机械手开始进行在线取片或放片过程;
步骤03:当对所述硅片承载装置的一个区域进行取片或放片运行过程中,通过机械手片叉的每个传感器探测机械手运行中的指定位置的实际参数数据;
步骤04:根据所述指定位置的实际参数数据与所述指定位置的离线参数数据,计算出对所述实际参数数据进行补偿的修正值,根据所述修正值来补偿所述实际参数数据;从而使所述机械手完成对所述硅片承载装置的一个区域的取片或放片操作;
步骤05:重复执行所述步骤03和所述步骤04,以进行对所述硅片承载装置的其它区域的取片或放片操作,从而完成对整个所述硅片承载装置的取片或放片操作。
优选地,所述取片过程中,预向上取片位置上片叉底部到待取硅片下方相邻硅片的距离的安全极限值为下安全取片裕量,预退出取片位置上片叉上的硅片表面到所述片叉上方的相邻支撑部件底部的安全极限值为上安全取片裕量,所述步骤04中,包括:在所述预向上取片位置时,根据所述下安全取片裕量和所述预向上取片位置的离线参数数据来调整所述预向上取片位置的实际参数数据,使得所述片叉底部到待取硅片下方相邻硅片顶部的距离等于或大于所述下安全取片裕量;在所述预退出取片位置时,根据所述上安全取片裕量和所述预退出取片位置的离线参数数据来调整所述预退出取片位置的实际参数数据,使得所述片叉上的硅片表面到所述片叉上方相邻支撑部件底部的距离等于或大于所述上安全取片裕量。
优选地,所述预退出取片位置的实际参数数据的获取方法包括:在预退出取片位置上,所述片叉下表面的传感器检测所述传感器到所述片叉下方的支撑部件顶部的距离,然后,利用相邻硅片的间距-硅片的厚度-支撑部件的厚度-检测的所述传感器到所述片叉下方的支撑部件顶部的距离,从而得到所述片叉上硅片表面到所述片叉上方相邻支撑部件底部的实际距离。
优选地,所述放片过程中,预退出放片位置上的片叉底部到该位置上的片叉下方相邻硅片顶部的距离的安全极限值为下安全放片裕量,预向下放片位置上的片叉上硅片表面到所述片叉上方相邻支撑部件底部的距离的安全极限值为上安全放片裕量;所述步骤04中,还包括:在所述预向下放片位置时,根据所述上安全放片裕量和所述预向下放片位置的离线参数数据来调整所述预向下放片位置的实际参数数据,使得所述片叉上硅片表面到所述片叉上方相邻支撑部件底部的距离等于或大于所述上安全放片裕量;在所述预退出放片位置时,根据所述下安全放片裕量和所述预退出放片位置的离线参数数据来调整所述预退出放片位置的实际参数数据,使得预退出放片位置上的片叉底部到该位置上的片叉下方相邻硅片的距离等于或大于所述上安全放片裕量。
优选地,所述预向下取片位置的实际参数数据的获取方法包括:在预向下放片位置上,所述片叉下表面的传感器检测所述传感器到所述片叉下方的支撑部件顶部的距离,然后,利用相邻硅片的间距-硅片的厚度-支撑部件的厚度-检测的所述传感器到所述片叉下方的支撑部件顶部的距离,从而得到所述片叉上硅片表面到所述片叉上方相邻支撑部件底部的实际距离。
优选地,所述步骤03中,还包括:设定基准面,并且设定位于所述基准面上的探测点,所述探测点作为原点;所述离线示教数据还包括机械手片叉的下表面相对于所述基准面的倾角阈值范围、以及机械手运行中的指定位置的离线坐标;当对所述硅片承载装置的一个区域进行取片或放片运行过程中,所述机械手片叉上的每个传感器探测所述每个传感器与所述探测点的实际坐标,根据所述坐标计算所述机械手片叉的倾角;所述步骤04中还包括:比较所述实际坐标与所述离线坐标的差值,并且根据差值来补偿所述实际坐标,从而得到修正后的坐标,按照所述修正后的坐标对所述机械手片叉位置进行修正;并且,根据所述实际坐标来计算所述机械手片叉的倾角;判断所述机械手片叉的倾角是否在所述倾角阈值范围内,如果是,则继续所述取片或放片操作;如果不是,则对所述机械手片叉的倾角进行自动修正,使所述机械手片叉的倾角在所述阈值范围内之后继续所述取片或放片操作;如果无法进行自动修正,则机械手停止运行并报警等待处理。
优选地,所述步骤04中,包括距离调整和倾角调整,其中,
所述距离调整过程包括:
步骤041:所述片叉下表面的每个传感器连续两次探测与所述探测点的坐标值,得到所述片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
步骤042:求取第一次坐标值的Z值的第一平均值和第二次坐标值的Z值的第二平均值;
步骤043:计算所述Z值的第一平均值和所述Z值的第二平均值的差值,作为沿Z轴的距离补偿值;
步骤044:将所述离线示教数据中的每个指定位置在沿Z轴方向上均加上所述距离补偿值。
所述倾角调整过程包括:
步骤045:根据所述片叉下表面的平面方程和所述基准面的平面方程,计算所述片叉下表面的法线矢量与所述基准面的法线矢量;
步骤046:根据所述片叉下表面的法线矢量的坐标值与所述基准面的法线矢量之间的坐标值以及所述步骤03中得到的倾角,在直角坐标系中计算所述片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
步骤047:以所述片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以所述片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使所述片叉下表面相对于所述基准面的倾角在所述倾角阈值范围内;
步骤048:计算调整后的所述片叉下表面的每个传感器探测与所述探测点的新的坐标值,判断新的沿Z轴的距离值是否在沿Z轴的所述距离阈值范围内;如果是,则所述机械手继续执行所述取放片操作;如果不是,则按照所述距离调整过程对所述片叉的所述离线示教数据中的每个指定位置进行沿Z轴的距离调整。
优选地,所述步骤046中,包括:求取所述片叉下表面相对于所述基准面的旋转矩阵;然后,根据旋转矩阵乘以所述基准面的法线矢量得到所述片叉下表面的法线矢量,计算出所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度为所述片叉下表面相对于所述基准面沿X轴方向的旋转角度,所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度为所述片叉下表面相对于所述基准面沿Y轴方向的旋转角度;其中,所述旋转矩阵为
优选地,所述倾角阈值范围小于所述硅片产生滑动的倾角值;所述硅片产生滑动的倾角值等于硅片的摩擦系数的反正切函数值。
优选地,所述硅片承载装置从上到下平均分为上、中、下三个区域。
本发明的硅片的安全运输方法,首先将硅片承载装置分为多个区域并且获取空载或满载时硅片承载装置的各个区域的取片或放片的离线示教数据,然后根据所述离线示教数据对各个区域的硅片进行取片或放片操作,在取片或放片过程中,对硅片的实际参数数据进行实时探测和修正,从而确保硅片承载装置在满载、半载或空载状态下的安全取片或放片操作。
附图说明
图1为现有技术中机械手在硅片传输、硅片放置和放片时的位置示意图;
图2为本发明的一个较佳实施例的半导体设备的硅片承载装置的结构示意图;
图3为本发明的一个较佳实施例的硅片传输、取片或放片过程中机械手的片叉和硅片的相对位置关系透视示意图;
图4为本发明的一个较佳实施例的传感器组、机械手、硅片和支撑部件的相对位置关系俯视示意图;
图5为本发明的一个较佳实施例的硅片、支撑部件和片叉的位置关系以及取片路线示意图;
图6为本发明的一个较佳实施例的硅片、支撑部件和片叉的位置关系以及放片路线示意图;
图7为本发明的一个较佳实施例的安全取片过程的流程示意图;
图8为本发明的一个较佳实施例的安全放片过程的流程示意图。
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
本发明的半导体设备包括用于放置多个硅片的硅片承载装置和用于拾取和运输硅片的机械手,硅片承载装置具有支撑部件,硅片水平放置于支撑部件上,多个硅片在竖直方向上排列;如图2所示,本发明的一个较佳实施例的半导体设备中的硅片承载装置,包括:黑线框内为内部装载有硅片的片盒B和装载硅片进入反应腔室C的硅片支撑机构A;半导体设备还具有承载片盒B的片盒支撑机构F,片盒支撑机构F连接于底座G上;机械手E用于从片盒B中拾取硅片并且放置于硅片支撑机构A上,当反应腔室C底部的炉门D打开时,硅片支撑机构A携带着硅片进入反应腔室C中,或者当反应结束后,反应腔室C底部的炉门D打开,硅片支撑机构A携带着处理后的硅片从反应腔室C底部退出,机械手E从硅片支撑机构A上拾取硅片并且放置于片盒B中;图2中的箭头表示各个部件的可移动方向。因此,本发明的取片过程可以但不限于包括从片盒中拾取硅片的过程,也可以包括从硅片支撑机构中拾取硅片的过程;同理,本发明的放片过程可以但不限于包括将硅片放置于片盒中,也可以包括将硅片放置于硅片支撑机构上。
本发明中,机械手具有片叉,片叉上下表面固定有不在同一条直线上的三个或以上的传感器组,传感器组用于定义一个或多个基准面;片叉上表面的三个传感器用于定义上基准面,片叉下表面的三个传感器用于定义下基准面,上基准面和下基准面可以为同一平面也可以为具有一定间距的平面;本发明的片叉可以在水平面内或竖直面内进行翻转,从而导致片叉可能产生倾斜情况;在半导体领域中,机械手一般具有单只机械爪或多只机械爪,以适应批量化生产的需要。在一些本发明的实施例中,机械手可以具有多只机械爪,在任意一个或多个机械爪的片叉的上表面和下表面三个或多个传感器,下面的实施例仅以一个机械手的一个片叉上表面和下表面分别具有三个传感器为例,其它的实施例原理相同,在此不再赘述。
以下结合附图3-8和具体实施例对本发明的硅片安全传输方法作进一步详细说明。需说明的是,附图均采用非常简化的形式、使用非精准的比例,且仅用以方便、清晰地达到辅助说明本实施例的目的。
本实施例的半导体设备硅片承载装置中硅片分布状态识别***包括:设置于机械手片叉上的传感器组、判断装置、控制装置和报警装置。
请参阅图3和图4,本实施例中,支撑部件101上承载有硅片W,支撑部件101均匀分布于一半的硅片W的边缘,机械手100的片叉101为对称V型,机械手100还具有夹持部件;片叉101的对称轴与硅片W的直径重合,片叉101的两个倾斜侧壁最外侧之间的宽度小于硅片W的直径;
本实施例的传感器组(黑实心圆),设置于机械手100的片叉101的上下表面,用于检测片叉101到一个硅片底部的距离测量值以及片叉101到该一个硅片下方相邻硅片的距离测量值;在片叉101的上表面设置有三个传感器S1、S2、S3,其中两个传感器S1和S2分别位于V型片叉101的对称的两个斜壁上且对应于置于片叉101上的硅片W的直径上,所剩的一个传感器S3位于V型片叉101的对称两个斜壁内侧相交的位置上,在该片叉101所在平面建立原点,设置为XOY基准面,传感器S1、S2的连线的中点与的传感器S3的连线垂直且平分传感器S1、S2的连线;因此,将V型片叉斜壁上的两个传感器S1、S2的连线设为X轴,将传感器S1、S2的连线的中点与传感器S3的连线设为Y轴,传感器S1、S2的连线的中点为坐标原点O,以此构成片叉所在XOY平面,这里需要说明的是,在涉及传感器的相对位置关系时,将传感器视为一个点。本实施例中,以片叉101上表面的传感器S1、S2、S3所反馈的测量值来判断硅片W的位姿和取片过程是否能够安全取片,用于计算圆柱面方程、截交线方程、硅片所在平面与片叉所在平面的夹角、截交线与片叉所在平面的最小距离和最大距离;本实施例中,传感器通过光电信号探测距离来实现的,也就是传感器为光电传感器。
本实施例的判断装置,用于判断机械手包括片叉在取片或放片运动过程中是否会触碰到硅片,以及判断硅片是否在所述机械手的片叉上,当可能触碰到硅片时向报警装置发送信号;
控制装置,根据判断装置的判断结果来控制机械手是否停止运动;并且用于控制机械手执行取片操作指令,设置理论示教数据;在取片或放片之前,先对控制装置输入示教数据,然后控制装置按照这些示教数据控制机械手来执行取片操作指令;当判断装置判断机械手可能触碰到硅片时,控制装置使机械手停止运动;请参阅图5,为本发明的一个较佳实施例的硅片、支撑部件和片叉的位置关系以及取片路线示意图;硅片W位于支撑部件102上,带箭头的粗虚线表示本实施例的取片过程的路线,细虚线框表示运动中的硅片W’,P1位置为预取片安全位置,P2位置为预向上取片位置,P3为取片过程中机械手的片叉接触到硅片的位置,P4为预退出取片位置,P5为取片过程中机械手的夹持部件夹持晶圆的位置,P6为取片后的退出安全位置;本实施例中,取片过程的路线和放片过程的路线相同,两者的运动方向相反;取片过程的理论示教数据的各个参数值与放片过程的理论示教数据的各个参数值可以相同也可以不相同。图5中显示出理论示教数据各个参数,包括硅片W的厚度d、支撑部件厚度t、相邻硅片W的间距s、预向上取片位置P2上的机械手的片叉底部到片叉下方硅片上表面的距离s2、预退出取片位置P4上的片叉上的硅片顶部到片叉上方相邻的支撑部件底部的距离s1、以及预向上取片位置P2到预退出取片位置P4之间的距离s3;请参阅图6,为本发明的一个较佳实施例的硅片、支撑部件和片叉的位置关系以及放片路线示意图;硅片W位于支撑部件102上,带箭头的粗虚线表示本实施例的取片过程或放片过程的路线,细虚线框表示运动中的硅片W’,P’1位置为放片后的退出安全位置,P’2位置为预退出放片位置,P’3为放片过程中机械手的片叉将硅片放置于支撑部件时的位置,P’4为预向下放片位置,P’5为放片过程中机械手的夹持部件取消夹持的位置,P’6为预放片安全位置;图6中显示出理论示教数据各个参数,包括硅片W的厚度d、支撑部件厚度t、相邻硅片W的间距s、退出放片位置P’2上的机械手的片叉底部到片叉下方硅片上表面的距离s2、预向下放片位置P’4上的片叉上的硅片顶部到片叉上方相邻的支撑部件底部的距离s1、以及预向下放片位置P’4到预退出放片位置P’2的距离s3。
需要说明的是,本发明中,放片过程的理论示教数据的各个参数值和取片过程的理论示教数据的各个参数值可以相同也可以不同。这里需要说明的是,相邻硅片W的间距s由支撑部件之间的距离来决定,相邻硅片W的间距s等于相邻支撑部件底部的距离。
报警装置,接收判断装置发出的信号,然后发出警报。
硅片的安全传输过程中,利用了在片叉上表面和下表面分别设置的不在同一个直线上的三个或以上的传感器,对硅片的示教数据进行修正;
本实施例中,硅片的安全运输包括取片过程和放片过程,以下以取片过程为例进行说明,请参阅图7,安全取片过程包括:
步骤101:将硅片承载装置从上到下依次分为多个区域,对每个区域在空载或满载时,使机械手离线运行取片过程,从而获得对空载或满载时硅片承载装置的每个区域中的硅片进行取片操作的离线示教数据;
具体的,离线示教数据包括机械手运行中的指定位置以及指定位置的离线参数数据;指定位置包括上述图5中的P1、P2、P3、P4、P5、P6位置;在离线取片过程中,离线示教数据包括硅片的厚度、相邻硅片的间距、预向上取片位置上的机械手的片叉底部到片叉下方硅片上表面的距离、预退出取片位置上的机械手的片叉顶部到待取硅片上方的相邻的支撑部件底部的距离、以及预向上取片位置到预退出取片位置之间的距离;
这里,硅片承载装置从上到下平均分为三个区域;获取各个区域的满载或空载情况下的取片离线示教数据,用于对后续的在线取片过程中的指定位置进行实时修正。
步骤102:执行取片操作指令,按照离线示教数据使机械手开始进行在线取片过程;
步骤103:当对硅片承载装置的一个区域进行取片运行过程中,通过机械手片叉的每个传感器探测机械手运行中的指定位置的实际参数数据;
具体的,机械手按照上述图5中的取片路线运行,取片前,在P1、P2位置通过片叉上表面的三个传感器来探测三个传感器到待取硅片下表面的实际距离;以及在P2位置通过片叉下表面的三个传感器来探测片叉底部到片叉下方相邻硅片顶部的实际距离;取片后,在P4、P5、P6位置通过片叉下表面的三个传感器来探测三个传感器到片叉下方相邻支撑部件顶部的实际距离,然后利用相邻硅片的间距s-支撑部件的厚度t-检测的传感器到片叉下方相邻支撑部件顶部的距离,从而得到片叉上硅片表面到片叉上方相邻支撑部件底部的实际距离。
步骤104:根据指定位置的实际参数数据与指定位置的离线参数数据,计算出对实际参数数据进行补偿的修正值,根据修正值来补偿实际参数数据;从而使机械手完成对硅片承载装置的一个区域的取片操作;
具体的,取片前,预向上取片位置上片叉底部到待取硅片下方相邻硅片顶部的距离的安全极限值为下安全取片裕量,预退出取片位置上片叉上的硅片上表面到片叉上方的相邻支撑部件底部的安全极限值为上安全取片裕量,本步骤04中,在预向上取片位置P2时,根据下安全取片裕量和预向上取片位置P2的离线参数数据来调整预向上取片位置P2的实际参数数据,使得片叉底部到待取硅片下方相邻硅片的距离等于或大于下安全取片裕量;在预退出取片位置P4时,根据上安全取片裕量和预退出取片位置P4的离线参数数据来调整预退出取片位置P4的实际参数数据,使得片叉上的硅片表面到片叉上方相邻支撑部件底部的距离等于或大于上安全取片裕量;
本步骤104中,具体还包括:
首先,设定基准面,并且设定位于基准面上的探测点,探测点作为原点;基准面可以为机械手所安装的基座中的水平面;本实施例中,离线示教数据还包括机械手片叉的下表面相对于基准面的倾角阈值范围、以及机械手运行中的指定位置的离线坐标;
其次,当对硅片承载装置的一个区域进行取片运行过程中,机械手片叉上的每个传感器探测每个传感器与探测点的实际坐标,根据坐标计算机械手片叉的倾角;
倾角的获取方法包括:机械手运行至离线示教数据中的指定位置后,片叉下表面的每个传感器探测相对于探测点的坐标值,并且根据坐标值得到片叉下表面与基准面的距离;当探测点为多个时,求取片叉下表面的每个传感器相对于每个探测点的坐标值以及相应的片叉下表面与基准面的距离,然后求取这些距离的平均值作为片叉下表面到基准面的距离;然后,根据片叉下表面的每个传感器的坐标值求取片叉下表面的平面方程;位于片叉下表面的不在同一直线上的三个传感器的坐标值分别为(x1,y1,z1),(x2,y2,z2)和(x3,y3,z3),根据坐标值计算出片叉下表面的平面方程为AX+BY+CZ+D=0;
其中,A、B、C和D计算式如下:
A=y1z2-y1z3-y2z1+y2z3+y3z1-y3z2
B=-x1z2+x1z3+x2z1-x2z3-x3z1+x3z2
C=x1y2-x1y3-x2y1+x2y3+x3y1-x3y2,
D=-x1y2z3+x1y3z2+x2y1z3-x2y3z1-x3y1z2+x3y2z1。
其次,通过平面方程计算片叉下表面相对于基准面的倾角;这里,基准面的平面方程为Z=0,建立片叉下表面的平面方程和基准面的平面方程组,
AX+BY+CZ+D=0,
Z=0;
它们的法线矢量分别为{A,B,C}和{0,0,1},设这两个法线矢量的夹角为α,那么这两个平面的夹角就是α,于是,
cosα=C/[√(A2+B2+C2)],
α=arc cos(C/[√(A2+B2+C2)]);
然后,比较实际坐标与离线坐标的差值,并且根据差值来补偿实际坐标,从而得到修正后的坐标,按照修正后的坐标对机械手片叉位置进行修正;并且,根据实际坐标来计算机械手片叉的倾角;判断机械手片叉的倾角是否在倾角阈值范围内,如果是,则继续取片操作;如果不是,则对机械手片叉的倾角进行自动修正,使机械手片叉的倾角在阈值范围内之后继续取片操作;如果无法进行自动修正,则机械手停止运行并报警等待处理;倾角阈值范围小于硅片产生滑动的倾角值,硅片产生滑动的倾角值等于硅片的摩擦系数的反正切函数值。
这里,具体的修正过程包括沿Z轴的距离调整和倾角调整,其中,
沿Z轴的距离调整过程包括:
步骤1041:片叉下表面的每个传感器连续两次探测与探测点的距离,得到片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
具体的,对探测点进行连续两次探测并求取平均值可以增加竖直稳定性。设片叉下表面上的三个传感器前后两次探测的坐标值为(x11,y11,z11),(x21,y21,z21),(x31,y31,z31),(x12,y12,z12),(x22,y22,z22),(x32,y32,z32);
步骤1042:求取第一次坐标值的第一平均值和第二次坐标值的第二平均值;
具体的,Z值的平均值为Zave1=Average(z11,z21,z31),Zave2=Average(z12,z22,z32);
步骤1043:计算第一平均值和第二平均值的差值,作为距离补偿值;
具体的,沿Z轴的距离补偿值为Zchange=Zave1-Zave2;
步骤1044:将离线示教数据中的每个指定位置均加上距离补偿值。
具体的,在每个指定位置的坐标值的Z值上均相应的加上Zchange。
对于理论示教数据的指定位置中的机械手预退出取片位置P4、以及机械手预向上取片位置P2,距离调整过程还包括:在P4位置时,通过机械手的片叉下表面的每个传感器检测片叉下表面与片叉下方相邻支撑部件顶部的距离,然后利用相邻硅片的间距s-支撑部件的厚度t-检测的传感器到片叉下方的支撑部件顶部的距离计算得到片叉上表面距离片叉上方相邻支撑部件底部的实际距离,再比较该实际距离与离线示教数据中的片叉上表面距离片叉上方相邻支撑部件底部的离线距离,得出第一差值,利用该第一差值来调整机械手片叉的P4位置;在P2位置时,通过机械手的片叉下表面的每个传感器检测片叉下表面与片叉下方相邻硅片顶部的实际距离,然后比较实际距离与理论示教数据中的片叉下表面距离片叉下方相邻硅片顶部的离线距离,得出第二差值,利用该第二差值来调整机械手片叉的P2位置,从而确保取片操作流程在安全阈值范围内。
当片叉的水平度不合适时,进行倾角调整过程,包括:
步骤1045:根据片叉下表面的平面方程和基准面的平面方程,计算片叉下表面的法线矢量与基准面的法线矢量;
具体的,关于平面方程和基准面方程以及相应的法线矢量的求取可以参考上述描述。
步骤1046:根据片叉下表面的法线矢量的坐标值与基准面的法线矢量之间的坐标值以及步骤104中得到的倾角,在直角坐标系中计算片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
具体的,本步骤1046包括:求取片叉下表面相对于基准面的旋转矩阵;
然后,根据旋转矩阵乘以基准面的法线矢量得到片叉下表面的法线矢量,这里,基准面的法线矢量设为片叉下表面的法线矢量设为
则有
片叉按照上述旋转矩阵进行旋转,即可完成相对于基座的水平度调节;具体的,通过上述方程计算出片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度为片叉下表面相对于基准面沿X轴方向的旋转角度,片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度为片叉下表面相对于基准面沿Y轴方向的旋转角度;
步骤1047:以片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使片叉下表面相对于基准面的倾角在倾角阈值范围内;
步骤1048:计算调整后的片叉下表面的每个传感器探测与探测点的新的距离,判断新的距离是否在距离阈值范围内;如果是,则机械手继续执行取放片操作;如果不是,则按照距离调整过程对片叉的离线示教数据中的每个指定位置进行距离调整。在片叉进行翻转之后,有可能偏离原来的位置或者由于片叉倾斜所检测的距离会不可信,从而需要重新进行距离检测和调整,可以采用上述距离调整过程来进行调整,这里不再赘述。
步骤105:重复执行步骤103和步骤104,以进行对硅片承载装置的其它区域的取片操作,从而完成对整个硅片承载装置的取片操作。
本发明中的安全放片方法和上述取片方法类似,请参阅图8,安全放片过程包括:
步骤201:将硅片承载装置从上到下依次分为多个区域,对每个区域在空载或满载时,使机械手离线运行放片过程,从而获得对空载或满载时硅片承载装置的每个区域中的硅片进行放片操作的离线示教数据;
具体的,离线示教数据包括机械手运行中的指定位置以及指定位置的离线参数数据;指定位置包括上述图6中的P’1、P’2、P’3、P’4、P’5、P’6位置;在离线放片过程中,离线示教数据包括硅片的厚度、相邻硅片的间距、预退出放片位置上的机械手的片叉底部到片叉下方硅片上表面的距离、预向下放片位置上的机械手的片叉顶部到片叉上方相邻的支撑部件底部的距离、以及预向下放片位置到预退出放片位置之间的距离;
这里,硅片承载装置从上到下平均分为三个区域;获取各个区域的满载或空载情况下的取片离线示教数据,用于对后续的在线取片过程中的指定位置进行实时修正。
步骤202:执行放片操作指令,按照离线示教数据使机械手开始进行在线放片过程;
步骤203:当对硅片承载装置的一个区域进行放片运行过程中,通过机械手片叉的每个传感器探测机械手运行中的指定位置的实际参数数据;
具体的,机械手按照上述图6中的放片路线运行,放片前,在P’6、P’5、P’4位置通过片叉下表面的三个传感器来探测三个传感器到片叉下方支撑部件顶部的实际距离,然后利用相邻硅片的间距s-支撑部件的厚度t-检测的传感器到片叉下方的支撑部件顶部的距离,从而得到片叉上硅片表面到片叉上方相邻支撑部件底部的实际距离;放片后,在P’2、P’1位置通过片叉上表面的三个传感器来探测三个传感器到待取硅片下表面的实际距离;以及在P’2位置通过片叉下表面的三个传感器来探测片叉底部到片叉下方相邻硅片顶部的实际距离。
步骤204:根据指定位置的实际参数数据与指定位置的离线参数数据,计算出对实际参数数据进行补偿的修正值,根据修正值来补偿实际参数数据;从而使机械手完成对硅片承载装置的一个区域的放片操作;
具体的,放片前,预退出放片位置上的片叉底部到该位置上的片叉下方相邻硅片顶部的距离的安全极限值为下安全放片裕量,预向下放片位置上的片叉上硅片表面到所述片叉上方相邻支撑部件底部的距离的安全极限值为上安全放片裕量,本步骤204中,在预向下放片位置P’4时,根据上安全放片裕量和预向下放片位置的离线参数数据来调整预向下放片位置P’4的实际参数数据,使得片叉上硅片表面到片叉上方相邻支撑部件底部的距离等于或大于上安全放片裕量;在预退出放片位置P’2时,根据下安全放片裕量和预退出放片位置的离线参数数据来调整预退出放片位置的实际参数数据,使得预退出放片位置上的片叉底部到该位置上的片叉下方相邻硅片的距离等于或大于上安全放片裕量;
本步骤204中,具体还包括:
首先,设定基准面,并且设定位于基准面上的探测点,探测点作为原点;基准面可以为机械手所安装的基座中的水平面;本实施例中,离线示教数据还包括机械手片叉的下表面相对于基准面的倾角阈值范围、以及机械手运行中的指定位置的离线坐标;
其次,当对硅片承载装置的一个区域进行放片运行过程中,机械手片叉上的每个传感器探测每个传感器与探测点的实际坐标,根据坐标计算机械手片叉的倾角;
倾角的获取方法包括:机械手运行至离线示教数据中的指定位置后,片叉下表面的每个传感器探测相对于探测点的坐标值,并且根据坐标值得到片叉下表面与基准面的距离;当探测点为多个时,求取片叉下表面的每个传感器相对于每个探测点的坐标值以及相应的片叉下表面与基准面的距离,然后求取这些距离的平均值作为片叉下表面到基准面的距离;然后,根据片叉下表面的每个传感器的坐标值求取片叉下表面的平面方程;位于片叉下表面的不在同一直线上的三个传感器的坐标值分别为(x1,y1,z1),(x2,y2,z2)和(x3,y3,z3),根据坐标值计算出片叉下表面的平面方程为AX+BY+CZ+D=0;
其中,A、B、C和D计算式如下:
A=y1z2-y1z3-y2z1+y2z3+y3z1-y3z2,
B=-x1z2+x1z3+x2z1-x2z3-x3z1+x3z2,
C=x1y2-x1y3-x2y1+x2y3+x3y1-x3y2,
D=-x1y2z3+x1y3z2+x2y1z3-x2y3z1-x3y1z2+x3y2z1。
其次,通过平面方程计算片叉下表面相对于基准面的倾角;这里,基准面的平面方程为Z=0,建立片叉下表面的平面方程和基准面的平面方程组,
AX+BY+CZ+D=0,
Z=0;
它们的法线矢量分别为{A,B,C}和{0,0,1},设这两个法线矢量的夹角为α,那么这两个平面的夹角就是α,于是,
cosα=C/[√(A2+B2+C2)],
α=arc cos(C/[√(A2+B2+C2)]);
然后,比较实际坐标与离线坐标的差值,并且根据差值来补偿实际坐标,从而得到修正后的坐标,按照修正后的坐标对机械手片叉位置进行修正;并且,根据实际坐标来计算机械手片叉的倾角;判断机械手片叉的倾角是否在倾角阈值范围内,如果是,则继续取片操作;如果不是,则对机械手片叉的倾角进行自动修正,使机械手片叉的倾角在阈值范围内之后继续取片操作;如果无法进行自动修正,则机械手停止运行并报警等待处理;倾角阈值范围小于硅片产生滑动的倾角值,硅片产生滑动的倾角值等于硅片的摩擦系数的反正切函数值。
这里,具体的修正过程包括沿Z轴的距离调整和倾角调整,其中,
沿Z轴的距离调整过程包括:
步骤2041:片叉下表面的每个传感器连续两次探测与探测点的距离,得到片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
具体的,对探测点进行连续两次探测并求取平均值可以增加竖直稳定性。设片叉下表面上的三个传感器前后两次探测的坐标值为(x11,y11,z11),(x21,y21,z21),(x31,y31,z31),(x12,y12,z12),(x22,y22,z22),(x32,y32,z32);
步骤2042:求取第一次坐标值的第一平均值和第二次坐标值的第二平均值;
具体的,Z值的平均值为Zave1=Average(z11,z21,z31),Zave2=Average(z12,z22,z32);
步骤2043:计算第一平均值和第二平均值的差值,作为距离补偿值;
具体的,沿Z轴的距离补偿值为Zchange=Zave1-Zave2;
步骤2044:将离线示教数据中的每个指定位置均加上距离补偿值。
具体的,在每个指定位置的坐标值的Z值上均相应的加上Zchange。
对于理论示教数据的指定位置中的机械手预向下放片位置P’4、以及机械手预退出放片位置P’2,距离调整过程还包括:在P’4位置时,通过机械手的片叉下表面的每个传感器检测片叉下表面与片叉下方相邻支撑部件顶部的距离,然后利用相邻硅片的间距s-支撑部件的厚度t-检测的传感器到片叉下方的支撑部件顶部的距离计算得到片叉上表面距离片叉上方相邻支撑部件底部的实际距离,再比较该实际距离与离线示教数据中的片叉上表面距离片叉上方相邻支撑部件底部的离线距离,得出第一差值,利用该第一差值来调整机械手片叉的P’4位置;在P’2位置时,通过机械手的片叉下表面的每个传感器检测片叉下表面与片叉下方相邻硅片顶部的实际距离,然后比较实际距离与理论示教数据中的片叉下表面距离片叉下方相邻硅片顶部的离线距离,得出第二差值,利用该第二差值来调整机械手片叉的P’2位置,从而确保放片操作流程在安全阈值范围内。
当片叉的水平度不合适时,进行倾角调整过程,包括:
步骤2045:根据片叉下表面的平面方程和基准面的平面方程,计算片叉下表面的法线矢量与基准面的法线矢量;
具体的,关于平面方程和基准面方程以及相应的法线矢量的求取可以参考上述描述。
步骤2046:根据片叉下表面的法线矢量的坐标值与基准面的法线矢量之间的坐标值以及步骤204中得到的倾角,在直角坐标系中计算片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
具体的,本步骤2046包括:求取片叉下表面相对于基准面的旋转矩阵;
然后,根据旋转矩阵乘以基准面的法线矢量得到片叉下表面的法线矢量,这里,基准面的法线矢量设为片叉下表面的法线矢量设为
则有
片叉按照上述旋转矩阵进行旋转,即可完成相对于基座的水平度调节;具体的,通过上述方程计算出片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度为片叉下表面相对于基准面沿X轴方向的旋转角度,片叉下表面的法线矢量相对于基准面的法线矢量沿X轴方向的旋转角度为片叉下表面相对于基准面沿Y轴方向的旋转角度;
步骤2047:以片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使片叉下表面相对于基准面的倾角在倾角阈值范围内;
步骤2048:计算调整后的片叉下表面的每个传感器探测与探测点的新的距离,判断新的距离是否在距离阈值范围内;如果是,则机械手继续执行放片操作;如果不是,则按照距离调整过程对片叉的离线示教数据中的每个指定位置进行距离调整。在片叉进行翻转之后,有可能偏离原来的位置或者由于片叉倾斜所检测的距离会不可信,从而需要重新进行距离检测和调整,可以采用上述距离调整过程来进行调整,这里不再赘述。
步骤205:重复执行步骤203和步骤204,以进行对硅片承载装置的其它区域的放片操作,从而完成对整个硅片承载装置的放片操作。
虽然本发明已以较佳实施例揭示如上,然所述实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

Claims (9)

1.一种硅片安全运输的方法,采用一半导体设备,该半导体设备包括用于放置多个硅片的硅片承载装置和用于拾取和运输硅片的机械手,所述硅片承载装置具有支撑部件,所述硅片水平放置于支撑部件上,多个所述硅片在竖直方向上排列,所述机械手具有片叉,所述片叉上表面和下表面分别固定有不在同一条直线上的三个或以上的传感器组,所述传感器组用于定义一个或多个基准面;所述机械手按照示教数据进行移动,其特征在于,硅片安全运输方法包括:
步骤01:将所述硅片承载装置从上到下依次分为多个区域,对每个区域在空载或满载时,使所述机械手离线运行取片或放片过程,从而获得对空载或满载时所述硅片承载装置的每个区域中的硅片进行取片或放片操作的离线示教数据;其中,离线示教数据包括机械手运行中的指定位置以及所述指定位置的离线参数数据;在离线取片过程中,所述离线示教数据包括硅片的厚度、相邻硅片的间距、预向上取片位置上的机械手的片叉底部到所述片叉下方硅片上表面的距离、预退出取片位置上的机械手的片叉顶部到待取硅片上方的相邻的支撑部件的距离、以及所述预向上取片位置到预退出取片位置之间的距离;或者在离线放片过程中,所述离线示教数据包括硅片的厚度、相邻硅片的间距、预退出放片位置上的机械手的片叉底部到片叉下方硅片上表面的距离、预向下放片位置上的机械手的片叉顶部到片叉上方相邻的支撑部件的距离、以及预向下放片位置到预退出放片位置之间的距离;
步骤02:执行取片或放片操作指令,按照所述离线示教数据使所述机械手开始进行在线取片或放片过程;
步骤03:当对所述硅片承载装置的一个区域进行取片或放片运行过程中,通过机械手片叉的每个传感器探测机械手运行中的指定位置的实际参数数据;其中所述步骤03中,还包括:设定基准面,并且设定位于所述基准面上的探测点,所述探测点作为原点;所述离线示教数据还包括机械手片叉的下表面相对于所述基准面的倾角阈值范围、以及机械手运行中的指定位置的离线坐标;当对所述硅片承载装置的一个区域进行取片或放片运行过程中,所述机械手片叉上的每个传感器探测所述每个传感器与所述探测点的实际坐标,根据所述实际坐标计算所述机械手片叉的倾角;
步骤04:根据所述指定位置的实际参数数据与所述指定位置的离线参数数据,计算出对所述实际参数数据进行补偿的修正值,根据所述修正值来补偿所述实际参数数据;从而使所述机械手完成对所述硅片承载装置的一个区域的取片或放片操作;所述步骤04中还包括:比较所述实际坐标与所述离线坐标的差值,并且根据差值来补偿所述实际坐标,从而得到修正后的坐标,按照所述修正后的坐标对所述机械手片叉位置进行修正;并且,根据所述实际坐标来计算所述机械手片叉的倾角;判断所述机械手片叉的倾角是否在所述倾角阈值范围内,如果是,则继续所述取片或放片操作;如果不是,则对所述机械手片叉的倾角进行自动修正,使所述机械手片叉的倾角在所述阈值范围内之后继续所述取片或放片操作;如果无法进行自动修正,则机械手停止运行并报警等待处理;
步骤05:重复执行所述步骤03和所述步骤04,以进行对所述硅片承载装置的其它区域的取片或放片操作,从而完成对整个所述硅片承载装置的取片或放片操作。
2.根据权利要求1所述的硅片安全运输的方法,其特征在于,所述取片过程中,预向上取片位置上片叉底部到待取硅片下方相邻硅片的距离的安全极限值为下安全取片裕量,预退出取片位置上片叉上的硅片表面到所述片叉上方的相邻支撑部件底部的安全极限值为上安全取片裕量,所述步骤04中,包括:在所述预向上取片位置时,根据所述下安全取片裕量和所述预向上取片位置的离线参数数据来调整所述预向上取片位置的实际参数数据,使得所述片叉底部到待取硅片下方相邻硅片顶部的距离等于或大于所述下安全取片裕量;在所述预退出取片位置时,根据所述上安全取片裕量和所述预退出取片位置的离线参数数据来调整所述预退出取片位置的实际参数数据,使得所述片叉上的硅片表面到所述片叉上方相邻支撑部件底部的距离等于或大于所述上安全取片裕量。
3.根据权利要求2所述的硅片安全运输的方法,其特征在于,所述预退出取片位置的实际参数数据的获取方法包括:在预退出取片位置上,所述片叉下表面的传感器检测所述传感器到所述片叉下方的支撑部件顶部的距离,然后,利用相邻硅片的间距-硅片的厚度-支撑部件的厚度-检测的所述传感器到所述片叉下方的支撑部件顶部的距离,从而得到所述片叉上硅片表面到所述片叉上方相邻支撑部件底部的实际距离。
4.根据权利要求1所述的硅片安全运输的方法,其特征在于,所述放片过程中,预退出放片位置上的片叉底部到该位置上的片叉下方相邻硅片顶部的距离的安全极限值为下安全放片裕量,预向下放片位置上的片叉上硅片表面到所述片叉上方相邻支撑部件底部的距离的安全极限值为上安全放片裕量;所述步骤04中,还包括:在所述预向下放片位置时,根据所述上安全放片裕量和所述预向下放片位置的离线参数数据来调整所述预向下放片位置的实际参数数据,使得所述片叉上硅片表面到所述片叉上方相邻支撑部件底部的距离等于或大于所述上安全放片裕量;在所述预退出放片位置时,根据所述下安全放片裕量和所述预退出放片位置的离线参数数据来调整所述预退出放片位置的实际参数数据,使得预退出放片位置上的片叉底部到该位置上的片叉下方相邻硅片的距离等于或大于所述上安全放片裕量。
5.根据权利要求4所述的硅片安全运输的方法,其特征在于,所述预向下取片位置的实际参数数据的获取方法包括:在预向下放片位置上,所述片叉下表面的传感器检测所述传感器到所述片叉下方的支撑部件顶部的距离,然后,利用相邻硅片的间距-硅片的厚度-支撑部件的厚度-检测的所述传感器到所述片叉下方的支撑部件顶部的距离,从而得到所述片叉上硅片表面到所述片叉上方相邻支撑部件底部的实际距离。
6.根据权利要求1所述的硅片安全运输的方法,其特征在于,所述步骤04中,包括距离调整和倾角调整,其中,
所述距离调整过程包括:
步骤041:所述片叉下表面的每个传感器连续两次探测与所述探测点的坐标值,得到所述片叉下表面的每个传感器的第一次坐标值和第二次坐标值;
步骤042:求取第一次坐标值的Z值的第一平均值和第二次坐标值的Z值的第二平均值;
步骤043:计算所述Z值的第一平均值和所述Z值的第二平均值的差值,作为沿Z轴的距离补偿值;
步骤044:将所述离线示教数据中的每个指定位置在沿Z轴方向上均加上所述距离补偿值;
所述倾角调整过程包括:
步骤045:根据所述片叉下表面的平面方程和所述基准面的平面方程,计算所述片叉下表面的法线矢量与所述基准面的法线矢量;
步骤046:根据所述片叉下表面的法线矢量的坐标值与所述基准面的法线矢量之间的坐标值以及所述步骤03中得到的倾角,在直角坐标系中计算所述片叉下表面的法线矢量沿X轴方向所旋转的角度以及沿Y轴方向所旋转的角度;
步骤047:以所述片叉下表面的法线矢量沿X轴方向所旋转的角度使片叉沿X轴旋转,以所述片叉下表面的法线矢量沿Y轴方向所旋转的角度使片叉沿Y轴旋转,从而使所述片叉下表面相对于所述基准面的倾角在所述倾角阈值范围内;
步骤048:计算调整后的所述片叉下表面的每个传感器探测与所述探测点的新的坐标值,判断新的沿Z轴的距离值是否在沿Z轴的所述距离阈值范围内;如果是,则所述机械手继续执行取放片操作;如果不是,则按照所述距离调整过程对所述片叉的所述离线示教数据中的每个指定位置进行沿Z轴的距离调整。
7.根据权利要求6所述的硅片安全运输的方法,其特征在于,所述步骤046中,包括:求取所述片叉下表面相对于所述基准面的旋转矩阵;然后,根据旋转矩阵乘以所述基准面的法线矢量得到所述片叉下表面的法线矢量,计算出所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度以及沿Y轴方向的旋转角度,所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度为所述片叉下表面相对于所述基准面沿X轴方向的旋转角度,所述片叉下表面的法线矢量相对于所述基准面的法线矢量沿X轴方向的旋转角度为所述片叉下表面相对于所述基准面沿Y轴方向的旋转角度;其中,所述旋转矩阵为
其中,α为片叉下表面相对于基准面的倾角;Lz为片叉下表面相对于所述基准面的旋转矩阵。
8.根据权利要求1所述的硅片安全运输的方法,其特征在于,所述倾角阈值范围小于硅片产生滑动的倾角值;所述硅片产生滑动的倾角值等于硅片的摩擦系数的反正切函数值。
9.根据权利要求1所述的硅片安全运输的方法,其特征在于,所述硅片承载装置从上到下平均分为上、中、下三个区域。
CN201511022415.XA 2015-12-31 2015-12-31 一种硅片的安全运输方法 Active CN105470184B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201511022415.XA CN105470184B (zh) 2015-12-31 2015-12-31 一种硅片的安全运输方法
US15/281,115 US10046460B2 (en) 2015-12-31 2016-09-30 Robot teaching position correcting method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511022415.XA CN105470184B (zh) 2015-12-31 2015-12-31 一种硅片的安全运输方法

Publications (2)

Publication Number Publication Date
CN105470184A CN105470184A (zh) 2016-04-06
CN105470184B true CN105470184B (zh) 2018-08-10

Family

ID=55607752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511022415.XA Active CN105470184B (zh) 2015-12-31 2015-12-31 一种硅片的安全运输方法

Country Status (2)

Country Link
US (1) US10046460B2 (zh)
CN (1) CN105470184B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731722B (zh) * 2016-08-11 2020-03-31 北京北方华创微电子装备有限公司 一种机械手取片方法和放片方法及装置
US10861723B2 (en) * 2017-08-08 2020-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. EFEM robot auto teaching methodology
JP2019160973A (ja) * 2018-03-12 2019-09-19 オムロン株式会社 部品挿入装置、部品挿入方法、およびプログラム
CN113206019B (zh) * 2021-04-08 2022-10-21 北京北方华创微电子装备有限公司 一种用于检测晶圆的翘曲度的装置及检测方法
CN114888785B (zh) * 2022-07-15 2022-09-20 上海果纳半导体技术有限公司武汉分公司 机械手的示教治具和示教方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537050A (en) * 1993-03-02 1996-07-16 Japan Synthetic Rubber Co., Ltd. Process for inspecting electrodes using rotation alignment correction
CN101521172A (zh) * 2008-02-29 2009-09-02 东京毅力科创株式会社 搬送单元的示教方法、存储介质及基板处理装置
CN102738049A (zh) * 2011-04-11 2012-10-17 东京毅力科创株式会社 基板输送方法、基板输送装置和涂敷显影装置
CN104282605A (zh) * 2013-07-08 2015-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室传片位置调试方法、装置及***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360144B1 (en) * 1995-07-10 2002-03-19 Newport Corporation Self-teaching robot arm position method
WO2000024053A1 (fr) * 1998-10-19 2000-04-27 Kabushiki Kaisha Yaskawa Denki Dispositif de protection d'un robot de nettoyage
US6345209B1 (en) * 1999-03-08 2002-02-05 Advanced Micro Devices, Inc. Method of using critical dimension mapping to qualify a new integrated circuit manufacturing process
US6215127B1 (en) * 1999-03-08 2001-04-10 Advanced Micro Devices, Inc. Method of using critical dimension mapping to qualify a new integrated circuit fabrication tool set
US6345211B1 (en) * 1999-03-08 2002-02-05 Advanced Micro Devices, Inc. Method of using critical dimension mapping to optimize speed performance of microprocessor produced using an integrated circuit manufacturing process
JP4276440B2 (ja) * 2003-01-06 2009-06-10 東京エレクトロン株式会社 基板検出方法及び装置並びに基板処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537050A (en) * 1993-03-02 1996-07-16 Japan Synthetic Rubber Co., Ltd. Process for inspecting electrodes using rotation alignment correction
CN101521172A (zh) * 2008-02-29 2009-09-02 东京毅力科创株式会社 搬送单元的示教方法、存储介质及基板处理装置
CN102738049A (zh) * 2011-04-11 2012-10-17 东京毅力科创株式会社 基板输送方法、基板输送装置和涂敷显影装置
CN104282605A (zh) * 2013-07-08 2015-01-14 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室传片位置调试方法、装置及***

Also Published As

Publication number Publication date
US20170190053A1 (en) 2017-07-06
CN105470184A (zh) 2016-04-06
US10046460B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
CN105514010B (zh) 一种硅片安全运输方法
CN105470184B (zh) 一种硅片的安全运输方法
CN105470178B (zh) 优化硅片承载装置维护周期的方法
US8892242B2 (en) Robot system
US9099508B2 (en) Method for automatic measurement and for teaching-in of location positions of objects within a substrate processing system by means of sensor carriers and associated sensor carrier
US9960063B2 (en) Substrate transport apparatus and substrate transport method
CN106493728A (zh) 坐标系设定方法、坐标系设定装置以及机器人***
US10042356B2 (en) Substrate processing apparatus, method for correcting positional displacement, and storage medium
CN105514011B (zh) 安全传输硅片的机械手及方法
CN105632997B (zh) 硅片承载装置中硅片的安全拾取方法及***
US10056282B2 (en) Method and system of robot fork calibration and wafer pick-and-place
JP2010208816A (ja) 移載装置
CN105666489B (zh) 用于修正离线示教数据的机械手及方法
US9978631B2 (en) Wafer pick-and-place method and system
CN105489532B (zh) 硅片承载装置中硅片的安全放置方法
CN105619406B (zh) 多指机械手片叉的校准方法
KR20070030529A (ko) 자동 위치 보정 기능을 갖는 무인 반송차 및 위치 보정방법
US11458633B2 (en) Article transfer apparatus
JP2008302455A (ja) 搬送ロボットシステム
TWI793564B (zh) 工業用機器人
KR102241913B1 (ko) 파렛트 정렬 측정 장치
JPH11176907A (ja) ウエハ移載装置
JP2023099503A (ja) 物品返送装置及び走行レールの段差測定方法、返送システム
EP3970926A1 (en) Controller
CN117622804A (zh) 控制方法、装置及存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 100015 No. 1 East Jiuxianqiao Road, Beijing, Chaoyang District

Applicant after: North China Science and technology group Limited by Share Ltd.

Address before: 100016 Jiuxianqiao East Road, Beijing, No. 1, No.

Applicant before: BEIJING SEVENSTAR ELECTRONIC Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20180206

Address after: 100176 No. 8, Wenchang Avenue, Beijing economic and Technological Development Zone

Applicant after: BEIJING NAURA MICROELECTRONICS EQUIPMENT Co.,Ltd.

Address before: 100015 No. 1 East Jiuxianqiao Road, Beijing, Chaoyang District

Applicant before: North China Science and technology group Limited by Share Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant