CN105420684B - 一种基于mocvd技术制备rebco超导材料的装置 - Google Patents

一种基于mocvd技术制备rebco超导材料的装置 Download PDF

Info

Publication number
CN105420684B
CN105420684B CN201510968214.2A CN201510968214A CN105420684B CN 105420684 B CN105420684 B CN 105420684B CN 201510968214 A CN201510968214 A CN 201510968214A CN 105420684 B CN105420684 B CN 105420684B
Authority
CN
China
Prior art keywords
oxygen
retraction mechanism
substrate
spray thrower
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510968214.2A
Other languages
English (en)
Other versions
CN105420684A (zh
Inventor
陈民
陈一民
章曙东
樊子铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201510968214.2A priority Critical patent/CN105420684B/zh
Publication of CN105420684A publication Critical patent/CN105420684A/zh
Application granted granted Critical
Publication of CN105420684B publication Critical patent/CN105420684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/408Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种基于MOCVD技术制备REBCO超导材料的装置,包括真空室、金属有机源输送管路、喷淋器、冷却器、衬底、加热器及氧气引入机构,金属有机源输送管路位于真空室顶部,喷淋器位于真空室内部并与金属有机源输送管路相连,冷却器位于喷淋器下方,氧气引入机构位于冷却器下方,衬底通过弧形板安装在真空室下部,加热器位于衬底及弧形板下方,衬底与氧气引入机构之间留有反应气体输送空间;氧气引入机构与衬底之间距离可调;氧气引入机构包括氧气入口和进气通道,氧气入口与进气通道相连通,进气通道上密布有若干喷淋孔;进气通道采用环状结构;喷淋孔的氧气喷射方向与喷淋器的金属有机源喷射方向平行且相反;在靠近喷淋器一侧的氧气引入机构上设置有隔热机构。

Description

一种基于MOCVD技术制备REBCO超导材料的装置
技术领域
本发明属于REBCO超导材料制备技术领域,特别是涉及一种基于MOCVD技术制备REBCO超导材料的装置。
背景技术
金属有机化学气相沉积技术(MOCVD)是具有高沉积速率以及可大面积沉积薄膜的优点,其是制备高质量REBCO(RE即Rare Earth,代表Y、Sm、Gd及其他稀有金属元素)高温超导材料的首选工艺之一。
MOCVD技术需要用重金属有机源,以M(TMHD)X(M=RE、Ba、Cu等)为代表,通常采用单一溶液源的方法,即将全部的M(TMHD)X有机源按比例溶于THF(四氢呋喃)一类的有机溶剂中,再将溶液同时注入蒸发器内蒸成为重金属有机反应物,通过输送管路径由喷淋器(Showerhead)喷射至真空室沉积区域。
一方面,在重金属有机反应物到达沉积区域之前,必须有效充分的与反应气体氧气(O2)混合,才能保证在衬底上高效均匀的沉积出超导薄膜,这就需要尽量使重金属有机反应物与氧气提前混合充分。
另一方面,一旦重金属有机反应物与氧气混合后,在一定的温度下极易发生反应,为了能够将重金属有机反应物与氧气的反应控制在衬底表面,就需要尽量使金属有机反应物与氧气在靠近衬底表面时混合。
现有的涉及重金属有机源的工艺设计中,多采用在喷淋器前的输送管路中引入氧气,使氧气提前与重金属有机反应物均匀混合,从而实现在衬底表面实现高效均匀成膜的目的。但是,该工艺设计仍然存在以下缺点,即需要严格控制氧气引入区域(包括喷淋器及喷淋器前的输送管路)的温度及温度均匀性,如果喷淋器温度偏高或温度不均匀,会导致重金属有机反应物与氧气在喷淋器中提前反应,一方面会影响到达到衬底表面反应物的成分,使REBCO膜层成分难以控制;另一方面,在引入氧气后的输送管路及喷淋器中,重金属有机源容易与氧气发生反应而造成输送管路的堵塞,因此需要定期维护并及时清理堵塞物,这会严重影响REBCO超导材料的生产效率,也会降低工艺稳定性及可靠性。
现有的涉及III-V、II-VI金属有机源的工艺设计中,多采用单独的氧气输送管路直接在衬底表面附近引入氧气,氧气在衬底表面与金属有机源混合并反应成膜。但是,该工艺设计在应用于REBCO超导材料制备时,仍然存在以下缺点,即重金属有机源与氧气混合不均匀,并导致反应不充分,从而会影响沉积速率和成膜质量。
发明内容
针对现有技术存在的问题,本发明提供一种基于MOCVD技术制备REBCO超导材料的装置,能够使重金属有机反应物与高温氧气在喷淋器下方的反应气体输送空间内充分均匀混合,彻底解决了重金属有机反应物与氧气在喷淋器及输送管路中提前反应的问题。
为了实现上述目的,本发明采用如下技术方案:一种基于MOCVD技术制备REBCO超导材料的装置,包括真空室、金属有机源输送管路、喷淋器、冷却器、衬底、加热器及氧气引入机构,所述金属有机源输送管路位于真空室顶部,所述喷淋器位于真空室内部并与金属有机源输送管路相连,所述冷却器位于喷淋器下方,所述氧气引入机构位于冷却器下方,所述衬底通过弧形板安装在真空室下部,所述加热器位于衬底及弧形板下方,在衬底与氧气引入机构之间留有反应气体输送空间。
所述氧气引入机构与衬底之间的距离采用可调方式。
所述氧气引入机构包括氧气入口和进气通道,所述氧气入口与进气通道相连通,在所述进气通道上密布有若干喷淋孔。
所述进气通道采用环状结构。
所述喷淋孔的氧气喷射方向与喷淋器的金属有机源喷射方向平行且相反。
在靠近所述喷淋器一侧的氧气引入机构上设置有隔热机构。
本发明的有益效果:
本发明通过在喷淋器下方增加氧气引入机构,在保证重金属有机反应物与氧气混合均匀的同时,彻底解决了重金属有机反应物与氧气在喷淋器及输送管路中提前反应的问题,有利于REBCO膜层成分的精确控制和均匀控制,同时也避免了在喷淋器及输送管路中沉积膜层,大大降低了维护频率,大幅度提高了REBCO超导材料的生产效率和工艺可靠性。
本发明通过将氧气引入机构设置在喷淋器及冷却器下方,并在氧气引入机构增设了隔热机构,这样可以保证氧气引入机构维持在较高的温度,一方面可以保证喷出高温的氧气,使反应更加充分均匀;另一方面可以避免衬底表面热量损失过多,从而可以相应的降低衬底的加热温度,同时还能保证理想的成膜质量,由此可以解决由于加热温度过高所导致的一系列问题。
附图说明
图1为本发明的一种基于MOCVD技术制备REBCO超导材料的装置结构示意图;
图2为本发明的氧气引入机构结构示意图;
图中,1—真空室,2—金属有机源输送管路,3—喷淋器,4—冷却器,5—衬底,6—加热器,7—氧气引入机构,8—弧形板,9—反应气体输送空间,10—氧气入口,11—进气通道,12—喷淋孔,13—隔热机构。
具体实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。
如图1、2所示,一种基于MOCVD技术制备REBCO超导材料的装置,包括真空室1、金属有机源输送管路2、喷淋器3、冷却器4、衬底5、加热器6及氧气引入机构7,所述金属有机源输送管路2位于真空室1顶部,所述喷淋器3位于真空室1内部并与金属有机源输送管路2相连,所述冷却器4位于喷淋器3下方,所述氧气引入机构7位于冷却器4下方,所述衬底5通过弧形板8安装在真空室1下部,所述加热器6位于衬底5及弧形板8下方,在衬底5与氧气引入机构7之间留有反应气体输送空间9。
所述氧气引入机构7与衬底5之间的距离采用可调方式。由于氧气引入机构7位于衬底5上且距离可调,保证氧气在氧气引入机构7内被充分加热,以保证重金属有机源与高温氧气在衬底表面充分反应。由于氧气引入机构7位于冷却器4下方,且冷却器4位于喷淋器3下方,保证喷淋器3的温度在可控范围内的同时,还由于氧气引入机构7的阻挡作用,冷却器4不会使衬底5的表面热量损失过多。
所述氧气引入机构7包括氧气入口10和进气通道11,所述氧气入口10与进气通道11相连通,在所述进气通道11上密布有若干喷淋孔12。通过进气通道11上密布的喷淋孔12均匀喷出高温氧气,可达到与金属有机源均匀混合的目的。
所述进气通道11采用环状结构。
所述喷淋孔12的氧气喷射方向与喷淋器3的金属有机源喷射方向平行且相反。高温氧气经反弹后与金属有机源混合,进一步提高了混合均匀性。
在靠近所述喷淋器3一侧的氧气引入机构7上设置有隔热机构13。由于隔热机构13的存在,可以进一步保证氧气被有效加热,并且进一步减少衬底5表面的热量损失。
下面结合附图说明本发明的一次使用过程:
重金属有机源经金属有机源输送管路2被输送至喷淋器3内,此时喷淋器3会通过冷却器4将温度控制在可控范围内,同时高温氧气通过氧气引入机构7的氧气入口10输入,再经氧气引入机构7进气通道11上的喷淋孔12均匀喷出,此时喷出的高温氧气与重金属有机源首先在氧气引入机构7处混合,然后在反应气体输送空间9处进一步混合均匀,之后在衬底5处进行充分且均匀的反应,此过程中加热器6始终为衬底5及弧形板8进行均匀加热。
实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。

Claims (6)

1.一种基于MOCVD技术制备REBCO超导材料的装置,其特征在于:包括真空室、金属有机源输送管路、喷淋器、冷却器、衬底、加热器及氧气引入机构,所述金属有机源输送管路位于真空室顶部,所述喷淋器位于真空室内部并与金属有机源输送管路相连,所述冷却器位于喷淋器下方,所述氧气引入机构位于冷却器下方,所述衬底通过弧形板安装在真空室下部,所述加热器位于衬底及弧形板下方,在衬底与氧气引入机构之间留有反应气体输送空间。
2.根据权利要求1所述的一种基于MOCVD技术制备REBCO超导材料的装置,其特征在于:所述氧气引入机构与衬底之间的距离采用可调方式。
3.根据权利要求1所述的一种基于MOCVD技术制备REBCO超导材料的装置,其特征在于:所述氧气引入机构包括氧气入口和进气通道,所述氧气入口与进气通道相连通,在所述进气通道上密布有若干喷淋孔。
4.根据权利要求3所述的一种基于MOCVD技术制备REBCO超导材料的装置,其特征在于:所述进气通道采用环状结构。
5.根据权利要求3所述的一种基于MOCVD技术制备REBCO超导材料的装置,其特征在于:所述喷淋孔的氧气喷射方向与喷淋器的金属有机源喷射方向平行且相反。
6.根据权利要求1所述的一种基于MOCVD技术制备REBCO超导材料的装置,其特征在于:在靠近所述喷淋器一侧的氧气引入机构上设置有隔热机构。
CN201510968214.2A 2015-12-21 2015-12-21 一种基于mocvd技术制备rebco超导材料的装置 Active CN105420684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510968214.2A CN105420684B (zh) 2015-12-21 2015-12-21 一种基于mocvd技术制备rebco超导材料的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510968214.2A CN105420684B (zh) 2015-12-21 2015-12-21 一种基于mocvd技术制备rebco超导材料的装置

Publications (2)

Publication Number Publication Date
CN105420684A CN105420684A (zh) 2016-03-23
CN105420684B true CN105420684B (zh) 2017-11-10

Family

ID=55499213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510968214.2A Active CN105420684B (zh) 2015-12-21 2015-12-21 一种基于mocvd技术制备rebco超导材料的装置

Country Status (1)

Country Link
CN (1) CN105420684B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284119B (zh) * 2019-07-23 2021-08-10 拓荆科技股份有限公司 一套防止加热盘边缘热量损失的保温罩
CN111218672A (zh) * 2020-02-27 2020-06-02 苏州新材料研究所有限公司 Mocvd加热器
CN114351118A (zh) * 2020-10-13 2022-04-15 东部超导科技(苏州)有限公司 Mocvd反应***及rebco高温超导带材的制法
CN114262881A (zh) * 2021-12-24 2022-04-01 苏州新材料研究所有限公司 一种用于提升mocvd沉积效率的生产工艺
CN115341197B (zh) * 2022-09-15 2023-08-11 东部超导科技(苏州)有限公司 喷淋冷却一体板及用于金属有机化学气相沉积的喷淋***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957428A (zh) * 2003-12-15 2007-05-02 美国超能公司 用于稀土-钡-铜-氧化物薄膜生长的高产量异位方法
CN205329157U (zh) * 2015-12-21 2016-06-22 东北大学 一种基于mocvd技术制备rebco超导材料的装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120035056A1 (en) * 2010-08-04 2012-02-09 Tolga Aytug Nb-DOPED PEROVSKITE FLUX PINNING OF REBCO BASED SUPERCONDUCTORS BY MOCVD

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957428A (zh) * 2003-12-15 2007-05-02 美国超能公司 用于稀土-钡-铜-氧化物薄膜生长的高产量异位方法
CN205329157U (zh) * 2015-12-21 2016-06-22 东北大学 一种基于mocvd技术制备rebco超导材料的装置

Also Published As

Publication number Publication date
CN105420684A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN105420684B (zh) 一种基于mocvd技术制备rebco超导材料的装置
US6355107B1 (en) Compound gas injection system
KR101064210B1 (ko) 막증착 진공장비용 샤워헤드
CN101328579B (zh) Hvpe喷头设计
CN109056066A (zh) 一种超声辅助雾相输运化学气相沉积生长氧化镓的***
CN102220569B (zh) 一种垂直气流型mocvd气体输运喷头装置
TW201108304A (en) Continuous feed chemical vapor deposition system
CN102232056A (zh) 用于生成量子点的装置和方法
CN103098175A (zh) 具有气体注射分配装置的喷头组件
CN101803460B (zh) 有机材料蒸气产生装置、成膜源、成膜装置
KR101180980B1 (ko) 다중껍질 양자점의 제조장치 및 제조방법
CN102492937A (zh) 用于金属化学气相沉积设备反应室的进气喷淋头
CN103103501B (zh) 一种材料气相外延用扇形喷头结构
US20130087093A1 (en) Apparatus and method for hvpe processing using a plasma
CN205329157U (zh) 一种基于mocvd技术制备rebco超导材料的装置
CN102108547A (zh) 一种多片大尺寸氢化物气相外延方法和装置
CN106062247B (zh) 借助过程气体循环以多重等离子体进行等离子体处理的设备
CN101418465A (zh) 具有前驱物预先混合的喷头设计
CN101812673A (zh) 用于金属有机物化学沉积设备的扇形进气喷头
CN105463577B (zh) Iii族氮化物晶体的制造方法及制造装置
CN105483649A (zh) 一种微孔喷淋头及制作方法
CN106435526B (zh) 一种用于mocvd制备ybco带材的气体反应腔
CN104788277B (zh) 制备乙炔的方法和装置
JP2002544116A (ja) 基板上に材料をエピタキシャル成長させるための方法と装置
CN113025995B (zh) 一种mocvd反应***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant