CN105390913A - 辅腔泵浦铒镱共掺光纤放大器 - Google Patents

辅腔泵浦铒镱共掺光纤放大器 Download PDF

Info

Publication number
CN105390913A
CN105390913A CN201510975316.7A CN201510975316A CN105390913A CN 105390913 A CN105390913 A CN 105390913A CN 201510975316 A CN201510975316 A CN 201510975316A CN 105390913 A CN105390913 A CN 105390913A
Authority
CN
China
Prior art keywords
ytterbium
erbium
pumping
doped fiber
fiber grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510975316.7A
Other languages
English (en)
Other versions
CN105390913B (zh
Inventor
韩群
姚蕴秩
严文川
陈耀飞
刘芳超
刘铁根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201510975316.7A priority Critical patent/CN105390913B/zh
Publication of CN105390913A publication Critical patent/CN105390913A/zh
Application granted granted Critical
Publication of CN105390913B publication Critical patent/CN105390913B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1698Solid materials characterised by additives / sensitisers / promoters as further dopants rare earth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094042Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种辅腔泵浦铒镱共掺光纤放大器,包括信号输入端(1)、隔离器(2)、泵浦源(3)、泵浦/信号合束器(4)、前向反射光纤光栅(5)、铒镱共掺光纤(6)、后向反射光纤光栅(7)、输出端(8);其中:泵浦源(3)输出的激光依序经由泵浦信号合束器(4)、前向反射光纤光栅(5),被送入铒镱共掺光纤(6),对所述激光进行抽运;待放大的激光信号由输入端(1)输入,依次经过隔离器(2)、泵浦信号合束器(4)的信号端、前向反射光纤光栅(5)、进入铒镱共掺光纤(6),所述激光信号经放大后,经由输出端(8)输出。本发明可以有效地抑制Yb-ASE并提高铒镱共掺光纤放大器的稳定性和泵浦转换效率。

Description

辅腔泵浦铒镱共掺光纤放大器
技术领域
本发明涉及光纤激光领域,特别是一种带有辅助谐振腔的铒镱共掺光纤放大器。
背景技术
铒镱共掺光纤放大器的工作波长位于1.5微米波段,具有“人眼安全”的优点,在激光加工、激光测距等领域有重要应用。与普通的掺铒光纤放大器相比,这种放大器的增益光纤中同时掺杂有铒(Er)、镱(Yb)两种稀土离子。镱离子的掺入可以有效降低铒离子的浓度淬灭效应,提高其掺杂浓度,拓展泵浦波长的选择范围,因而铒镱共掺光纤放大器可以得到更高的输出功率。然而,镱离子掺入后,泵浦光子首先会被镱离子吸收,将之从基态抽运到上能级,然后处于激发态的镱离子再通过交叉驰豫将能量转移给周围的铒离子,将之从基态抽运到上能级。最后,1.5微米波段信号通过铒离子上能级与基态间的受激辐射跃迁得以实现放大。这是一种间接泵浦方式。由于镱离子向铒离子通过交叉驰豫传递能量的速率有限,当抽运速率大于二者之间的能量传递速率时,能量转移就会出现瓶颈效应,导致增益介质中处于上能级的镱离子数密度上升。由于不能即时将能量传递给周围的铒离子,这些处于激发态镱离子在向基态跃迁时会产生镱离子辐射波段(1微米波段)的自发辐射(Yb-ASE)。这一方面会造成能量的浪费,降低了放大器的泵浦转换效率。另一方面,随着泵浦不断增强,最终会产生自激振荡或自脉动效应,导致放大器输出功率不稳定,甚至还会造成器件的永久性破坏。消除高功率泵浦下Yb-ASE及其导致的自激振荡和自脉动是提高铒镱共掺光纤放大器性能的关键。
发明内容
为了克服高功率泵浦下Yb-ASE及其导致的自激振荡和自脉动对铒镱共掺光纤放大器的稳定性和效率的影响,本发明提出了一种辅腔泵浦铒镱共掺光纤放大器,在传统铒镱共掺光纤放大器中引入1微米波段合适波长的高反射率光纤光栅对,形成一个有辅助泵浦作用的谐振腔,通过该谐振腔的辅助泵浦作用,来提高稳定性和泵浦转化效率的高功率铒镱共掺光纤放大器。
本发明提出了一种辅腔泵浦铒镱共掺光纤放大器,包括信号输入端1、隔离器2、泵浦源3、泵浦信号合束器4、前向反射光纤光栅5、铒镱共掺光纤6、后向反射光纤光栅7、输出端8;其中:
泵浦源3输出的激光依序经由泵浦信号合束器4、前向反射光纤光栅5,被送入铒镱共掺光纤6,对所述放大器进行抽运;待放大的激光信号由输入端1输入,依次经过隔离器2、泵浦信号合束器4的信号端、前向反射光纤光栅5、进入铒镱共掺光纤6,所述激光信号经放大后,经由输出端8输出。
所述前向反射光纤光栅和所述后向反射光纤光栅的反射波长一致且均位于镱离子的发射波段,即1微米波段;二者构成辅腔,对放大器起到辅助泵作用。
如权利要求1所述的一种辅腔泵浦铒镱共掺光纤放大器,其特征在于,构成所述输出端8的尾纤抛磨成具有角度;所述角度通常为8度。
所述输出端8尾纤抛磨成具有角度,通常为8度。
与现有技术相比,本发明可以有效地抑制Yb-ASE并提高铒镱共掺光纤放大器的稳定性和泵浦转换效率。
附图说明
图1是辅腔泵浦铒镱共掺光纤放大器示意图;
图2是引入辅腔后泵浦、信号、前向光纤光栅反射、后向光纤光栅反射在增益光纤中的功率演化结果示意图;
图3为采用不同波长的光纤光栅对时最大输出信号功率和最佳光纤长度的对应光纤的光栅波长变化曲线图,其中:a、放大后信号功率随光纤光栅波长的变化曲线;b、最佳光纤长度随光纤光栅波长的变化曲线;
附图标记:1、输入端,2、隔离器,3、浦泵源,4、泵浦信号合束器,5、前向反射光纤光栅、6、铒镱共掺光纤,7、后向反射光纤光栅,8、输出端。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步说明。
如图1所示为辅腔泵浦铒镱共掺光纤放大器的原理示意图。待放大激光信号波长1550nm,功率100mW。信号由输入端1输入,依次经由隔离器2、泵浦信号合束器4、前向反射光纤光栅5进入铒镱共掺光纤6,被放大后经过后向反射光纤光栅7,从输出端8输出。
为防止端面反射的不利影响,输出端8尾纤抛磨成一定角度(通常为8度)。本例中泵源中心波长为976nm,功率为10W。优化得到的最佳增益光纤长度为3.25m。工作原理为,波长一致的前向反射光纤光栅和后向反射光纤光栅形成谐振腔。高功率泵浦下,谐振腔中会产生相应波长的激光振荡,可以很好的抑制Yb-ASE的产生。谐振腔中的激光在谐振过程中会被增益光纤重新吸收,可以提高相同泵浦功率下输出信号的功率,即提高泵浦转化效率。
如图2所示为前向和后向反射光纤光栅的波长为1028nm,峰值反射率99.9%时,增益光纤中的泵浦光、信号光、前/后向反射光纤光栅反射光的功率演化曲线。可以看出,引入一对高反射率光纤光栅后形成了激光谐振。
如图3所示,为采用不同波长的光纤光栅对时最大输出信号功率和最佳光纤长度的对应关系。(a)为信号功率随光纤光栅波长的变化曲线;(b)为最佳光纤长度随光纤光栅波长的变化曲线。作为对比,在同样的泵浦和信号参数情况下,普通铒镱共掺放大器的输出功率3.64W,相应的最佳光纤长度为3.15m,分别如图(a)和(b)中的水平横线所示。从图3可以看出,(1)如果光纤光栅的反射波长选在1010nm到1066nm之间,放大后输出信号的功率均可得到不同程度的提高;(2)光纤光栅的波长越短,最佳光纤长度也越短,甚至可以比普通铒镱共掺光纤放大器的最佳光纤长度还短。
在光纤光栅波长为1028nm时,放大后信号功率达4.69W,比无辅腔时提高了28.8%,而最佳光纤长度为3.25m,与无辅腔时几乎一样。
综上可以看出,引入合适波长的辅腔后可以明显提高放大器的泵浦转化效率,辅腔中的激光振荡也可以有效的抑制普通铒镱共掺光纤放大器中的自发辐射和随机振荡,可以提高其稳定性。

Claims (3)

1.一种辅腔泵浦铒镱共掺光纤放大器,其特征在于,所述放大器包括信号输入端(1)、隔离器(2)、泵浦源(3)、泵浦信号合束器(4)、前向反射光纤光栅(5)、铒镱共掺增益光纤(6)、后向反射光纤光栅(7)、输出端(8);其中:
一对泵浦源(3)输出的激光依序经由泵浦信号合束器(4)、前向反射光纤光栅(5),被送入铒镱共掺光纤(6),对所述放大器进行抽运;待放大的激光信号由输入端(1)输入,依次经过隔离器(2)、泵浦信号合束器(4)的信号端、前向反射光纤光栅(5)、进入铒镱共掺光纤(6),所述激光信号经放大后,经由输出端(8)输出。
2.如权利要求1所述的一种辅腔泵浦铒镱共掺光纤放大器,其特征在于,所述前向反射光纤光栅和所述后向反射光纤光栅的反射波长一致且均位于镱离子的发射波段,即1微米波段;二者构成辅腔,对放大器起到辅助泵作用。
3.如权利要求1所述的一种辅腔泵浦铒镱共掺光纤放大器,其特征在于,构成所述输出端(8)的尾纤抛磨成具有角度;所述角度通常为8度。
CN201510975316.7A 2015-12-22 2015-12-22 辅腔泵浦铒镱共掺光纤放大器 Active CN105390913B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510975316.7A CN105390913B (zh) 2015-12-22 2015-12-22 辅腔泵浦铒镱共掺光纤放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510975316.7A CN105390913B (zh) 2015-12-22 2015-12-22 辅腔泵浦铒镱共掺光纤放大器

Publications (2)

Publication Number Publication Date
CN105390913A true CN105390913A (zh) 2016-03-09
CN105390913B CN105390913B (zh) 2018-10-23

Family

ID=55422890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510975316.7A Active CN105390913B (zh) 2015-12-22 2015-12-22 辅腔泵浦铒镱共掺光纤放大器

Country Status (1)

Country Link
CN (1) CN105390913B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169689A (zh) * 2016-08-25 2016-11-30 天津大学 辅腔泵浦铒镱共掺光纤激光器
CN109061657A (zh) * 2018-08-13 2018-12-21 昂纳信息技术(深圳)有限公司 一种激光雷达的固态光源以及一种激光雷达
CN110571634A (zh) * 2019-08-12 2019-12-13 武汉光迅科技股份有限公司 一种光信号输出装置及方法、存储介质
CN110600983A (zh) * 2019-10-25 2019-12-20 杭州纤镭光电科技有限责任公司 提高1.6μm波段铒镱共掺光纤激光器转换效率的结构
CN112490832A (zh) * 2020-11-24 2021-03-12 内蒙古大学 一种铒镱共掺光纤放大器及其工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240108B1 (en) * 1999-02-17 2001-05-29 Hughes Electronics Corporation Cladding pumped fiber laser with reduced overlap between a laser mode and an ion-doped region
CN103311786A (zh) * 2013-06-19 2013-09-18 深圳大学 一种抑制Yb-ASE的铒镱共掺光纤激光器
CN104638502A (zh) * 2015-02-06 2015-05-20 天津大学 带有1微米波段光纤光栅的高功率铒镱共掺光纤放大器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240108B1 (en) * 1999-02-17 2001-05-29 Hughes Electronics Corporation Cladding pumped fiber laser with reduced overlap between a laser mode and an ion-doped region
CN103311786A (zh) * 2013-06-19 2013-09-18 深圳大学 一种抑制Yb-ASE的铒镱共掺光纤激光器
CN104638502A (zh) * 2015-02-06 2015-05-20 天津大学 带有1微米波段光纤光栅的高功率铒镱共掺光纤放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRZEGORZ SOBON ET AL.: "Erbium-ytterbium co-doped fiber amplifier operating at 1550nm with stimulated lasing at 1064nm", 《 OPTICS COMMUNICATIONS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169689A (zh) * 2016-08-25 2016-11-30 天津大学 辅腔泵浦铒镱共掺光纤激光器
CN109061657A (zh) * 2018-08-13 2018-12-21 昂纳信息技术(深圳)有限公司 一种激光雷达的固态光源以及一种激光雷达
CN110571634A (zh) * 2019-08-12 2019-12-13 武汉光迅科技股份有限公司 一种光信号输出装置及方法、存储介质
CN110571634B (zh) * 2019-08-12 2021-02-12 武汉光迅科技股份有限公司 一种光信号输出装置及方法、存储介质
CN110600983A (zh) * 2019-10-25 2019-12-20 杭州纤镭光电科技有限责任公司 提高1.6μm波段铒镱共掺光纤激光器转换效率的结构
CN112490832A (zh) * 2020-11-24 2021-03-12 内蒙古大学 一种铒镱共掺光纤放大器及其工作方法
CN112490832B (zh) * 2020-11-24 2022-05-20 内蒙古大学 一种铒镱共掺光纤放大器的工作方法

Also Published As

Publication number Publication date
CN105390913B (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
Minelly et al. Diode-array pumping of Er/sup 3+//Yb/sup 3+/Co-doped fiber lasers and amplifiers
CN105390913B (zh) 辅腔泵浦铒镱共掺光纤放大器
CN111541138B (zh) 一种抑制大功率窄线宽光纤激光器中受激布里渊散射装置
CN104638502B (zh) 带有1微米波段光纤光栅的高功率铒镱共掺光纤放大器
CN101714740B (zh) 提高高功率泵浦铒镱共掺光纤放大器泵浦转化效率的方法
CN106169689A (zh) 辅腔泵浦铒镱共掺光纤激光器
CN113823990B (zh) 一种短增益纤振荡放大共泵浦高功率窄线宽激光器
CN102931572B (zh) 短波长间隔泵浦的大功率光纤激光器
CN103236637B (zh) 双波段铒镱共掺光纤脉冲放大器
CN103022866A (zh) Mopa型随机光纤激光器
CN102263358A (zh) 高功率全光纤结构宽带超荧光光源
US9466939B2 (en) High-gain operation of fiber lasers at long wavelengths
CN103401132B (zh) 一种窄线宽分布反馈光纤激光放大器
Hanna et al. Efficient superfluorescent emission at 974 nm and 1040 nm from an Yb-doped fiber
CN105742947A (zh) 一种抑制反向泵浦双包层光纤激光放大器中ase的***
CN115912027A (zh) 一种高泵浦效率低非线性效应的光纤激光器
CN212485782U (zh) 一种基于随机相移光纤光栅的2μm随机光纤激光器
US10483711B2 (en) Method and apparatus for providing amplified radiation
Gao et al. Eye-safe, high-energy, single-mode all-fiber laser with widely tunable repetition rate
CN202841141U (zh) Ase光源
US8059334B2 (en) Optical fiber amplifier system and method
Oh et al. Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution
CN219801483U (zh) 一种光纤激光器
CN215528185U (zh) 抑制放大自发辐射的光控光纤放大器
Codemard et al. High-brightness, pulsed, cladding-pumped Raman fiber source at 1660 nm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant