CN105422681B - 基于动态pid控制的液粘调速离合器控制方法 - Google Patents

基于动态pid控制的液粘调速离合器控制方法 Download PDF

Info

Publication number
CN105422681B
CN105422681B CN201511024524.5A CN201511024524A CN105422681B CN 105422681 B CN105422681 B CN 105422681B CN 201511024524 A CN201511024524 A CN 201511024524A CN 105422681 B CN105422681 B CN 105422681B
Authority
CN
China
Prior art keywords
pid
limit
hydro
max
speed governing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511024524.5A
Other languages
English (en)
Other versions
CN105422681A (zh
Inventor
黄滔
张益兵
徐在强
侯灵芝
李晶
李�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
711th Research Institute of CSIC
Original Assignee
711th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 711th Research Institute of CSIC filed Critical 711th Research Institute of CSIC
Priority to CN201511024524.5A priority Critical patent/CN105422681B/zh
Publication of CN105422681A publication Critical patent/CN105422681A/zh
Application granted granted Critical
Publication of CN105422681B publication Critical patent/CN105422681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D35/00Fluid clutches in which the clutching is predominantly obtained by fluid adhesion
    • F16D35/005Fluid clutches in which the clutching is predominantly obtained by fluid adhesion with multiple lamellae

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

本发明公开了一种基于动态PID控制的液粘调速离合器控制方法,其将运行工况分为启动状态和运行状态,在启动状态将控制油压作为直接控制对象,在运行状态将从动轴转速作为直接控制对象,并在运行状态下实现了PID参数的动态变化。与现有技术相比,本发明具有动态响应好、不易引起超调、调节时间短、不容易产生震荡等优点。

Description

基于动态PID控制的液粘调速离合器控制方法
技术领域
本发明涉及液粘调速离合器的控制方法。
背景技术
液粘调速离合器是在二十世纪七十年代发展起来并得到广泛应用的新型传动装置。它依靠液体的粘性和油膜的剪切作用传递转矩和调节转速,通过调节控制油压改变主、从动摩擦片之间的油膜厚度即压紧程度,从而在主动轴转速不变的条件下,实现从动轴转速无级调速。液粘调速离合器主要应用于风机、水泵、带式输送机以及特种船舶动力等场合,如图1所示,液粘调速离合器90的调速控制***主要由电液比例阀91、转速传感器92、电控器93等组成,其中电控器93是液粘调速离合器调速控制***的核心,其采用PID控制方法对液粘调速离合器90的从动轴转速进行调节。
电控器将从动轴的转速反馈信号与目标转速信号进行比较,将得到的误差值进行处理,再经过积分放大,去控制电液比例阀的溢流量,使液粘调速离合器获得对应的控制油压,从而获得所需要的输出转速。电液比例阀是电控器直接控制的对象,阀的溢流量与输入电流成正比,可连续无级调节控制油路的压力。
目前传统的PID控制方法,在被控制对象所在工况发生变化以及其自身大幅度变化时存在动态响应差、易引起超调、调节时间长、容易产生震荡等问题。
发明内容
本发明所要解决的技术问题在于提供一种动态响应好、不易引起超调、调节时间短、不容易产生震荡的基于动态PID控制的液粘调速离合器控制方法。
为解决上述技术问题,本发明所采取的技术方案是:
基于动态PID控制的液粘调速离合器控制方法,包括以下步骤:
a、根据液粘调速离合器的从动轴转速大小确定运行工况,如果从动轴转速小于等于预设的启动转速,则判断液粘调速离合器处于启动状态,并转到步骤b,如果从动轴转速大于预设的启动转速,则判断液粘调速离合器处于运行状态,并转到步骤e;
b、在液粘调速离合器处于启动状态时,将液粘调速离合器的目标控制油压设置为给定值r(t),将采集的实际控制油压设置为反馈值y(t);
c、设置启动状态时的油压PID参数KPS、KIS和KDS,其中,KPS为启动比例系数,KIS为启动积分系数,KDS为启动微分系数;
d、根据PID控制公式进行PID输出量u(t)的计算,其中,ts为启动状态结束的时刻,e(t)=r(t)-y(t);
e、在液粘调速离合器处于运行状态时,将液粘调速离合器的从动轴的目标转速设置为给定值r(t),将检测到的实际从动轴转速值设置为反馈值y(t);
f、设置运行状态时的转速PID参数KPD、KID和KDD;其中,KPD为运行状态比例系数,KID为运行状态积分系数,KDD为运行状态微分系数;KPD和KID的值均根据转速的变化而动态变化;
g、根据PID控制公式进行PID输出量u(t)的计算,其中,e(t)=r(t)-y(t);Sum=(u(ts)-KPD·e(ts+1)-KDD[e(ts+1)-e(ts)])/KID,u(ts)为启动状态结束时刻的PID输出量。
采用上述技术方案后,本发明至少具有以下技术效果:
1、由于液粘调速离合器的从动轴转速在运行中变化范围相当大,为保证其在启动过程中不受冲击,本申请在液粘调速离合器处于启动状态时控制对象设定为控制油压,而在液粘调速离合器处于运行状态时将控制对象设定为从动轴转速,并且根据不同的从动轴转速,设置不同的PID参数,从而达到避免超调、缩短调节时间、减少震荡的效果;
2、本申请在运行状态的积分项中,添加了运行状态初始化误差累积值,从而实现了启动状态切换到运行状态时PID输出量u(t)的无揉动切换;
3、在发明的优选实施中,本发明的基于动态PID控制的液粘调速离合器控制方法还对误差项e(t)处理、比例项、积分项和微分项做了处理,以减小抖动,减少振荡,保证PID控制能够稳定运行。
附图说明
图1示出了液粘调速离合器调速控制***的示意图。
图2是常规的PID控制原理框图。
图3示出了根据本发明一实施例的液粘调速离合器控制方法的变控制对象的流程示意图。
图4示出了根据本发明一实施例的液粘调速离合器控制方法的设置动态PID参数的流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
常规的PID控制***原理框图如图2所示。该控制***由PID控制器和被控对象组成。其中r(t)是给定值,y(t)是***的反馈值,给定值与反馈值构成控制偏差e(t)=r(t)-y(t);e(t)作为PID控制器的输入,u(t)作为PID控制器的输出和被控对象的输入,所以PID控制器的控制规律为:
其中KP为控制器的比例系数,KI为控制器的积分系数,KD为控制器的微分系数。
常规的PID控制中,一旦PID控制器的参数确定,它将仅与当前指定被控对象匹配,当被控对象不发生时变时,该PID控制器可以获得非常好的控制效果。但现实工业现场中,很多被控对象在运行的过程中会发生缓慢的时变以及受到不确定性的干扰,静态PID控制器由于其无法实现参数的自整定而与当前时变对象进行最佳匹配,从而可能导致控制性能严重变差。
请参阅图3和图4。根据本发明一实施例的基于动态PID控制的液粘调速离合器控制方法,包括以下步骤:
a、根据液粘调速离合器的从动轴转速大小确定运行工况,如果从动轴转速小于等于预设的启动转速,则判断液粘调速离合器处于启动状态,并转到步骤b,如果从动轴转速大于预设的启动转速,则判断液粘调速离合器处于运行状态,并转到步骤e;
b、在液粘调速离合器处于启动状态时,将液粘调速离合器的目标控制油压设置为给定值r(t),将采集的实际控制油压设置为反馈值y(t);
c、设置启动状态时的油压PID参数KPS、KIS和KDS,其中,KPS为启动比例系数,KIS为启动积分系数,KDS为启动微分系数;
d、根据PID控制公式进行PID输出量u(t)的计算,其中,ts为启动状态结束的时刻,e(t)=r(t)-y(t);
e、在液粘调速离合器处于运行状态时,将液粘调速离合器的从动轴的目标转速设置为给定值r(t),将检测到的实际从动轴转速值设置为反馈值y(t);
f、设置运行状态时的转速PID参数KPD、KID和KDD;其中,KPD和KID的值均根据转速的变化而动态变化:
当从动轴的目标转速小于预设的第一转速时:
KPD=(a×200/MainSpeed+b)KP;KID=(c×200/MainSpeed+d)KI;KDD=KD
当从动轴的目标转速大于预设的第二转速时:
KPD=(a+b)KP;KID=(c+d)KI;KDD=KD
当从动轴的目标转速大于等于预设的第一转速并且小于等于预设的第二转速时:
KPD=(a×DestnationSpeed/MainSpeed+b)KP
KID=(c×DestnationSpeed/MainSpeed+d)KI
KDD=KD
其中,KPD为运行状态比例系数,KID为运行状态积分系数,KDD为运行状态微分系数;KP为预设比例常数;KI为预设积分常数;KD为预设微分常数;a、b、c和d为预设的加权系数;MainSpeed为液粘调速离合器的主动轴转速,DestnationSpeed为液粘调速离合器的从动轴的目标转速;第一转速为液粘调速离合器的主动轴转速的10%~20%,第二转速为液粘调速离合器的主动轴转速的80%~90%;
g、根据PID控制公式进行PID输出量u(t)的计算,其中,e(t)=r(t)-y(t);Sum=(u(ts)-KPD·e(ts+1)-KDD[e(ts+1)-e(ts)])/KID,u(ts)为启动状态结束时刻的PID输出量,ts+1为运行状态开始的时刻,e(ts+1)为ts+1时刻的误差值。KPD·e(t)为运行状态比例项,KDD[e(t)-e(t-1)]为运行状态微分项。
如果直接将启动状态切换至运行状态,那么其PID参数、误差项e(t)都可能会出现突变,此时PID输出量u(t)也会出现突变,导致最终控制对象从动轴转速出现失控。为保证从启动状态切换至运行状态的切换过程中PID输出量u(t)的无揉动切换,本申请在运行状态的积分项中,添加了运行状态初始化误差累积值Sum,从而实现了PID输出量u(t)的无揉动切换。
在本实施例中,所述预设的启动转速为100~300转/分钟。1000≤KPS≤5000,10≤KIS≤100,0≤KDS≤1;1000≤KP≤5000,10≤KI≤100,0≤KD≤1;a、b、c和d均大于0小于等于5。
在一个更加具体的实施例中,启动转速为200转/分钟,KPS=3000,KIS=20,KDS=0;KP=2000,KI=10,KD=0;a=2,b=1,c,和d均等于1,主动轴转速为1500转/分钟。第一转速为液粘调速离合器的主动轴转速的15%,第二转速为液粘调速离合器的主动轴转速的85%。
在本发明的优选实施例中,在上述的步骤b和步骤e中,对给定值r(t)和反馈值y(t)均进行了归一化处理。而在上述的步骤d和步骤g中,做了误差项处理、比例项处理、积分项处理和微分项处理。
误差项处理包括:在步骤d和步骤g中,若误差项e(t)的绝对值小于等于预设的死区设定值DeadBand或者e(t)的绝对值大于预设的死区设定值DeadBand但没有超过预定的时间T,则将e(t)设置为0,且当e(t)的绝对值大于误差值的最大限制值PID_ERROR_MAX_LIMIT时,令e(t)等于PID_ERROR_MAX_LIMIT。误差项处理能够使PID控制更加稳定地运行,防止出现抖动。在本实施例中,0≤DeadBand≤0.005,0<T1≤10秒,所述误差值的最大限制值PID_ERROR_MAX_LIMIT等于1。
比例项处理包括:在步骤d中,当KPS·e(t)的绝对值大于比例环节的最大限制值PID_P_MAX_LIMIT时,则令KPS·e(t)等于PID_P_MAX_LIMIT;在步骤g中,当KPD·e(t)的绝对值大于比例环节的最大限制值PID_P_MAX_LIMIT时,则令KPD·e(t)等于PID_P_MAX_LIMIT。在本实施例中,所述的比例环节的最大限制值PID_P_MAX_LIMIT等于1。
积分项处理包括:在步骤d中,当误差累积值大于误差累计最大限制值PID_ERROR_ACC_MAX_LIMIT时,则令等于PID_ERROR_ACC_MAX_LIMIT;当积分项大于积分环节的最大限制值PID_I_MAX_LIMIT时,则令等于PID_I_MAX_LIMIT。在步骤g中,当误差累积值大于误差累计最大限制值PID_ERROR_ACC_MAX_LIMIT时,则令等于PID_ERROR_ACC_MAX_LIMIT;当积分项大于积分环节的最大限制值PID_I_MAX_LIMIT时,则令等于PID_I_MAX_LIMIT。在本实施例中,500≤PID_ERROR_ACC_MAX_LIMIT≤2000;积分环节的最大限制值PID_I_MAX_LIMIT等于1。优选地,PID_ERROR_ACC_MAX_LIMIT=1000。
微分项处理包括:在步骤d中,当KDS[e(t)-e(t-1)]的绝对值大于微分环节的最大限制值PID_D_MAX_LIMIT时,则令KDS[e(t)-e(t-1)]等于PID_D_MAX_LIMIT;在步骤g中,当KDD[e(t)-e(t-1)]的绝对值大于微分环节的最大限制值PID_D_MAX_LIMIT时,则令KDD[e(t)-e(t-1)]等于PID_D_MAX_LIMIT。在本实施例中,所述微分环节的最大限制值PID_D_MAX_LIMIT等于1。
通过比例项处理、积分项处理和微分项处理,能够更进一步地达到减少振荡、缩短调节时间的效果。

Claims (10)

1.基于动态PID控制的液粘调速离合器控制方法,其特征在于,包括以下步骤:
a、根据液粘调速离合器的从动轴转速大小确定运行工况,如果从动轴转速小于等于预设的启动转速,则判断液粘调速离合器处于启动状态,并转到步骤b,如果从动轴转速大于预设的启动转速,则判断液粘调速离合器处于运行状态,并转到步骤e;
b、在液粘调速离合器处于启动状态时,将液粘调速离合器的目标控制油压设置为给定值r(t),将采集的实际控制油压设置为反馈值y(t);
c、设置启动状态时的油压PID参数KPS、KIS和KDS,其中,KPS为启动比例系数,KIS为启动积分系数,KDS为启动微分系数;
d、根据PID控制公式进行PID输出量u(t)的计算,其中,ts为启动状态结束的时刻,e(t)=r(t)-y(t);
e、在液粘调速离合器处于运行状态时,将液粘调速离合器的从动轴的目标转速设置为给定值r(t),将检测到的实际从动轴转速值设置为反馈值y(t);
f、设置运行状态时的转速PID参数KPD、KID和KDD;其中,KPD为运行状态比例系数,KID为运行状态积分系数,KDD为运行状态微分系数;KPD和KID的值均根据转速的变化而动态变化;
g、根据PID控制公式进行PID输出量u(t)的计算,其中,e(t)=r(t)-y(t);Sum=(u(ts)-KPD·e(ts+1)-KDD[e(ts+1)-e(ts)])/KID,u(ts)为启动状态结束时刻的PID输出量。
2.根据权利要求1所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,在所述的步骤f中:
当从动轴的目标转速小于预设的第一转速时:
KPD=(a×200/MainSpeed+b)KP;KID=(c×200/MainSpeed+d)KI;KDD=KD
当从动轴的目标转速大于预设的第二转速时:
KPD=(a+b)KP;KID=(c+d)KI;KDD=KD
当从动轴的目标转速大于等于预设的第一转速并且小于等于预设的第二转速时:
KPD=(a×DestnationSpeed/MainSpeed+b)KP
KID=(c×DestnationSpeed/MainSpeed+d)KI
KDD=KD
其中,KP为预设比例常数;KI为预设积分常数;KD为预设微分常数;a、b、c和d为预设的加权系数;MainSpeed为液粘调速离合器的主动轴转速,DestnationSpeed为液粘调速离合器的从动轴的目标转速;所述的第一转速为液粘调速离合器的主动轴转速的10%~20%,所述的第二转速为液粘调速离合器的主动轴转速的80%~90%。
3.根据权利要求1或2所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,在所述的步骤b和步骤e中,对给定值r(t)和反馈值y(t)进行归一化处理。
4.根据权利要求3所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,在所述的步骤d和步骤g中,若e(t)的绝对值小于等于预设的死区设定值DeadBand或者e(t)的绝对值大于预设的死区设定值DeadBand但没有超过预定的时间T,则将e(t)设置为0,且当e(t)的绝对值大于误差值的最大限制值PID_ERROR_MAX_LIMIT时,令e(t)等于PID_ERROR_MAX_LIMIT。
5.根据权利要求4所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,0≤DeadBand≤0.005,0<T≤10秒,所述误差值的最大限制值PID_ERROR_MAX_LIMIT等于1。
6.根据权利要求3所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,在所述的步骤d中,当KPS·e(t)的绝对值大于比例环节的最大限制值PID_P_MAX_LIMIT时,则令KPS·e(t)等于PID_P_MAX_LIMIT;
在所述的步骤g中,当KPD·e(t)的绝对值大于比例环节的最大限制值PID_P_MAX_LIMIT时,则令KPD·e(t)等于PID_P_MAX_LIMIT;
所述的比例环节的最大限制值PID_P_MAX_LIMIT等于1。
7.根据权利要求3所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,在所述的步骤d中,当误差累积值大于误差累计最大限制值PID_ERROR_ACC_MAX_LIMIT时,则令等于PID_ERROR_ACC_MAX_LIMIT;当积分项大于积分环节的最大限制值PID_I_MAX_LIMIT时,则令等于PID_I_MAX_LIMIT;
在所述的步骤g中,当误差累积值大于误差累计最大限制值PID_ERROR_ACC_MAX_LIMIT时,则令等于PID_ERROR_ACC_MAX_LIMIT;当积分项大于积分环节的最大限制值PID_I_MAX_LIMIT时,则令等于PID_I_MAX_LIMIT。
8.根据权利要求7所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,500≤PID_ERROR_ACC_MAX_LIMIT≤2000;积分环节的最大限制值PID_I_MAX_LIMIT等于1。
9.根据权利要求3所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,在所述的步骤d中,当KDS[e(t)-e(t-1)]的绝对值大于微分环节的最大限制值PID_D_MAX_LIMIT时,则令KDS[e(t)-e(t-1)]等于PID_D_MAX_LIMIT;
在所述的步骤g中,当KDD[e(t)-e(t-1)]的绝对值大于微分环节的最大限制值PID_D_MAX_LIMIT时,则令KDD[e(t)-e(t-1)]等于PID_D_MAX_LIMIT;
所述微分环节的最大限制值PID_D_MAX_LIMIT等于1。
10.根据权利要求2所述的基于动态PID控制的液粘调速离合器控制方法,其特征在于,所述预设的启动转速为100~300转/分钟;
1000≤KPS≤5000,10≤KIS≤100,0≤KDS≤1;1000≤KP≤5000,10≤KI≤100,0≤KD≤1;a、b、c和d均大于0小于等于5。
CN201511024524.5A 2015-12-30 2015-12-30 基于动态pid控制的液粘调速离合器控制方法 Active CN105422681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511024524.5A CN105422681B (zh) 2015-12-30 2015-12-30 基于动态pid控制的液粘调速离合器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511024524.5A CN105422681B (zh) 2015-12-30 2015-12-30 基于动态pid控制的液粘调速离合器控制方法

Publications (2)

Publication Number Publication Date
CN105422681A CN105422681A (zh) 2016-03-23
CN105422681B true CN105422681B (zh) 2018-02-16

Family

ID=55501133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511024524.5A Active CN105422681B (zh) 2015-12-30 2015-12-30 基于动态pid控制的液粘调速离合器控制方法

Country Status (1)

Country Link
CN (1) CN105422681B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805912B2 (ja) * 2017-03-13 2020-12-23 横河電機株式会社 評価装置、評価システム、および評価方法
CN113734406A (zh) * 2020-05-28 2021-12-03 中国船舶重工集团公司第七一一研究所 一种基于定距桨的lng动力***
CN114658557A (zh) * 2022-03-28 2022-06-24 重庆红江机械有限责任公司 柴油机模拟式电液调速器控制模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893849A (zh) * 2010-07-12 2010-11-24 绍兴县精功机电研究所有限公司 一种pid控制器的控制方法
CN103256381A (zh) * 2012-02-21 2013-08-21 天津职业技术师范大学 超轻度混合动力汽车传动***速比模糊pid控制器
CN103883642A (zh) * 2014-04-16 2014-06-25 奇瑞汽车股份有限公司 一种离合器油压控制方法及装置
CN104597927A (zh) * 2014-12-08 2015-05-06 中国航空工业集团公司第六三一研究所 一种基于pid的转速控制方法
CN104832307A (zh) * 2015-04-09 2015-08-12 哈尔滨工程大学 一种柴油发动机转速控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301388B2 (ja) * 1998-07-23 2002-07-15 日産自動車株式会社 無段変速機の変速制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893849A (zh) * 2010-07-12 2010-11-24 绍兴县精功机电研究所有限公司 一种pid控制器的控制方法
CN103256381A (zh) * 2012-02-21 2013-08-21 天津职业技术师范大学 超轻度混合动力汽车传动***速比模糊pid控制器
CN103883642A (zh) * 2014-04-16 2014-06-25 奇瑞汽车股份有限公司 一种离合器油压控制方法及装置
CN104597927A (zh) * 2014-12-08 2015-05-06 中国航空工业集团公司第六三一研究所 一种基于pid的转速控制方法
CN104832307A (zh) * 2015-04-09 2015-08-12 哈尔滨工程大学 一种柴油发动机转速控制方法

Also Published As

Publication number Publication date
CN105422681A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN105422681B (zh) 基于动态pid控制的液粘调速离合器控制方法
CN108662735B (zh) 一种中央空调***末端设备节能优化控制***及方法
JP5451616B2 (ja) 圧縮機制御の改良
CN101539151B (zh) 变频压缩机的控制方法和装置
CN104515334B (zh) 一种空调制热模式的频率控制方法
CN106330020B (zh) 电机启动平稳过渡控制方法
CN102562639B (zh) 一种高炉鼓风机防喘振控制的方法
CN103452608B (zh) 一种用于凝结水***的控制装置和控制方法
CN103711598B (zh) 液压***调节设备、方法、功率匹配控制***和工程机械
US20190195133A1 (en) Method and system for turbine engine temperature regulation
KR101613031B1 (ko) 열원 시스템 및 그 열매 유량 제어 방법
CN204804926U (zh) 散热控制***以及挖掘机
RU2013110056A (ru) Способ оптимизации регулирования силовой установки со свободной турбиной для летательного аппарата и регулирующий привод для его осуществления
CN107045279A (zh) 适用于高真空环境的动态赋值pid加热控制***及方法
CN102087531B (zh) 液体泵的流量控制方法
CN113250834B (zh) 发动机的控制方法及设备
CN106958182B (zh) 一种轮式摊铺机行走***及其控制方法
CN106959612A (zh) 一种基于模糊控制的带式输送机双机驱动功率平衡方法
CN102853069A (zh) 基于液粘软启动装置的模糊免疫pid控制***及方法
CN106086271A (zh) 用于降低高炉鼓风机压缩空气放风量的节能增效的方法
WO2023078351A1 (zh) 一种送风机高低速切换过程自动控制***及方法
WO2017071548A1 (zh) 设备出力突变平衡控制方法及***
CN107143492A (zh) 精确控制炼钢中压泵组水压流量的装置及方法
CN103090410B (zh) 加热炉助燃风压力控制方法、装置及***
CN102744267A (zh) 电机负荷分配控制方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 201108 Shanghai city Minhang District Huaning Road No. 3111

Patentee after: The 711 Research Institute of China Shipbuilding Corp.

Address before: 201108 Shanghai city Minhang District Huaning Road No. 3111

Patentee before: Shanghai Marine Diesel Engine Research Institute