CN105450034B - 一种链式双桥自耦降压拓扑 - Google Patents

一种链式双桥自耦降压拓扑 Download PDF

Info

Publication number
CN105450034B
CN105450034B CN201610009495.3A CN201610009495A CN105450034B CN 105450034 B CN105450034 B CN 105450034B CN 201610009495 A CN201610009495 A CN 201610009495A CN 105450034 B CN105450034 B CN 105450034B
Authority
CN
China
Prior art keywords
chain type
power
voltage
high frequency
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610009495.3A
Other languages
English (en)
Other versions
CN105450034A (zh
Inventor
***
高海燕
谢振利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Changfeng Chaoyang Power Supply Co Ltd
Original Assignee
Aerospace Changfeng Chaoyang Power Supply Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Changfeng Chaoyang Power Supply Co Ltd filed Critical Aerospace Changfeng Chaoyang Power Supply Co Ltd
Priority to CN201610009495.3A priority Critical patent/CN105450034B/zh
Publication of CN105450034A publication Critical patent/CN105450034A/zh
Application granted granted Critical
Publication of CN105450034B publication Critical patent/CN105450034B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种全新的电路拓扑,具体为一种链式双桥自耦降压拓扑,解决了传统的降压直流变换器输出功率低、体积大、效率低、可靠性低的弊端。本技术采用双管交错驱动,输出功率可以提升一倍。高频变压器设计为无耦合的“链式”结构,消除耦合变换的能量丢失,提高效率。本技术实现了降压电源在相同功率和电气参数的要求下,体积减小50%,输出功率增加了一倍,效率提高10%,效率最高可以达到96%。

Description

一种链式双桥自耦降压拓扑
技术领域
本发明涉及正向输出降压式直流变换器。
背景技术
目前国内外降压开关电源的电路常用的有BOOST降压电路和基于反激的降压电路拓扑等。
BOOST降压电路的主电路图如图1所示,工作原理是:输入电源通过功率开关管(Q)的通断将储能电感(L)储能并与输入电压叠加后经快恢复隔离二极管(D)传递给输出电容(C),完成降压过程。
基于反激降压拓扑主电路图如图2所示,当开关管(Q)导通时,变压器B的初级线圈储能,当开关管截止时初级储能再经高频变压器耦合给次级,通过初次级匝比设计,实现降压过程。高频变压器在初次级耦合过程中有能量损失,会降低整机效率。
无论是BOOST降压电路还是反激拓扑降压电路都是单支功率管的电路结构,即便是可以采用多支功率管并联的形式,但由于并联功率管之间的均流及功率管自身的正温度系数特性等因素不同,在实际使用中难以扩充功率,因此这两种电路通常最大只能输出几百瓦的功率,难以满足市场对大功率降压电源的需求。
两者都是通过初级电感储能后再进行能量传递,目前磁性材料及导磁率等方面的限制,使得储能电感及反激变压器的磁材尺寸较大, 磁材利用率较低,整体功率密度较低,产品在极限应用时易出现磁材饱和并导致电路损坏情况。
发明内容
本发明在国内外开关电源领域创造了一种全新的电路拓扑,解决了传统的降压式直流变换器的输出功率低、体积大、故障模式危害负载的弊端。
本技术实现了降压电源在相同功率和电气参数的要求下,体积减小50%,输出功率增加了一倍,效率提高10%,效率最高可以达到96%,故障模式不会使负载过电压。
“链式双桥自耦降压拓扑”创造了“互为交错增功率驱动”、“无耦合高频链式降压变压器”的全新电路拓扑。“链式双桥自耦降压拓扑”的原理框图如图3。
图3中:链式双桥自耦降压拓扑电路,由四个功率开关MOS管Q1、Q2、Q3、Q4,一个无耦合高频链式正向升压变压器B,一个谐振电感L1,一个次级整流电路D1、D2,一个输出滤波电感L2,和一个输出滤波电容C2构成;功率开关MOS管Q1、Q2、Q3、Q4的结电容和L2作为谐振元件,使四个开关管一次在零电压下导通,实现恒频软开关。Q1、Q2构成超前臂,Q3、Q4构成滞后臂。为了防止桥臂直通短路,Q1和Q2,Q3和Q4之间人为的加入死区时间控制,它是根据开通延时和关断不延时的原则来设置同一桥臂死区时间。
该拓扑的原理图中,“互为交错增功率驱动”建立了大功率输出的双管驱动结构,以交错导通的方式每支开关管占空比为50%,此 电路拓扑结构,使输出功率比单管电路拓扑的输出功率提升了一倍。
“无耦合高频链式降压变压器”突破了传统设计,依据电磁感应原理,直接将目前传统的初次级两个线圈高度集成为一个具有对称结构的降压能量“链”。降压“链”式高频变压器特点是节省了一组线圈,集成并共用了初级线圈,可以最大限度的将初级功率经降压后传递至输出端。“无耦合高频链式降压变压器”改变了目前传统高频变压器需初次级耦合进行能量交换。经过多年的潜心设计、生产与比对,该“链”式集成高频变压器,其传输效率在国内外高频变压器领域内为最高,并且节省了线圈所用铜线,减小磁材的体积和用料。
下面讲述“链式双桥自耦降压拓扑”拓扑电路的工作过程:
1、当Q1、Q4导通,Q2、Q3截止,无耦合高频链式升压变压器B电压为Vin,功率由变压器B原边传送到负载,D1、D3导通,L2、C2为储能滤波元件,同时提供输出电压,输出电压=K*D*Vin,(K:匝数比;D:占空比;Vin:输入直流电压)由于匝数比K<1,因此输出电压较输入电压低。
2、当Q1、Q4截止,Q2、Q3导通,无耦合高频链式升压变压器B电压为Vin,功率由变压器B原边传送到负载,D2、D4导通,为L2、C2储能滤波,提供输出电压。
上述过程依次变换,高频变压器随Q1、Q4、Q2、Q3交错驱动双极性磁极化工作,即可以为输出提供升压电压值。
3、Q1和Q2,Q3和Q4之间人为的加入死区时间控制,它是根据开通延时和关断不延时的原则来设置同一桥臂死区时间。
“链式双桥自耦降压拓扑”特点:
提升功率:
双管驱动,即两支功率管交错工作,每支功率管的占空比近50%,功率能够提升一倍。所研制的样机,其单台输出功率轻松实现3KW,输出各项参数满足“GB/T 17478-2004直流电源设备的性能特性”的要求。
输出电性能优异:
经反复的计算和试验验证,双管交错驱动的设计方式,在电路工作过程中使电路输出电压波形可以完全对称,在相同频率状态下,输出瞬态响应速度极高,降压后的输出电压和电流调整率均小于0.5%。
极高的功率密度:
双管交错驱动使高频变压器磁芯在Ⅲ工作状态,高频变压器属于两极性磁极化,磁感应变化范围是单极性磁极化的两倍以上,磁芯利用率高,磁芯体积仅需上述反激等电路所用磁芯的一半。图9为同功率输出时变压器的对比,左侧大的为反激拓扑电路所用变压器,右侧小的为“链式双桥自耦降压拓扑”拓扑电路所用变压器,可见两者尺寸相差一倍,“链式大功率降压直流变换技术”更具有高功率密度的特点。
“无耦合高频链式降压变压器”提高了转换效率:
高频变压器设计为无耦合的“链式”结构,消除目前常规拓扑结构高频变压器的初次级间耦合过程的能量丢失,提高了变压器的转换效率,效率提高10%,效率最高可以达到96%。同时高频变压器的这种 无耦合“链式”结构,依据了电磁感应原理,电压平均分配在绕组内部,彻底的消除了耦合的不利因素,实现了电源行业内对于输入与输出具有“极大变比”要求的降压直流变换电源,仍具有很高效率的理想,节约能源。
“无耦合高频链式降压变压器”生产工艺容易控制:
“链式双桥自耦降压拓扑”设计简洁、新颖,直接将目前传统的初次级两个线圈集成在一起,使得变压器绕制更容易。
目前常规拓扑结构高频变压器的绕制工艺复杂,为了增加线圈间的耦合,通常不得不采用复杂的“三明治”绕法,线圈利用率降低,工艺控制一致性差。
无耦合的“链式”结构,完全通过高频变压器的匝数比,将输入电压提高至所需值,在绕制变压器线圈时需“双线并绕”和“抽头输出”的绕线工艺即可,并且磁芯不需要开气隙,生产工艺更容易控制,图9为高频变压器绕制线圈比对图。
有益效果:
本发明在国内外开关电源领域创造了一种全新的电路拓扑,解决了传统的降压式直流变换器输出功率低、体积大、效率低、可靠性低的弊端。
提升了降压电路的输出功率、输出电性能优异、具有极高的功率密度、“无耦合高频链式降压变压器”提高了转换效率、生产工艺容易控制。
本技术实现了降压电源在相同功率和电气参数的要求下,体积减 小50%,效率提高10%,效率最高可以达到96%。该发明市场前景广阔,主要包括车载降压变换、激光供电电源、静电除尘、LED照明、太阳能光伏发电、风力发电等领域。
在本技术方案的基础上的延伸拓扑
在本技术方案基础上将输出整流二级管用MOS管拓展成次级同步整流电路,接线图见图10,图中P1、P2为MOS管,替代了原有的整流管D1、D2,实现同步整流。
附图说明
图1 BOOST降压电路;
图2反激降压电路;
图3“链式双桥自耦降压拓扑”电路图;
图4“链式双桥自耦降压拓扑”电压波形一;
图5“链式双桥自耦降压拓扑”电压波形二;
图6“链式双桥自耦降压拓扑”Q1与Q2驱动时序图;
图7“链式双桥自耦降压拓扑”控制死区波形;
图8a高频变压器常规三明治绕制图;
图8b“链式双桥自耦降压拓扑”变压器绕制图;
图9“链式双桥自耦降压拓扑”延伸拓扑图;
图10“链式双桥自耦降压拓扑”DC280V降压DC28V实例原理图.
具体实施方式
在降压变换领域的应用:
供电一般为DC280V,很多大功率的电子设备需要提供DC28V 的电压,原有电路形式其输出功率为0-600W,但采用“链式双桥自耦降压拓扑”可以将输出功率提升至3000W,并且体积小、重量轻,更适合于使用环境。
电路的拓扑形式采用“链式双桥自耦降压拓扑”,电路主变压器B选用了EE55磁芯,Q1、Q2、Q3、Q4选用C2M0160120D,D1、D2选用MUR3020。将工作频率设定为280KHz,主变压器B采用如图10所示的双线并绕抽头引出方式,输出功率为3000W,实测效率为96.2%。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (1)

1.一种链式双桥自耦降压拓扑,其特征在于:所述降压拓扑包括互为交错增功率驱动和无耦合高频链式降压变压器;
所述互为交错增功率驱动为建立了大功率输出的双管驱动结构,以交错导通的方式每支开关管占空比为0-50%,此电路拓扑结构,使输出功率比单管电路拓扑的输出功率提升了一倍,使无耦合高频链式降压变压器工作于两极性磁极化模式,磁感应变化范围是单极性磁极化的两倍以上,磁芯利用率高,磁芯体积仅需上述单极性电路所用磁芯的一半;
所述无耦合高频链式降压变压器为消除了目前常规拓扑结构无耦合高频链式降压变压器的初次级间耦合过程的能量丢失,提高了变压器的转换效率,同时无耦合的“链式”结构,完全通过无耦合高频链式降压变压器的匝数比,将输入电压提高至所需值,采用“双线并绕”和“抽头输出”的绕线工艺,生产工艺更容易控制;
所述链式双桥自耦降压拓扑,由四个功率开关MOS管Q1、Q2、Q3、Q4,一个无耦合高频链式降压变压器,一个谐振电感L1,一个次级整流电路D1、D2,一个输出滤波电感L2,和一个输出滤波电容C2构成;功率开关MOS管Q1、Q2、Q3、Q4的结电容和L2作为谐振元件,使四个开关管一次在零电压下导通,实现恒频软开关,Q1、Q2构成超前臂,Q3、Q4构成滞后臂,当Q1、Q4截止,Q2、 Q3导通,无耦合高频链式降压变压器电压为Vin,功率由变压器B原边传送到负载,D2导通,为L2、C2储能滤波,提供输出电压;上述过程依次变换,无耦合高频链式降压变压器随Q1、Q4、Q2、Q3交错驱动双极性磁极化工作,即可以为输出提供降压电压值;MOS管Q1、Q2、Q3、Q4组成全桥电路,Q1的漏极与Q3漏极接输入端正极,Q1的源极与Q2的漏极相接接变压器的初级首,Q3的源极与Q4的漏极接变压器的初级尾,Q2的源极与Q4的源极接输入端负极,为了防止桥臂直通短路,Q1和Q2,Q3和Q4之间人为的加入死区时间控制,它是根据开通延时和关断不延时的原则来设置同一桥臂死区时间;
所述链式双桥自耦降压拓扑具体为,
(1)当Q1、Q4导通,Q2、Q3截止,无耦合高频链式降压变压器电压为Vin,功率由变压器B原边传送到负载,D1导通,L2、C2为储能滤波元件,同时提供输出电压,输出电压=K*D*Vin,K为匝数比;D为占空比;Vin:输入直流电压;由于匝数比K<1,因此输出电压较输入电压低;
(2)当Q1、Q4截止,Q2、Q3导通,无耦合高频链式降压变压器电压为Vin,功率由变压器B原边传送到负载,D2导通,为L2、C2储能滤波,提供输出电压;上述过程依次变换,无耦合高频链式降压变压器随Q1、Q4、Q2、Q3交错驱动双极性磁极化工作,即可以为输出提供降压电压值;
(3)Q1和Q2,Q3和Q4之间人为的加入死区时间控制,它是根据开通延时和关断不延时的原则来设置同一桥臂死区时间。
CN201610009495.3A 2016-01-06 2016-01-06 一种链式双桥自耦降压拓扑 Active CN105450034B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610009495.3A CN105450034B (zh) 2016-01-06 2016-01-06 一种链式双桥自耦降压拓扑

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610009495.3A CN105450034B (zh) 2016-01-06 2016-01-06 一种链式双桥自耦降压拓扑

Publications (2)

Publication Number Publication Date
CN105450034A CN105450034A (zh) 2016-03-30
CN105450034B true CN105450034B (zh) 2018-12-28

Family

ID=55559915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610009495.3A Active CN105450034B (zh) 2016-01-06 2016-01-06 一种链式双桥自耦降压拓扑

Country Status (1)

Country Link
CN (1) CN105450034B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147886A (en) * 1999-05-15 2000-11-14 Technical Witts, Inc. Dual opposed interleaved coupled inductor soft switching converters
CN202019303U (zh) * 2011-05-06 2011-10-26 江苏省电力公司扬州供电公司 开关电源
CN103259410A (zh) * 2013-05-20 2013-08-21 航天长峰朝阳电源有限公司 一种链式大功率降压直流变换器及其控制方法
CN203261132U (zh) * 2013-05-07 2013-10-30 南京邮电大学 一种利用基波磁耦合谐振的无线供电装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538905B2 (en) * 2000-04-04 2003-03-25 Artesyn Technologies, Inc. DC-to-DC power converter including at least two cascaded power conversion stages

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147886A (en) * 1999-05-15 2000-11-14 Technical Witts, Inc. Dual opposed interleaved coupled inductor soft switching converters
CN202019303U (zh) * 2011-05-06 2011-10-26 江苏省电力公司扬州供电公司 开关电源
CN203261132U (zh) * 2013-05-07 2013-10-30 南京邮电大学 一种利用基波磁耦合谐振的无线供电装置
CN103259410A (zh) * 2013-05-20 2013-08-21 航天长峰朝阳电源有限公司 一种链式大功率降压直流变换器及其控制方法

Also Published As

Publication number Publication date
CN105450034A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN108512431B (zh) 双整流交错式全桥单级功率因素校正电源电路及控制方法
CN103944397B (zh) Boost型隔离DC/DC变换器及其控制方法
CN103812359B (zh) 一种交流-直流变换电路及其控制方法
CN101854120B (zh) 一种高效率多功能反激变换器
CN105140908B (zh) 用于光伏高压直流输电***的零电压软开关控制方法
US9306463B2 (en) Full-bridge quasi resonant DC-DC converter and driving method thereof
CN205725513U (zh) 一种单相ac‑dc/dc‑ac双用电路及三相ac‑dc/dc‑ac双用电路
CN106300993B (zh) 一种前后桥臂复用高效率全桥移相变换器
CN103441680B (zh) 一种减小环流损耗的软开关全桥直流变换器
CN109951084B (zh) 一种大功率高变比谐振式直流电源及其工作方法
CN110086354A (zh) 基于碳化硅mosfet的单相双推挽升压电路及升压方法
CN104852590A (zh) 一种新型三电平llc谐振变换器
CN104065283B (zh) 无桥式pfc交流直流电源变换器
CN103259410B (zh) 一种链式大功率降压直流变换器及其控制方法
CN109818494A (zh) 一种高增益电压型准y源直流-直流变换器
CN110299849A (zh) 一种移相控制的交错并联双管正激变换器
CN1885701A (zh) 高压开关电源的dc/dc变换拓扑电路
CN211127262U (zh) 电流变换电路
CN112350583A (zh) 一种电流型推挽桥式软开关双向直流变换器
CN102412728B (zh) 链式大功率正向升压直流变换电路
CN204858982U (zh) 一种三电平llc谐振变换器
CN207664622U (zh) 一种远距离海底高压直流供电***
CN207706055U (zh) 一种dc-dc变换器
CN105450034B (zh) 一种链式双桥自耦降压拓扑
CN206364710U (zh) 基于pfc与llc谐振的智能半桥修正波电压转换电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant